Einführung in die KI

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2005/06

2. Constraints:

Grundbegriffe
Constraint Propagierung
Anwendungsbeispiele
(Bildinterpretation, zeitliches Schließen)

Beschränkungen (Constraints)

Allgemeine Problemstellung:

Einschränkende Bedingungen ("Constraints")

für variable Parameter sollen gleichzeitig erfüllt werden

- Produktionsplanung mit
 - Anforderungen an Produkt
 - Anforderungen an Verfahren
 - Anforderungen an Kosten, Zeit, ...
 - Abhängigkeiten zwischen Parametern
- Stundenplanung
- Scheduling
- Landkarten einfärben, ...

Lösung durch Suche (Probieren)

Mögliches Verfahren: Zustandsraum-Suche Sukzessive die Variablen mit zulässigen Werten belegen, Backtracking bei Verletzung von Einschränkungen

Zustände: Teil-Belegungen der Parameter mit Werten Zustandsübergang: Festlegung eines Parameterwertes (soweit ohne Verletzung von Constraints möglich)

Problem der Suchverfahren: Kombinatorische Explosion Verbesserungsmöglichkeiten:

Zwischenergebnisse bzgl. Beschränkungen testen

Beispiel: Ziege-Wolf-Kohlkopf

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI

Constraints

3

Lokale heuristische Zustandsraum-Suche

Zustände: Belegungen der Parameter mit Werten

Zustandsübergang: Änderung eines Parameterwertes

Heuristik: Parameterwert so ändern,

dass Konflikte minimiert werden

Konflikt: Anzahl verletzter Constraints

Gute Resultate selbst für schwere Probleme, wenn Lösungen überall im Lösungsraum "dicht" verteilt sind. Andernfalls z.B. Evolutionäre Algorithmen anwenden.

Beispiel: Queens-Problem

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Propagierung von Beschränkungen

Beschränkungen nutzen zur Reduktion des Suchraums:

 geschicktes Kombinieren von Bedingungen
 Weiterreichen (Propagieren) lokaler Einschränkungen ("Constraint-Propagation")

Willkürliches Einschränken des Suchraumes (mit Möglickeit zum Backtracking)

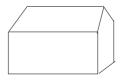
S E N D + M O R E = M O N E Y

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

5

Beispiel aus Bereich "Bildverstehen"

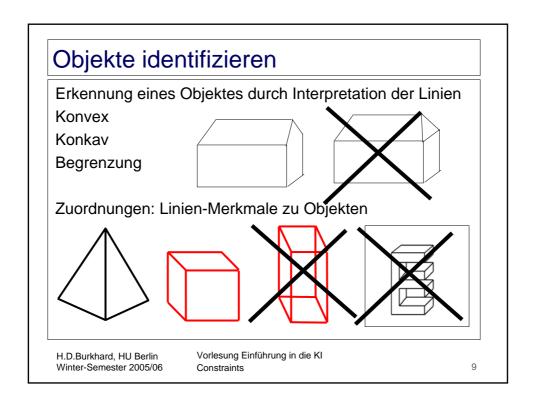
Zweidimensionales Abbild (Linien-Zeichnung) eines 3-dimensionalen Körpers interpretieren

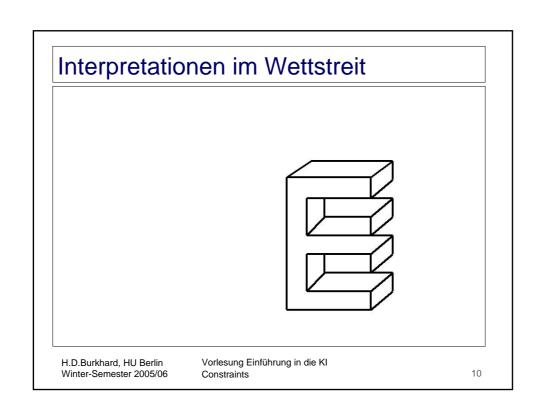


H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Bildinterpretation (Beispiel) Reale Szene: 3D Elektronisches Abbild: 2D (Pixel-Matrix) Filter (Vorverarbeitung) (Re-)konstruktion Segmentierung von Informationen Identifikation von Linien Interpretation von Linien (Beschriftung) Identifikation von Objekten Beziehungen zwischen Objekten Szenen-Interpretation H.D.Burkhard, HU Berlin Vorlesung Einführung in die KI Winter-Semester 2005/06 Constraints

Zweidimensionales Abbild eines 3-dimensionalen Körpers unter speziellen Voraussetzungen interpretieren Keine Schatten oder Bruchlinien. Verdeckte Kanten sind nicht sichtbar. Alle Eckpunkte sind Schnittpunkte genau dreier aufeinandertreffender Flächen. (Die Spitze der Cheops-Pyramide ist nicht erlaubt. -- Zur Vereinfachung, ansonsten komplexere Verfahren.) "Allgemeiner Beobachtungspunkt" wird verlangt: Bei geringen Ortsveränderungen des Beobachters darf kein Schnittpunkt seinen Typ wechseln.





