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Abstract

We propose a binocular stereo method which is optimized for reconstructing surface detail and exploits the high image resolutions
of current digital cameras. Our method occupies a middle ground between stereo algorithms focused at depth layering of cluttered
scenes and multi-view “object reconstruction” approaches which require a higher view count. It is based on global non-linear
optimization of continuous scene depth rather than discrete pixel disparities. We propose a mesh-based data-term for large images,
and a smoothness term using robust error norms to allow detailed surface geometry. We show that the continuous optimization
approach enables interesting extensions beyond the core algorithm: Firstly, with small changes to the data-term camera parameters
instead of depth can be optimized in the same framework. Secondly, we argue that our approach is well suited for a semi-interactive

reconstruction work-flow, for which we propose several tools.
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1. Introduction

Binocular stereo algorithms compute a depth map from a
pair of photographs or video frames. Driven by benchmarks
used in the Computer Vision community [1] and applications
like driver assistance, the leading algorithms are optimized for
recovering depth-layers of cluttered scenes and precise object
boundaries. Often, they use a finite set of disparities, and there-
fore the resulting depth maps show little surface detail. Operat-
ing on the pixel grid, many algorithms are limited to low image
resolutions, especially if high quality global optimization meth-
ods are used. However, graphics applications like image-based
modelling, photo relighting, or the fabrication of physical mod-
els with 3D printing require detailed surface geometry rather
than depth layering of cluttered scenes. Surface meshes with
impressive detail can be computed with state of the art multi-
view algorithms. Unsurprisingly, however, those rely heavily
on the availability of a large number of views.

In this paper, we propose an algorithm between these
poles—a binocular stereo method optimized for computing de-
tailed surface geometry. It exploits image resolutions in the
10 to 20 megapixel range which is typical for today’s digital
cameras. Combined with self calibration, our approach enables
high quality “walk-along” stereo on pairs of casual images shot
free-hand, a few footsteps apart.

Like many binocular stereo algorithms, we use global en-
ergy minimization in a “data-term / smoothness-term” frame-
work. However, we deviate from typical binocular stereo
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schemes in several respects, using strategies more common in
multi-view methods: We use a triangle mesh in the image plane
to decouple the number of variables from the number of pixels,
allowing us to exploit high image resolutions and global op-
timization. Similar to patch-based reconstruction and surface
evolution methods, continuous depth parametrization is used
instead of discrete disparities, which has several advantages:
Most importantly, it does neither restrict surface detail nor im-
pose a tradeoff between detail and computational complexity
due to a larger label set. It also allows us to omit image recti-
fication, which is beneficial for casual free-hand stereo where
camera rotation between the shots induces strong distortions
in the rectification. Finally, we use a versatile Gauss-Newton-
type optimizer which is straightforward to implement on top of
widely available numerical software libraries. These topics are
addressed in the first part of the paper (section 3).

In the second part we outline two extensions of the core
method, demonstrating the versatility of the proposed approach.
We show that with small modifications to the energy function
we can optimize camera parameters instead of depth in the
same framework, which is useful to correct errors in calibration
(sec. 4.1). Secondly, we describe a set of interactive tools which
allow the user to influence or correct the reconstruction. User
interaction in 3D reconstruction is a little-discussed topic, de-
spite of the great practical success of intelligent semi-interactive
tools for many tasks in graphics, such as segmentation, image
retargeting or camera tracking. We argue that our approach is
well suited for an interactive “optimize—adjust—re-optimize”
work-flow, similar to semi-automatic segmentation (sec. 4.2).

Finally, we address initialization and convergence, and
present results which we compare to other methods (sec. 5).



Figure 1: Left to right: (1) Complete set of input images, 12 megapixels, shot freehand in a museum under available light; (2) depth map representation of our
reconstruction; (3) reconstruction rendered as shaded mesh; (4,5) detail crop of the left view and the shaded reconstruction.

2. Related work

2.1. Binocular stereo

A taxonomy and review of classic stereo algorithms is given
by [1]. In the following we outline the differences between
the focus of typical binocular stereo methods and the scope of
our algorithm. Most research in binocular stereo is aimed at
the reconstruction of scenes with multiple objects and a com-
plex cluttered depth structure, prototypically represented by the
Middlebury stereo benchmarks [1, 2]. This prevalent scene type
influences the strategies employed by the algorithms: For ex-
ample, color similarity is often used as an indicator for depth
continuity [3, 4, 5]. Combining scene segmentation with stereo
has proven to be highly effective, such that algorithms like [6]
perform these tasks in a joint optimization.

For detailed reconstruction of objects, which is the focus of
our work, these scene priors often do not apply. Color informa-
tion or segmentation, for example, cannot be used for a detailled
reconstruction of artifacts like the one show in figure 1.

Most stereo algorithms assume image pairs to be rectified
such that correspondences can be searched along scan lines.
This enables them to represent depth by disparity, measured
in pixels, rather than by distance in a world coordinate sys-
tem. As the pixel grid is discrete, many algorithms operate
on a finite set of disparity values and use discrete global op-
timization methods such as Graphcuts and its descendants [6],
belief propagation [4, 5] or other message passing methods [7]
. While this yields impressive results for the scenes these algo-
rithms aim for, it limits the amount of surface detail for object
reconstruction. This can be relaxed to some degree by using
subpixel disparities (e.g. [8]) at the cost of a larger label set, or
by additional refinement steps after the reconstruction process
(e.g. [9, 10]). Our method, like many multi-view approaches,
is based on continuous depth parametrization and continuous
optimization, which has the advantage of not limiting detail.