Begrenzungslinien

bilden die äußeren Kanten des Objektes.
 Gekennzeichnet werden sie mit einem Pfeil ,,→". Die Pfeile der Begrenzungslinien sind so gerichtet, daß die Körperfläche immer rechts liegt.

Innenlinien

• sind die Kanten im Inneren des Objektes. Es werden zwei Arten unterschieden:

- Konvexe Linien:

 Beide Grenzflächen sind vom Beobachter abgewandt, wie bei einem Würfel. In der Zeichnung sind sie mit einem "+" versehen.

- Konkave Linien:

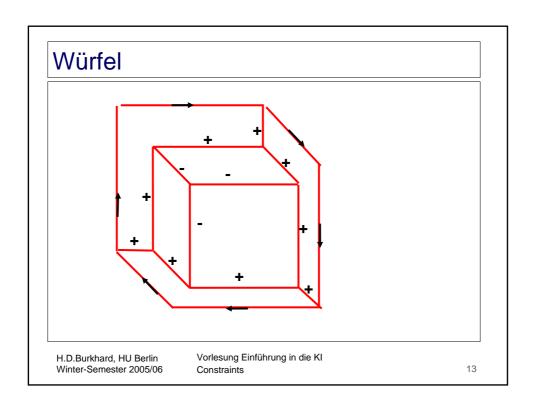
Beide Begrenzungsflächen schließen den
Beobachtungsstandpunkt ein. Ein Beispiel wäre der Blick
in ein geöffneten Buch Sie eind mit einem "markiert

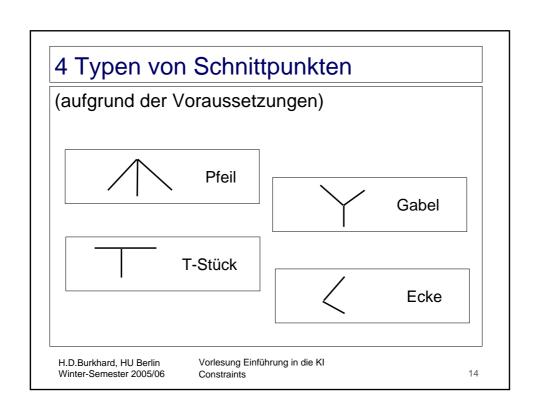
markiert

H.D.Buringrein geröffnetes Burchnissie sind mit einem "—" markiert.
Winter-Semester 2005/06 Constraints

Konkav oder konvex?

Linieninterpretationen sind abhängig vom Kontext





Beschriftete Schnittpunkte

Bei Kanten vier Möglichkeiten "←", "→", "−" und "+". Folglich: insgesamt 4³+4³+4²=208 Möglichkeiten. Davon aber nur 18 physikalisch möglich (Constraints!)

Beschriftungsverfahren

Gegebene 2-D-Zeichnung konsistent beschriften, d.h.:

Beschriftung der Ecken (*Variable*) mit Werten aus den zulässigen (18) Typen

Constraints: längs einer Kante darf sich der Kantentyp nicht ändern

oder:

Beschriftung ist eine Belegung der Kanten (*Variable*) mit Werten aus {"←", "→", "–" , "+"}

Constraints: an den Ecken dürfen nur zulässige Typen auftreten

In komplexeren Bildern weitere Constraints durch Licht/Schatten.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Suchverfahren zur Beschriftung

Auswahl einer Ecke, diese beschriften

Fortlaufend Nachbarecken beschriften - solange dies möglich ist. Dabei Auswahl aus mehreren Alternativen:

- ausgewählte Ecke
- ausgewählte Beschriftung der Ecke
- 3. Beim Auftreten von Widersprüchen: Backtracking zu weiteren Beschriftungsalternativen unter 2.

Zweckmäßig:

Kein simples "chronologisches Backtracking" verwenden

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

17

Verfahren von Waltz

Initial:

Stammvater für "Constraint Propagation"

Die Ecken mit allen möglichen Beschriftungen versehen *Zyklus:*

Solange noch Änderungen möglich sind:

Paare von Nachbarecken vergleichen

(Constraints: Konsistenz entlang der Linien)

Inkonsistente Beschriftungstypen an Ecken entfernen.