2.2. Multi-view reconstruction

Detailed surface reconstruction is the domain of multi-view
methods which compute a mesh or volume representation of
the scene rather than a depth map. As a comprehensive re-
view of this area is beyond scope, we focus this section mostly
on the relation of our work to multi-view approaches which
use depth-maps computed from a small number of images

from similar viewpoints at an intermediate stage, merging them
later to obtain the final mesh. Examples of these methods are
[10,9,7, 11].

The most significant conceptual difference is that multi-
view methods, even if based on intermediate depth maps, rely
on the availability of more than two views. The larger number
of views can be exploited in several ways. Most importantly, it
provides more image data to verify correspondence hypotheses
based on photometric consistency. This makes the estimation of
depth (and, sometimes, normals as in [12]) significantly more
reliable than in the binocular case. Due to this increased match-
ing robustness, many algorithms omit costly global smoothness
terms which are used in binocular stereo and compute stereo
matches locally [10, 12, 9, 11] . Smoothness is enforced later
in outlier filtering, meshing or refinement stages. On the oppo-
site side, surface evolution approaches like [13, 14] use a single
continuous global optimization on a highly sophisticated error
functional that models surface visibility over multiple views in
a mathematically precise manner. These methods, however, are
quite involved with respect to numerics.

Some methods (e.g. [9]) restrict depth computation to
binocular view pairs. While these approaches do not exploit
the larger view count in the matching stage of the algorithm,
the redundant scene coverage provided by multiple views al-
lows them to be very strict in filtering out potential mismatches
without risking holes in the overall reconstruction. In contrast,
optimization-based binocular algorithms such as ours employ
smoothness terms to propagate information into areas of low
matching confidence. Many multi-view methods, including, for
example, [9, 12], also use the visual hull of the object as a con-
straint or to filter outliers. This is not possible in the binocular
case.

We conclude this section by pointing out three specific re-
lated works. Firstly, an interesting but specialized stereo ap-
proach is used by [10] for face reconstruction. They describe
a complex iterative process of strictly local matching, filtering,
and refinement steps on an image pyramid which produces de-
tailed depth maps of the face in the binocular stereo stage. The
impressive results of their overall system are based on multi-
view data and on a face-specific approach to detail enhance-
ment.

Secondly, there is an interesting connection of our work to
Patch-Based Multiview Stereo (PMVS) [12], which is still one



of the most successful multi-view approaches. PMVS uses a
three stage approach. First, corner points are matched across
images to obtain an initial sparse point cloud. Second, depth
together with surface normals is computed using nonlinear op-
timization on isolated patches, using the detected points as seed
locations. Then, a closed surface is computed, which is refined
by repeatedly optimizing patches located at the surface’s ver-
tices, smoothness, and consistency with the scenes silhouettes.
Our method shares the initialization stage, where we use SIFT
[15] instead of Harris corners. Then we directly optimize the
reprojection of a connected triangle mesh, treating the mesh tri-
angles as patches, where the connectivity induced by the mesh
enables us to use small triangles. We also employ smoothness
terms, which are critical to our approach due to the low number
of views.

Finally, [16] proposed an interactive multi-view reconstruc-
tion system where the user guides the entire reconstruction pro-
cess manually by growing a mesh over time with a paint-like
tool. The reconstruction process, which runs on the GPU while
the user paints, is based on an optimization similar to ours.
There are, however, significant differences between their ap-
proach and ours in both intent and algorithm. Most importantly,
the focus of our paper is on getting the most detail out of binoc-
ular high-resolution input, for which we propose a linearized
data-term to cope with the large number of pixels, a mixed first
and second order smoothness term for detailed geometry, and
a method for photometric adaptation. The system of [16] is
focused on multi-view input. Therefore it has to handle visibil-
ity issues, but uses simpler data and smoothness terms. Due to
the user-guided reconstruction process, their optimization can
be restricted to the vicinity of the user’s brush tool, whereas
our method optimizes globally over the entire high resolution
image.

We fully agree with [16] that putting the user in the loop is
important for practical 3D reconstruction. In section 4.2 we ad-
dress several tools for an interactive reconstruction work-flow.
While in [16] the user guides the optimization process itself,
our tools focus on an “optimize—adjust—re-optimize” work-
flow similar to semi-automatic segmentation.

3. Continuous stereo

3.1. Optimization framework

Our stereo algorithm is based on a nonlinear image-based
optimization approach which was originally developed in the
context of tracking [17]. The geometric relation between two
single-channel images 7 and 7 is described by a warp function
W : R2xRX — R2. Conceptually, the assumed image relation
for all pixel coordinates X is:

VX I(x)=J(Wxd) ey

The warp is determined by an unknown parameter vector d €
RX, which is the quantity to be estimated. Note that the above
equation presupposes that the images can be mapped onto each
other by geometric deformation alone, i.e. without a change in

pixel values. Relaxing this brightness constancy assumption is
important for stereo and will be addressed in section 3.4.

In the following we briefly recapitulate how d can be es-
timated from an image pair. This section is independent of a
specific warp function, which we describe in sect. 3.2 for stereo
and sect. 4.1 for calibration. We first define the warp residual
for a pixel:

rx,d)=7x-JWxd)

Estimating d amounts to minimizing the energy

E@=) p(rx.d)

where p is a norm-like function. This is the data-term of the
optimization. We chose the Huber function [18] for p which
switches from quadratic (L2) to linear (L1) influence above
a threshold computed dynamically from the Median Absolute
Deviation of the residuals. This reduces the relative influence
of low confidence pixel matches, leading to a stronger local in-
fluence of the smoothness terms. For the stereo problem, this
helps to prevent erratic geometry at occlusions and specular
highlights.

For minimizing energies of this kind with arbitrary norm-
like cost functions a Gauss-Newton type algorithm was devel-
oped in the statistics community by Wedderburn and McCul-
lagh [19, 20], which is summarized in the appendix. In or-
der to assess the computational costs of specific warp functions
we briefly summarize its application to warp estimation. The
Gauss-Newton update Ad is found by solving:

(JZWJe) Ad = ~JL Wr 2)
W is a diagonal matrix whose elements ¢ (x, d) depend on p:

1 Op (r(x,d))

1 -
Yv(x,d) = 57 (x,d) o

¥ is called the weight-function of p as it scales the influence
of individual equations in the normal equations. For details we
refer to the references cited above. Jg is the Jacobian! of &, and
its rows are the gradients Vr” of the residuals:

vl =— (le(W(x,d))T “Jwlka

VI lwxa 1s the gradient of the second image, evaluated at the
warped location. Jqy is the Jacobian of the warp function; its
size is 2xX K where K is the number of warp parameters. The size
of Jg is N X K where N is the number of pixels, and the linear
system to solve is of size K X K. Hence computing the elements
of Jg and W depends on the pixel count and the number of
warp parameters, while the time to solve the normal equations
depends only on the number of parameters. Solving eq. (2) is
the dominant computational load for warp functions with high
parameter count.

IStrictly speaking, Jg is only the Jacobian of & for p (r) = r>. The elegance
of the iterative re-weighting algorithm of [19] lies in the fact that Jg can be
computed as if this were the case even if a different norm-like function is used.



Figure 2: The warp function ‘W describes the mapping of the second stereo
image J onto the first one, 7. It is parametrized by the depths of the mesh
vertices along their projection rays (blue lines).

We conclude this section by pointing out the computational
efficiency of linear warp functions, which can be expressed
canonically as matrix-vector product ‘W (x,d) = Myd. The
subscript x indicates that My can vary for every pixel coordi-
nate x. For this warp, the Jacobian Jqy|yqg = My is constant
with respect to d and can be precomputed. In this case, only the
image gradient V.J and the weight matrix W varies over the
Gauss-Newton iterations.

3.2. A stereo warp function

In order to perform global optimization on images in the 10
to 20 megapixel range, we formulate our stereo warp function
on a triangle mesh rather than on the pixel grid. This allows us
to chose the geometric resolution, which determines K, to be
lower than the image resolution and still exploit all pixels in the
optimization. The mesh is generated in the first stereo image
7 using the algorithm of [21] and remains fixed throughout the
optimization. This has the advantage that quantities depending
on the mesh geometry need not be recomputed in every iter-
ation. Assuming that the scene is piecewise flat between the
mesh vertices, the remaining degree of freedom is the depth of
each 3D vertex along a projection ray through the camera center
and the corresponding fixed 2D vertex, as illustrated in figure 2.
These depths are the the warp parameters [d; ... dg]" = d we
optimize for.

The relation between each mesh triangle in 7 and its corre-
sponding triangle in J is a homography. However, computing
the warp Jacobian of a homography for every pixel in every
iteration is expensive due to its non-linearity. In order to ex-
ploit the advantages of linear warp functions described above
we linearize the pixel motion, i.e. we approximate the homo-
graphies by affinities. The affinities are induced by the mesh
vertices which move in 3D space along the projection rays, as
described above. In the following we describe this warp func-
tion formally.

Let (u;, v;) denote the 2D location of the ith fixed mesh ver-
tex in image 7. We concatenate the coordinates of all vertices

. T T
in two vectors u = [u1 ... uK] and v = [vl ...vK] . For each

pixel location x € R? we define a sparse vector by € RX which
contains the three barycentric coordinates of x with respect to
the vertices of its surrounding triangle. We can now express X

in terms of u and v as:

T

Pl
Note that by can be precomputed for all pixels since the mesh is
fixed in 7. Next, we replace vectors u and v with a vertex mo-
tion model that reflects the geometry of the stereo problem. In
the following let K7 [R 7t ]] and K4 [R gt g] denote the decom-
positions of the cameras into calibration, rotation and transla-
tion. The subscripts indicate the associated image, 7 or . For
notational compactness we introduce a function H : R — R?

to describe the “de-homogenization” of a vector:
T

H(xywl") =] 2]
ww

It is easily verified that

—g-1 |3 -1
aR; K |- Rt
1

P (dy) = 4)

describes a 3D point at depth d; on the ray that projects to the
image point [1; v;]7 in 7, in homogeneous coordinates. The
point in the second image J corresponding with [u; v;]” can
now be described as a function of depth d; along this ray as
follows:

U, (dp)| _

v, (d,-)] = H (Kg [Ry ts| P () )
Analogous to above, we concatenate the functions U; and V;
into vectors U = [U; ... Ux]" andV = [V, ... Vk]". Substi-
tuting this model into equation (3) yields the stereo warp func-
tion:

wd)] ©)

bT
W.d) = [ ’ bT] [‘V(d)

The warp Jacobian at pixel x and depth parameter d is:

Joy = [bl ] [Jﬂ|d]
bl | [ Jvla

Ja and J are the Jacobians of the vertex motion model de-
scribed by U and V. Each is of size K x K and diagonal,
since the derivatives % and % are zero unless i = j. These
Jacobians have to be re/-comput‘é:d in each iteration due to the
non-linearity of . However, their size is proportional to the
number of vertices and not to the number of pixels—this is the
computational advantage of the linearized warp. We omit the
statement of the analytical derivatives and note that bi-secant
numerical derivatives work well in practice.

3.3. Smoothness terms

We use regularization terms in the energy function to con-
trol the smoothness of the depths. We have experimented with
first and second order smoothness terms, with different norm-
like functions applied to each, and with combinations of both
types.

Our first order terms operate along the mesh edges. Let
N (i) denote the set of neighbors of a vertex with index 7, and



Figure 3: Effects of regularization terms: (1) first order L2; (2) first order Huber; (3) second order L2; (4) second order L2, weight doubled; (5) mixed first order L2
and second order Huber. Renderings are intentionally flat-shaded to emphasize the differences.

d; the depth at this vertex, as above. Further let e; ; denote the
length of the edge between vertices i and j € %; in image 7.
The first order smoothness terms are given by:

K

&=, >, rla)(di-d))

i=1 jeN(i)

By setting p(x) = |x| we can approximate a Total Variation
L1 (TVLI) regularization. Using the Huber function gives a
mixture between L1 and L2 regularization of depth differences.
Our second order terms are based on the cotangent Lapla-
cian L of the reconstruction mesh. We compute L only once on
the 2D mesh in 7, exploiting the fact that the mesh projection
into 7 does not change. The second order term is given by:

K
Eo= Y p) with [I...Ik]" =Ld @)

i=1

Note that both smoothness terms have a constant Jacobian
which can be precomputed: For & the Jacobian is a vertex-
vertex incidence matrix with two non-zero elements per row,
for &, the Jacobian is L. Therefore, only the weight matrix W
has to be updated in the optimization.

Examples of the effects of different smoothness terms are
shown in figure 3. First order regularization produces good but
somewhat noisy results. Using the Huber function significantly
reduces blurring of discontinuities. Laplace regularization is
typically used with p (x) = x>. The combination of Laplace and
Huber leads to spike-shaped artifacts at discontinuities where
the influence of the regularization is suppressed too strongly.
This effect can be suppressed, however, with a weighted combi-
nation &Esjp = A& +(1 — A1) Eg, of first order regularization with
L2 norm and Laplace regularization with Huber “norm”, which
produces smooth surfaces and good discontinuities. This is the
smoothness term used for all results in the paper (with 1 = 0.5).

3.4. Photometric adaptation

It is well known that the brightness constancy assumption
does not hold for stereo problems. Therefore, most algorithms
use similarity measures which are less sensitive to photometric
variations than pixel difference. Examples are the widely used
Normalized Cross Correlation (e.g. [9, 7, 11] and many more),
Mutual Information [22] rank [2] or census [23]. These mea-
sures are often defined on image patches rather than individual

Figure 4: Reconstruction with (left) and without (center) photometric adapta-
tion.

pixels and they involve more or less complex, sometimes non-
linear computations (e.g. rank, census). Some of them can be
used in continuous optimization frameworks (e.g. [24]) but it
complicates the derivatives and is computationally expensive.
An alternative approach is based on the observation that high
image frequencies are less affected by view-dependent lighting
effects than low frequencies. Therefore, some form of high-
pass filtering is applied to the images before reconstruction.
While pre-filtering is computationally cheap, it discards poten-
tially valuable image information. For our algorithm, we found
this approach to have a negative effect on convergence unless
filter parameters are fine-tuned individually for each image pair.
A third approach is to include the estimation of lighting condi-
tions or a model of luminance differences in the optimization.
[25] use this strategy for multi-view reconstruction, [26] use it
for tracking.

Our own approach is a computationally efficient combina-
tion of estimation and filtering. Conceptually, we replace the
right-hand side of the brightness constancy assumption with a
luminance residual term £* (x):

IT(x)-J Wk d)) =L (x) ®

L" (x) describes the intensity difference between 7 and J at
x under the optimal warp parameters d*. If d* and hence L*
was known it could be subtracted from 7 and warp estimation
could be computed on 7 — £* under the brightness constancy
assumption. As £* is unknown before the optimization termi-
nates, we iteratively compute an approximation £ ~ L* along
with the geometric warp parameters d. In contrast to the “pho-
tometric warp” of [26], we decouple warp estimation from the
estimation of £ in order to keep the size of the optimization
problem constant. Let d® be the state of the warp parameter in
the kth Gauss-Newton iteration. We assume that the luminance



residual can be obtained from the low frequency content of the
image residual 7 (x) — F (‘W (x,d)). This is the flip side of the
high-frequency assumption the pre-filtering strategies are based
on, but in contrast to pre-filtering, we adapt L iteratively to the
current state of the optimization. In order to allow for discon-
tinuities in £ we use the guided filter [27], an edge-preserving
smoothing operator similar to the bilateral filter. Once we have
computed £ we continue warp estimation with the following
photometrically adapted data term:

&) = Zp(I(X)—L(X)—J("W(d,X)))

The initial estimate of L is based on the initial warp parameters
(see section 5) and computed before Gauss-Newton iteration
starts. In practice we find it sufficient to re-estimate £ every
three to five iterations. Figure 4 illustrates the effect (and ne-
cessity) of luminance adaptation.