Abschluss:

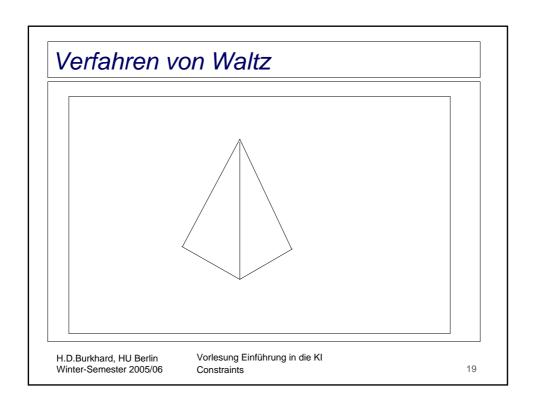
Beschriftungen festlegen

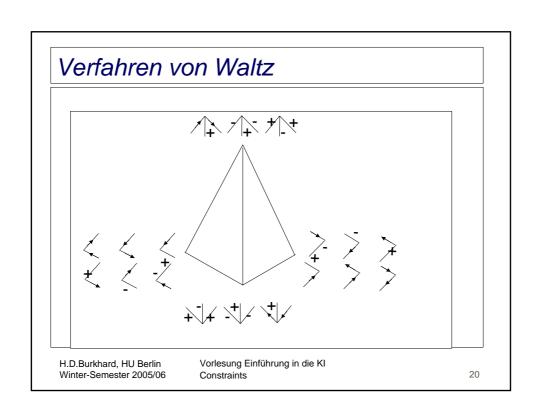
(z.B. Suche über den verbliebenen Beschriftungen).

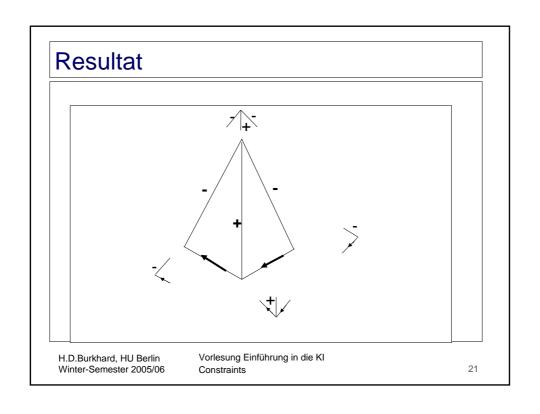
Durch Verringerung der Beschriftungen entstehen neue Inkonsistenzen, die wiederum zum Entfernen von Beschriftungen führen: "Constraint Propagation"

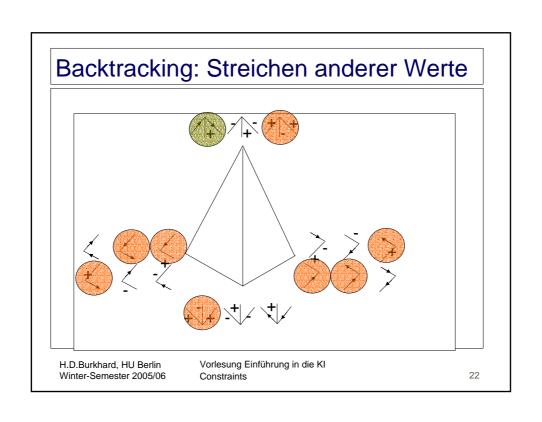
Winter-Semester 2005/06

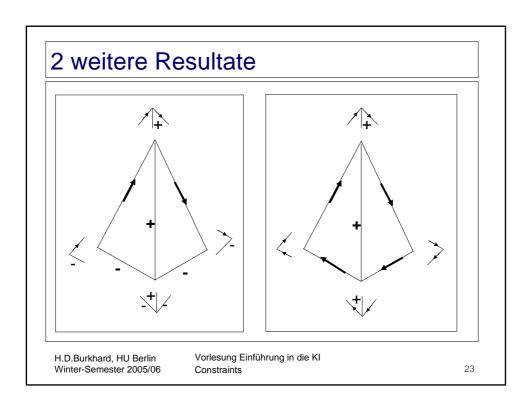
Constraint











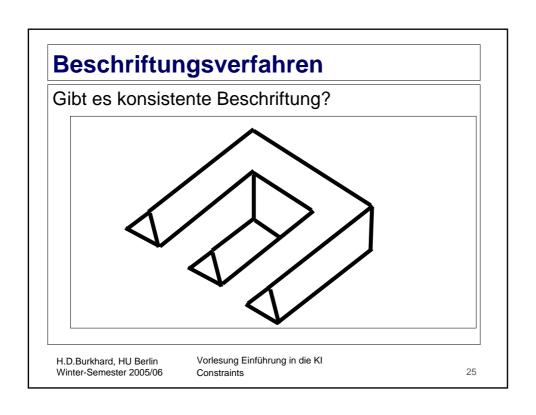
Beschriftungsverfahren

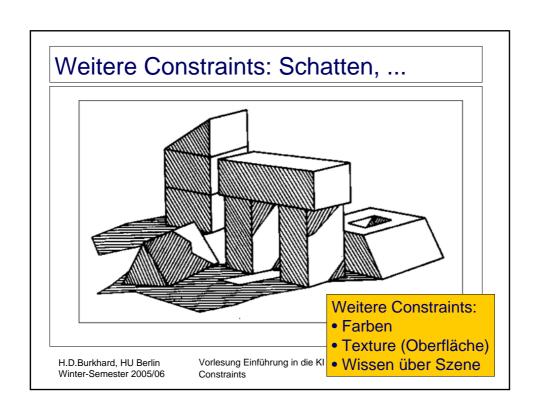
Für realistische Bilder existiert stets (mindestens) eine konsistente Beschriftung.