3.5. Parameters

The proposed method has a number of parameters that
can—and have to—be adjust to obtain high quality results. In
the following we briefly describe the most important ones.

e The mesh resolution determines the resolution of details
visible in the result, the number of pixels that contribute
to one vertex in the data term, and the size of linear sys-
tem to be solved in the normal equation. Meshing is ad-
dressed in section 5.2.

e Smoothness term weight. The relative influence of the
smoothness term against the data term is the most impor-
tant parameter with respect to the look of the result. It is
typically adjusted individually for each scene, depending
on scene detail and image noise.

o Norm-like function thresholds. The thresholds in the Hu-
ber norm used in the data term as well as in the first-
order smoothness terms are determined automatically us-
ing the Median Absolute Deviation (MAD) of the respec-
tive residuals. This methods has proven to be robust over
a large variety of scenes.

e For photometric adaptation the kernel size of the guided
filter used to separate the luminance residual from the
warp residual must be adjusted to the image size.

4. Extensions

4.1. Camera warp

The use of depth parametrization and a generic continuous
optimization framework makes it possible to estimate camera
parameters instead of scene depth with very little change to the
warp function. We only have to switch the parametrization such
that depths d; are treated as constants and camera parameters
become variables. We can only estimate the relative pose of the
second camera with respect to the first one. Therefore we keep
R; and t; constant and parametrize eq. (4) with the intrinsic

parameters of the first camera, if we want to include them in
the calibration update at all. In (5), rotation R4 and translation
ts of the second camera become variables, as well as the in-
trinsics of the second camera if required. There are many ways
of parametrizing rotation updates, e.g. by cross-product based
linearization of Euler angles ¢:

Rx =rot (¢ + Ag) x =~ rot (@) X + [X]. ¢ )

Denoting vectors of intrinsic camera parameters as Ky and k,
the vertex motion model (eq. (5)) is now ﬂ(k], ds.ty, kj)

and ‘V(k 97ty K g). Note that the 3D vertices still project
to the original 2D vertices of the mesh in 7, as before. There-
fore the warp function (eq. (6)) and the optimization machinery
remain unchanged except for the parameters. The size of J¢
and J is now the number of vertices times the number of cam-
era parameters to be estimated, and they are dense.

Our camera warp does not (yet) replace calibration in our
reconstruction. It is sufficient, however, to correct the parame-
ters of a pre-calibrated camera which was accidentally moved
or refocused after calibration: We first run the stereo optimiza-
tion. When the resulting depths are not satisfactory we optimize
for depth and camera parameters in turns of five iterations. In
principle, we can also optimize for depth and camera parame-
ters simultaneously, which amounts to an image-based bundle
adjustment. However, the sparse direct solver we currently use
is slow on the arrow-shaped linear systems which occur in bun-
dle adjustment problems. This can be improved with a special-
ized solver, e.g. [28].

4.2. Interactive tools

Most reconstruction algorithms, both multi-view and stereo,
are black-box systems. In practical applications this forces
users to manipulate appearance and correct geometry in generic
3D modeling packages. On the other hand, many state of the art
graphics algorithms in segmentation, tracking or re-targeting
enable user interaction, typically in the form of initialization
and correction. We think that 3D reconstruction can profit from
this kind of interactive work-flow, and we argue that the pro-
posed algorithm is well suited for interactive tools. In this sec-
tion we outline three examples.

4.2.1. Depth correction

Sometimes there are regions in an image pair where the op-
timization converges slowly or terminates prematurely due a lo-
cal optimum. We provide a tool for adjusting depths in order to
correct or speed up the reconstruction. It is important to note
that the user’s correction does not have to be exact as the opti-
mization converges quickly to accurate depths when re-run with
the user’s approximate changes as starting point. This enables
an “optimize, adjust, re-optimize” work-flow. Figure 5 illus-
trates an example of this process. We want to enable the user
to correct depth in image space rather than in a 3D workspace
which is non-intuitive for the untrained. We have experimented
with several types of tools, such as adjusting individual vertex



Figure 5: This reconstruction was halted after five iterations. Some regions have
not converged yet, e.g. the one in the magnified detail highlighted with a red
border. They are roughly corrected by the user with the proposed intelligent
repair tool, as shown in the second magnification (blue border). Starting at
the corrected depths, the optimization converges to a good result within two
additional iterations (third magnification, green border). The bottom rows show
the evolution of depth (first row) and pixel difference (second row, green is zero)
while the user paints at the location marked with the red star.

correspondences, “sculpting” the reconstruction mesh, or paint-
ing on the depth map. We have learned that designing an effi-
cient depth-correction is challenging, even when the correction
does not have to be precise. Therefore we support correction
computationally with a local stereo algorithm. This approach
is inspired by [16], where, in contrast to this work, the entire
global optimization is user guided.

Depth correction support works as follows: For each pixel
under the paint tool, we store the best seen depth d* and the
last tested depth d; d* is initialized with the result of the global
optimization, and d = d* initially. When the user paints, we
update d < d + Ad with Ad depending on the selected paint
tool (e.g. add or subtract). After each update to d we compute
the normalized cross correlation NCC (d) of a patch around the
pixel with the corresponding patch in the second image. We up-
date d* « d only if NCC (d) > NCC (d*). Finally, we smooth
accepted depths d* under the paint cursor with a 5 X 5 median
filter. This process happens in real-time while the user paints.
The evolution of depth during the paint process is illustrated in
figure 5. After depth correction the vertex depths of the global
optimization mesh are updated by sampling the d*-depth map
and the global optimization is re-run.

4.2.2. Smoothness brush

The weight of the second order (Laplacian) regularization
term influences the smoothness of the reconstruction. By ad-
justing this term locally we can provide a tool which allows
the user to express preference for a smoother or rougher result
in parts of the image. Since the meshes are generated in im-
age space the user can paint with a smoothness brush directly
on the image. Before reconstruction, we sample this smooth-
ness map at the mesh vertices and re-weight the corresponding
rows of the Laplacian in the second order smoothness term ac-
cordingly. Again we can provide an iterative work-flow. When
a region reconstructed as “rough” is to be made smoother we
pre-smooth it strongly before re-running the optimization. The
reason is that rough reconstructions have a lower residual as
they give more influence to the data term which can prevent the
optimization from converging to a smoother state.

4.2.3. Interactive meshing

Mesh construction is another aspect for which we provide
interactive tools. A region of interest (ROI) tool allows the user
to define the region of the image where the mesh is to be con-
structed. Additionally, she can specify paths in the image where
she wants edges to be in the mesh. This is useful at strong dis-
continuities when coarse reconstruction meshes are used. For
fine meshes, predefining edges is not necessary.

5. System overview and results

In this section, the overall warp-based stereo system is de-
scribed. The following sections describe initialization and mesh
generation. An overview of the data flow and the algorithms in-
volved is shown in figure 7. Finally, results and comparison
with other methods are discussed.
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Figure 6: Initialization from sparse interest point correspondences (top left) and convergence over 20 iterations. Many surface details appear in the first iteration
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Figure 7: The data flow in the overall reconstruction system illustrates the role
of initialization, calibration and mesh generation in the warp-based stereo sys-
tem. Algorithms are shaded green; input to the system is shaded blue. Initial
values for nonlinear optimization are computed by interpolating depth values
of the dense reconstruction mesh from sparse interest point matches. For the
walk-along stereo scenario, camera parameters are computed with sparse bun-
dle adjustment. 2D meshing algorithms are used to generate the reconstruction
mesh from mask images, indicating the region of interest to be reconstructed.

5.1. Initialization

Our reconstruction requires an initial camera calibration
since the camera warp is not yet suited for calibration from
scratch. For most images shown in the paper we used the
Bundler software [29]. For the face and pose data-sets shown
in some figures a calibration object was used. As stereo warp
estimation is a highly non-linear problem we also need initial
depth values. They are computed as follows: We first extract
sparse feature correspondences (SIFT) and filter them accord-
ing to consistency with epipolar geometry. Then we compute a
depth value for each correspondence and find the initial depths
for the vertices of the reconstruction mesh by scattered data in-
terpolation with a Laplacian smoothness term. An example of
an initialization is shown in figure 6.

5.2. Meshing

The mesh influences the quality of the reconstruction as
well as the speed of the optimization: As the stereo warp func-
tion relies on the assumption of a piecewise planar 3D scene
the density of the mesh determines how well smooth parts, fine
details and depth discontinuities in the scene can be approxi-
mated. The density of the warping mesh also determines how
the image data is partitioned for optimization, i.e. how many
pixels contribute to the estimation of each vertex depth vari-
able. If too many pixels contribute they are likely to drag the
variable into many different directions in the optimization such
that no meaningful descent direction can be found. If too few
pixels contribute individual depth variables are likely to over-
fit on image noise and view-dependent lighting effects. Finally,
the number of vertices in the mesh is equal to the number of
variables to be estimated and thereby affects speed and mem-
ory useage. Vertex count also determines the size of the matri-
ces used in the smoothness term, e.g. the mesh Laplacian. A
good mesh is balances vertex density and pixel resolution for an
optimal reconstruction result. Meshes were generated with the
Constrained Delaunay algorithm of [21], which creates a tri-
angulated mesh satisfying constraints on maximal triangle area
while minimizing acute inner angles in triangles. We have con-
ducted experiments with scene-adaptive meshes, where vertex
density is higher in areas with high image detail. While this
strategy allows to reduce vertex count in homogeneous regions,
we found that it provides no qualitative advantage over dense
but non-adaptive meshes in the highly detailed type of scenes
shown throughout the paper.