Es gibt manchmal auch konsistente Beschriftungen bei unrealistischen Bildern.

Grund: Die Konsistenz wird nur lokal verlangt

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints





Constraint Propagation

Analog in anderen Problemen anwendbar

Schritte:

- A) Wertebereiche einschränken gemäß Constraints
- B) Wertebereiche willkürlich einschränken

(mit Backtracking)

C) Suche über verbliebenen Werten

A und B können mehrfach und abwechselnd angewendet werden

oder in einem gemeinsamen Schritt:

Größere Einschränkung des Wertebereichs als durch Constraint verlangt

27

Definitionen: Constraints

Gegeben:

Variablenmenge $V = \{v_1, ..., v_n\}$ (Parameter) mit Wertebereichen $Dom(v_i)$, i=1,...,n.

Gesamtbereich: $Dom(V) := Dom(v_1) \times ... \times Dom(v_n)$.

Belegung β ordnet jedem v_i einen Wert aus Dom (v_i) zu:

$$\beta = [\beta(v_1), ..., \beta(v_n)] \in Dom(v_1) \times ... \times Dom(v_n)$$

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Definitionen: Constraints

<u>Constraint</u> C definiert die "zugelassenen Belegungen" über einer Variablen-Teilmenge $V_C = \{v^C_1, ..., v^C_m\} \subseteq V$:

$$C \subseteq \mathsf{Dom}(\mathsf{v}^\mathsf{C}_1) \times ... \times \mathsf{Dom}(\mathsf{v}^\mathsf{C}_m)$$

<u>Constraint-Netz</u> C über V ist eine Menge $C = \{C_1, ..., C_k\}$, wobei jedes C_i ein Constraint über einer Menge $V_{C_i} \subseteq V$ ist.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

29

Definitionen: Constraints

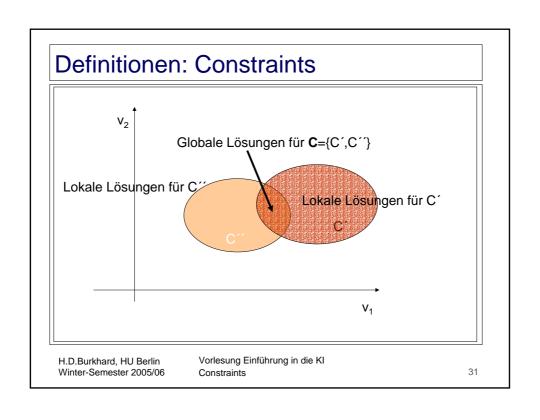
Belegung $\beta = [\beta(v_1), ..., \beta(v_n)]$ <u>erfüllt Constraint</u> C über Menge $V_C = \{v_1^C, ..., v_m^C\} \subseteq V$, falls $[\beta(v_1^C), ..., \beta(v_m^C)] \in C$.

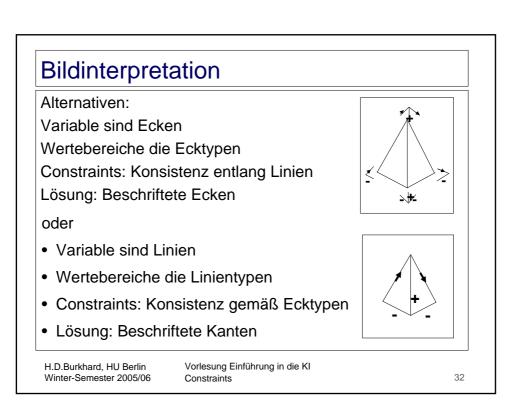
β heißt *lokale konsistente Belegung* für C oder *lokale Lösung* für C.

Belegung β <u>erfüllt das Constraint-Netz</u> $\mathcal{C} = \{C_1, ..., C_k\}$, falls β alle $C_i \in \mathcal{C}$ erfüllt.

β heißt g<u>lobal konsistente Belegung</u> für C oder globale Lösung für C.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints





Constraint-Erfüllung (Constraint Satisfaction)

Gegeben: Constraint-Netz $C = \{C_1, ..., C_k\}$

Gesucht: globale Lösung β

- Aufgabenarten:
 - existiert Lösung ?
 - finde Lösung β

CSP = Constraint Satisfaction Problem

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

33

Beispiele

Finde zwei natürliche Zahlen x und y,

so daß x+y=7 unter der Vorausetzung x > y > 2.