5.3. Convergence

Convergence is very fast for well initialized regions with
most surface details appearing in the first three iterations. In
later iterations, sharpness at depth discontinuities improves and
regions with worse initialization converge towards the correct
result. This process is illustrated in figure 6. If the initializa-
tion is too far off the optimization cannot recover. In this case
depth can be corrected approximately with the proposed tools
before continuing the optimization. The results in the paper
were computed in two passes with a mesh of 12 pixels per tri-
angle on average in the first pass and 6 pixels per triangle in the
second stage, which was initialized with the result of the first.
Multi-resolution schemes are straightforward to use with our
method, but we have yet to explore them systematically. We use
a state-of-the sparse direct sparse solver (Intel Math Kernel Li-
brary DSS) for computing Gauss-Newton updates. Otherwise,
our C++ implementation has not yet been systematically opti-
mized. Average computation time was 2.3 sec per 10° vertices
(i.e. variables) on a Xeon X5670. For the reconstruction in fig-
ure 1, with 3.5 - 10° triangles final resolution, this amounts to
8.1 sec per iteration in the second stage. With 9 iterations in the
first and 5 in the second stage total reconstruction time was 93.6
sec. This timing is typical for the results shown, but there is
significant room for optimization in the implementation. Mesh
sizes are specified alongside the results in figure 9.

5.4. Results

Figure 9, as well as figures 1, 4 and 5 show results of
the proposed method. It is important to note that, at the cost
of higher iteration counts, we did not use our interactive tools
to generate the results in these figures, except for the manual
definition of ROIs. All were computed from two views. In-
stead of depth maps, we visualize them as shaded renderings
of the reconstruction meshes used in the optimization to em-
phasize the surface details recovered by our algorithm. The
challenging museum artifact data-set was captured to be rep-
resentative for a “walk along” stereo application. The images
were shot with a 12 megapixel consumer camera (Fuji X100)
without tripod or flash, in dim lighting conditions (ISO 640-
1200), and with a regular visitor’s access to the objects. The
stereo pairs were captured a few steps apart, and the object was
kept in the image center which is more intuitive than trying to
move a camera freehand along a horizontal baseline. The actor
poses and facial expressions were captured at 18 megapixels
(Canon EOS550D) with two synchronized fixed cameras and
multi-flash lighting. We did not evaluate our method on Mid-
dlebury data due to its low image resolutions and the different
scope of our algorithm. Also, the ground truth disparities in
the Middlebury stereo data-sets are limited to pixel precision.
Figure 9 G shows a reconstruction from frames 7 and 8§ of
the EPFL “Herz-Jesu-P25” data-set for multi-view algorithms.
The images in this data-set are at the lower limit of image res-
olution for our method: While the nominal pixel resolution is
6 megapixels, the effective resolution is reduced by strong blur.
Figure 9 E shows a shoe print reconstruction from a digital
forensics project.

5.5. Limitations and outlook

A limitation of our approach is its dependence on initial-
ization. The feature-based method works well for most scenes.
However, feature mismatches occur even with epipolar geome-
try as filter, and the density and distribution of correspondences
vary from scene to scene. Mismatches and feature sparsity lead
to bad initializations from which the optimization either takes
long to recover or does not recover at all. Our interactive tools
provide means to correct these situations manually. Improv-
ing the robustness of initialization is part of our planned fu-
ture work. We are currently evaluating classic binocular stereo
methods on down-sampled images as an alternative to feature
matching. Another limitation is the dependency on high image
resolutions, as multiple pixels are subsumed under one mesh
triangle. This does not scale well to low resolution content. Fi-
nally, occlusion handling is currently only implicit: The robust
error norm in the data term reduces the influence of low con-
fidence pixel matches and the smoothness terms propagate ge-
ometry into these regions. Established strategies such as back-
ward matching (from J to 7, in our terminology) can be used
to identify occlusions post-hoc. Note that backward matching
is faster than forward matching with our method, as we can use
the result of latter to initialize the former. We are also investi-
gating the local weights of the norm-like functions as occlusion
indicators.

5.6. Comparison

We have compared our approach to several algorithms:
123dCatch by Autodesk, which offers 3D reconstruction as a
web service; Patch-based Multi-view Stereo algorithm (PMVS)
of [12], one of the most influential multi-view algorithms,
with Poisson Surface Reconstruction [30] for meshing; Scan-
nerKiller, a commercial binocular stereo application (time-
limited demo). 123dCatch offers different reconstruction res-
olutions of which we chose the highest for comparison. Scan-
nerKiller’s options were set to highest quality. We have com-
pared the algorithms on the museum artifact data-set which
proved to be very challenging. Figure 8 shows detail crops from
scenes in figure 1 and figure 8 A and I. Note that /23dCatch
requires at least three views, whereas our results and Scan-
nerKiller’s are computed from two. To yield sufficient cover-
age, PMVS required 4 views on scene A, 2 views on the scene
shown in figure 1 (3 views reproducibly fail) and 3 views for
scene 1. Despite of extensive parameter tuning we find it diffi-
cult to obtain fine geometric detail from PMVS on our data-set.