Als Constraint-Problem: $V=\{x,y\}$ Dom(x)=Dom(y)=IN

 $C_1 \subseteq Dom(y)$ $C_1=\{y \in IN: y > 2\}$

 $C_2 \subseteq \mathsf{Dom}(\mathsf{x}) \; \mathsf{\times} \mathsf{Dom}(\mathsf{y}) \qquad C_2 \!\!=\!\! \{[\mathsf{x}, \mathsf{y}] \in \mathsf{IN} \!\!\times\! \mathsf{IN} \!\!: \mathsf{x} > \mathsf{y} \;\}$

 $C_3 \subseteq Dom(x) \times Dom(y)$ $C_3=\{ [x,y] \in IN \times IN: x+y=7 \}$

 $\mathbf{C} = \{C_1, C_2, C_3\}$

Eine *lokale Lösung* bezüglich C_1 ist x=1 und y=3.

Für eine *globale Lösung* müssen alle drei Bedingungen erfüllt werden. Eine passende Belegung β ist x=4 und y=3.

Beispiele

```
 \begin{aligned} & \mathsf{V} = \{\mathsf{x}, \mathsf{y}, \mathsf{z}\} \;,\;\; \mathsf{Dom}(\mathsf{x}) = [0, 1] \;,\; \mathsf{Dom}(\mathsf{y}) = [0, 1] \;,\; \mathsf{Dom}(\mathsf{z}) = [0, 1] \\ & \mathsf{C}_1 = \{[\mathsf{x}, \mathsf{y}] : \mathsf{x} > \mathsf{y} \;\} \quad \mathsf{für} \; \mathsf{V}_1 \; = \{\mathsf{x}, \mathsf{y}\} \\ & \mathsf{C}_2 = \{[\mathsf{y}] : \mathsf{y} > 0.5 \;\} \quad \mathsf{für} \; \mathsf{V}_2 \; = \{\mathsf{y}\} \\ & \mathsf{C}_3 = \{[\mathsf{x}, \mathsf{z}] : \mathsf{x} + \mathsf{z} = 1 \;\} \quad \mathsf{für} \; \mathsf{V}_3 \; = \{\mathsf{x}, \mathsf{z}\} \\ & \mathsf{C}_4 = \{[\mathsf{x}, \mathsf{z}] : \mathsf{x} < \mathsf{z} \;\} \quad \mathsf{für} \; \mathsf{V}_4 \; = \{\mathsf{x}, \mathsf{z}\} \end{aligned}
```

Eine $lokale L\"{o}sung$ bez\"{u}glich C_3 ist [0.5, 0.7, 0.5].

Eine *globale Lösung* für $C=\{C_1,C_2,C_3,C_4\}$ existiert nicht:

Die gegebenen Voraussetzungen sind inkonsistent.

Aus C_1, C_2, C_4 folgt z > x > y > 0.5. C_3 steht dazu im Widerspr.

Für **C**={C₁,C₂,C₃} ist [0.7, 0.6, 0.3] globale Lösung.

Constraint-Optimierung (Constraint Optimization)

Gegeben: Constraint-Netz $C = \{C_1, ..., C_k\}$

Kostenfunktion c: $Dom(V) \rightarrow R$

Gesucht: optimale globale Lösung β*

Aufgabenarten:

 $c(\beta^*) \ge r$? für gegebenes $r \in R$

→ modellierbar als zusätzliches Constraint, Behandlung als Constraint-Erfüllungsproblem

finde $c(\beta^*)$.

 \rightarrow Behandlung als " $c(\beta^*) \geq r$?" mit unterschiedlichen r finde β^* .

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Lösungsverfahren für Constraints

Satz:

Es gibt kein universelles Lösungsverfahren für beliebige Constraint-Probleme

Beispiel:

Diophantische Gleichungen

Endliche Constraint-Probleme (Dom(V) endlich)

sind oft NP-vollständig

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

37

Constraint-Propagierung

Idee: *Geeignete* Einschränkungen D_i der Wertebereiche Dom(v_i) finden ("zusätzliche Constraints") *Geeignet*: Es gehen keine Lösungen verloren.

Propagierung: Fortlaufende Einschränkungen durch abwechselnde Betrachtung unterschiedlicher Constraints führen für Wertebereiche Dom(v_i) (i=1,..,n) zu Folgen

$$D_i^1 \subseteq ... \subseteq D_i^5 \subseteq D_i^4 \subseteq D_i^3 \subseteq D_i^2 \subseteq D_i^1 \subseteq \mathsf{Dom}(v_i)$$

Suche in $D^{l} := D_{1}^{l} \times ... \times D_{n}^{l}$ nach Lösung

Probleme z.B.:

-evtl. unendliche Folge der D¹

-evtl. DI noch zu umfangreich für Suche

Winter-Semester 2005/06

Constraints

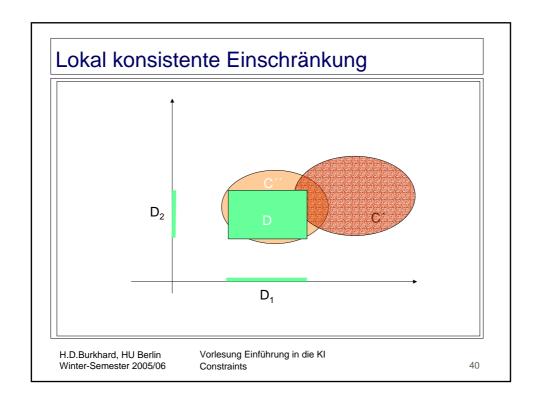
Constraint-Propagierung: Einschränkungen

Gegeben: Constraint-Netz $\mathbf{C} = \{C_1, ..., C_k\}$ über $V = \{v_1, ..., v_n\}$ "*Einschränkung" (der Wertebereiche):*

 $D = D_1 \times ... \times D_n$ für Teilmengen $D_i \subseteq Dom(v_i)$, i=1, ..., nz.B. als Intervall im R_n

- D heißt *lokal konsistente Einschränkung* bzgl. C_j , falls gilt: $\forall i \in \{1,...,n\} \ \forall d_i \in D_i \ \exists \beta = [a_1,...,a_{i-1},d_i,a_{i+1},...,a_n] \in D : \beta \text{ lokale Lsg. für } C_i$
- D heißt *global konsistente Einschränkung*, falls gilt: $\forall i {\in} \{1,...,n\} \ \forall d_i {\in} D_i \ \exists \ \beta {=} [a_1,...,a_{i\text{-}1},d_i,a_{i\text{+}1},...,a_n] {\in} D : \\ \beta \ globale \ Lsg. \ für \ \textbf{C}$
- D heißt inkonsistent, wenn D keine globale Lösung enthält.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints



Constraint-Propagierung: Einschränkungen

Ebenfalls Einschränkung

Innerhalb einer gegebenen Menge $D = D_1 \times ... \times D_n$ gibt es genau eine *maximale global konsistente Einschränkung*

 $D^{\text{max/global}} = D_1^{\text{max/global}} \times ... \times D_n^{\text{max/global}}$ mit

 $D_{i}^{\text{max/global}} := \{ d_{i} \in D_{i} \mid \exists \ \beta = [a_{1},...,a_{i-1},d_{i},a_{i+1},...,a_{n}] \in D : \beta \text{ globale Lsg.} \}$

Innerhalb einer gegebenen Menge $D = D_1 \times ... \times D_n$ gibt es genau eine *maximale bzgl.* C_i lokal konsist. Einschränk.

 $D^{\text{max/Cj-lokal}} = D_1^{\text{max/Cj-lokal}} \times ... \times D_n^{\text{max/Cj-lokal}}$ mit

 $D_i^{\text{max/Cj-lokal}} := \{d_i \in D_i \mid \exists \beta = [a_1,...,a_{i-1},d_i,a_{i+1},...,a_n] \in D: \beta \text{ lok. Lsg. für } C_i \}$

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

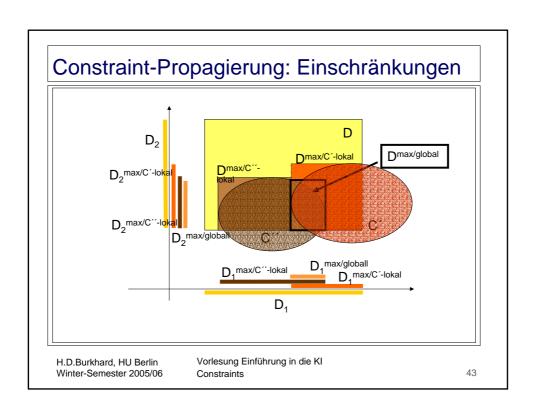
41

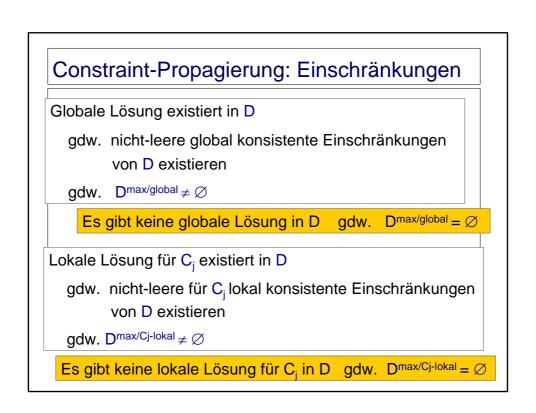
Constraint-Propagierung: Einschränkungen