6. Conclusion

We have proposed a stereo algorithm which addresses high-
detail surface reconstruction from binocular high-resolution in-
put. Our method is capable of computing detailed geometry
comparable to multi-view output from only two views. The
algorithm is based on continuous optimization in a Gauss-
Newton framework with robust cost functions in both data-
and smoothness term. We have proposed a linearized stereo
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Figure 8: Comparison on detail crops of the museum artifact data-set with other methods: 123dCatch by Autodesk; Patch-based Multi-view Stereo (PMVS) of [12]
with Poisson Surface Reconstruction [30] for meshing; ScannerKiller. For 123dCatch and ScannerKiller the highest quality / resolution settings were used. The
complete scenes are shown in figures 1 and 8 A and I. Note that /23dCatch requires at least three views, whereas our results and ScannerKiller’s are computed
from two. To yield sufficient coverage, PMVS required 4 views on scene A, 2 views on the scene shown in figure 1 (3 views reproducibly fail) and 3 views for
scene L. Despite of extensive parameter tuning we find it difficult to obtain fine geometric detail from PMVS on our data-set. See also sect. 5
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warp function which reduces the size of the optimization prob-
lem while using all pixels available. We have discussed sev-
eral smoothness terms and proposed a robust mixed term which
yields smooth geometry while allowing depth discontinuities.
We have addressed methods for coping with photometric dif-
ferences and proposed a computationally efficient photometric
adaptation. We have shown that the continuous optimization
approach enables extensions such as tools for a semi-interactive
reconstruction work-flow, or warp-based camera refinement,
which is straightforward to implement in the proposed frame-
work.

Regarding future work, we plan to improve initialization
and we want to model occlusions more explicitly. We also re-
search further extensions along the line of the proposed cam-
era calibration. For example, it is possible to parametrize the
warp with a domain specific shape model instead of individ-
ual depths or camera parameters. For the interactive tools, user
studies will help to quantify their benefits compared to tradi-
tional workflows and to optimize existing and new ways for
users to interact with the reconstruction.

Appendix A. Robust Gauss-Newton

In the following the robust Gauss-Newton variant developed
by Wedderburn and McCullagh [19, 20] is reviewed and mo-
tivated by comparison with classic Gauss-Newton. The clas-
sic Gauss-Newton algorithm is an optimization algorithm for a
special class of energy functions, namely sum-of-squares func-

tions:
n

EX =) r (%)’

i=1

(A1)

The terms of the sum r; : RX — R are called residuals. With
r(x)=[r®...rnx]|",

the gradient of & is,

n

VE = Z Ve =J'r (A.2)
i=1
where J is the Jacobian of r. The Hessian of & is:
n
V2e=JTJ+ Z ri- V2 (A3)

i=1

The Gauss-Newton algorithm approximates the Hessian using
only the left term of equation (A.3), i.e. VZe ~ J'J, when
computing a Newton-type optimization step. The advantage of
this approximation lies in the fact that no second derivatives are
required to compute it. Substituting the approximation into the
Newton update

Av = - (V€)' V8

yields the Gauss-Newton step:

Acx = —(173)" (37r)

11

In equation (A.1), residuals with a large absolute value
have a very large influence on the solution: As each residual
is squared, the overall error is lowered the most by fitting the
model mostly to these measurements. This may be problem-
atic, as some these errors may be so large due to failed mea-
surements or failure of the model in certain situations.

A robust version of equation (A.1) is obtained by replacing
the square with a norm-like function p : R — R*0:

Eap (X) = ) p(r; (%))
i=1

p is chosen to be less increasing than the square (at least for
large values). Numerous robust cost functions have been pro-
posed in the literature. The gradient of & is now:

N
i=1

For each norm-like function p the associated weight func-
tion is defined as:

n d_p %

d
X v,
P dr,- dx

V&b = dr

(A4)

dp
dr
Substituting this to equation (A.4) yields:

() =r

n

VEiop = Y 1ith (1) Vri

i=1

This reveals the similarity to the classic least squares gradient
of equation (A.2) and can be rewritten analogously as

V(c;rob =] Twr

with
W =diag (Y (r) ...y ().

J is the Jacobian of the residual vector r, as above.
The Hessian of ey, is:

n

(L) -3

i=1

(Vr,-t// () VriT + ricz—er,»VriT + iy (ry) Vzr,-) .
ri

As in the classic Gauss-Newton algorithm for least squares, the
Hessian is approximated by omitting the higher order terms.
The remaining terms, written in matrix form, is again similar to
the classic least squares case:

v (VSrTob) = Z (Vrit// (r) VriT) =J'WJ

L

With the gradient and approximate Hessian defined, the opti-
mization can be performed exactly as in the least squares case.
The weight function i has to evaluated in every iteration in or-
der to build up W.
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Figure 9: Results computed with the proposed method, shown as shaded meshes rather than depth maps to emphasize surface detail. The meshes are the ones used
in the optimization. All results were computed from two images. Scenes A, D, F, H and I and figure 1 were captured freehand in a museum under available light. B
and C as well as figures 6 and 4 were captured with synchronized cameras and flash lighting. G is based on frames 7 and 8 of the EPFL “Herz-Jesu-P25” data. E is
a shoe print reconstructed for a digital forensics application. Vertex counts are given in the table above. Data-sets are described in section 5.
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Number of triangles used in the different results:

scene
vertex count-10° | 336 | 353 | 376 | 157 | 120 | 151 | 487 | 318 | 251 | 158 | 352 |
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