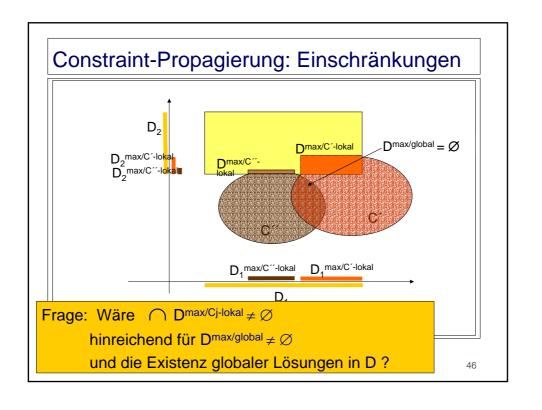
Die Mengen $D_i^{max/global}$ (bzw. $D_i^{max/Cj-lokal}$) sind die Projektionen der in D enthaltenen globalen (bzw. lokalen) Lösungen auf die Wertebereiche $Dom(v_i)$.

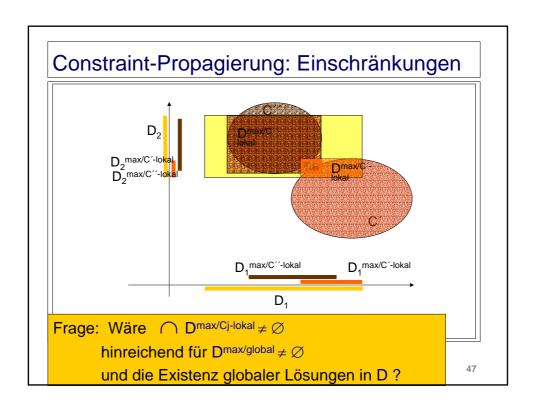
Es gilt für beliebiges $\;j{=}1,{\dots}{,}k:\;\;\;D_i^{\;max/global}\subseteq D_i^{\;max/Cj\text{-lokal}}\,.$

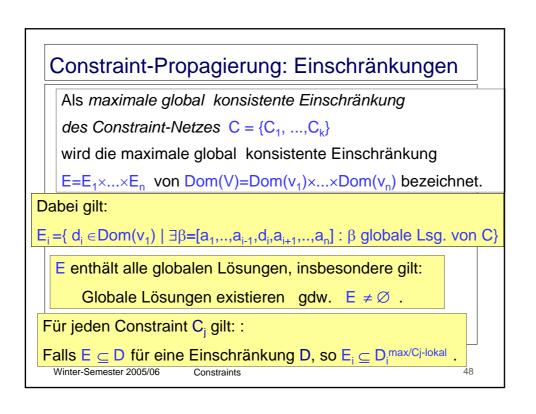
H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints











Schema: Constraint-Propagierung

Propagierung: Fortlaufende Einschränkungen durch abwechselnde Betrachtung unterschiedlicher Constraints führen für Wertebereiche $Dom(v_i)$ (i=1,..,n) zu Folgen

$$D_i^1 \subseteq ... \subseteq D_i^5 \subseteq D_i^4 \subseteq D_i^3 \subseteq D_i^2 \subseteq D_i^1 \subseteq Dom(v_i)$$

Suche in $D^1 := D_1^1 \times ... \times D_n^1$ nach Lösung

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

49

Schema: Constraint-Propagierung

- Wähle eine Menge D(0) ⊆ Dom(V) als initiale Einschränkung,
 s:= 1.
- 2. Wähle ein (aussichtsreiches) C(s) ∈C.

Wahl-Möglichkeit

Wahl-Möglichkeit

- 3. Wähle eine neue Einschränkung $D(s) \subseteq D(s-1)$, so dass
 - D(s) eine lokal konsistente Einschränkung bezüglich C(s) ist.

Nicht notwendig maximal - Möglichkeiten zum Backtracking

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Schema: Constraint-Propagierung

- 4. Zwischenauswertung. Es können folgende Fälle auftreten:
 - (a) Globale Lösung wird in D(s) gefunden (z.B. durch Suche).
 - (b) Es ist keine weitere Einschränkung zu erwarten, da kein weiteres $C(s) \in C$ gefunden werden konnte, so dass $D(s) \neq D(s-1)$.
 - (c) D(s) ist global inkonsistent

(gemäß Suche, insbesondere bei $D(s) = \emptyset$).

Daraus ergeben sich folgende Möglichkeiten zur Weiterarbeit:

- o Weiter bei 2. mit s:=s+1, falls keiner der drei Fälle zutrifft.
- o Abbruch bei 4a)

nicht notwendig chronologisch

o Backtracking zu 2. oder 3. eines Schrittes s'<s für 4b) oder 4c): Dort alternative Einschränkung wählen.

kleinerer Bereich oder:

Abbruch, wenn Backtracking nicht aussichtsreich. Winter-Semester 2005/06

Constraints

anderer Bereich

Schema: Constraint-Propagierung

Es ergibt sich Folge von Einschränkungen

$$\mathsf{Dom}(\mathsf{V}) \supseteq \mathsf{D}(\mathsf{0}) \supseteq \mathsf{D}(\mathsf{1}) \supseteq \mathsf{D}(\mathsf{2}) \supseteq \mathsf{D}(\mathsf{3}) \ldots \supseteq \mathsf{D}(\mathsf{s}) \ldots$$

Dabei D(s) lokal konsistente Einschränkung von D(s-1) bzgl. C(s),

i.a. aber nicht bzgl. C(s-1), C(s-2), C(s-3),

→ Wiederholte (evtl. sogar unbegrenzte) Verwendung der Ci aus C kann möglich sein .

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Schema: Constraint-Propagierung

Kein eigentlicher Algorithmus (prinzipielle Unlösbarkeit).

Suchverfahren in der gefundenen Einschränkung (4) .

Wahl-Möglichkeit in (3):

Kleine (nicht maximal konsistente) D(s):

- Suchverfahren einfacher.
- evtl. wird Lsg. verfehlt: (nicht-chronologisches) Backtracking notwendig.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

53

Schema: Constraint-Propagierung

Satz:

Voraussetzungen:

- -D(0) = Dom(V)
- D(s) jeweils maximale lokale Einschränkung von D(s-1)

Behauptungen:

 D(s) enthält stets die maximale global konsistente Einschränkung E von C:

$$E \subseteq D(s)$$

– Falls ein $D(s) = \emptyset$, so existiert keine Lösung.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Visualisierung: Constraint-Graphen

Constraint C_j über $V_j \subseteq V$ heißt binär, falls $card(V_j) = 2$.

Constraint-Netz $\mathbf{C} = \{C_1, ..., C_k\}$ aus binären Constraints C_j ist darstellbar als Graph $G=[V, \mathbf{C}]$ mit

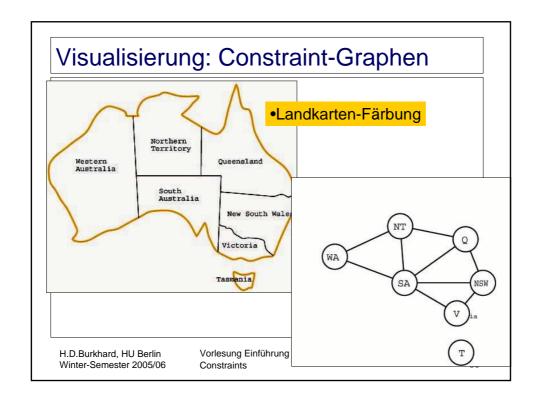
Knoten: Variable v_i (mit Wertebereichen Dom(v_i))

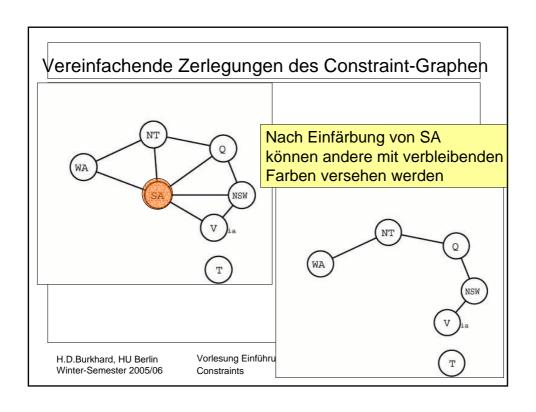
Kanten: Binäre Constraints Ci

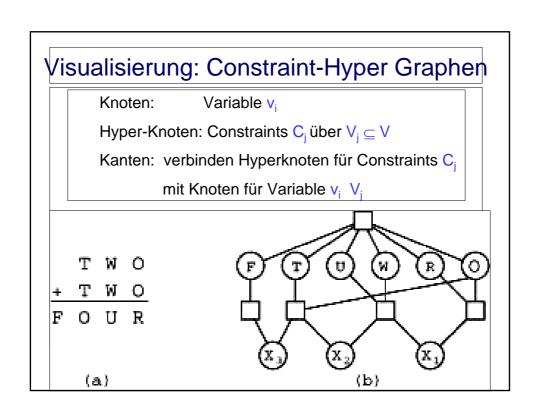
Beispiele:

- Landkarten-Färbung
- Eckenbeschriftungen bei Bildinterpretation

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints







Visualisierung: Constraint-Graphen

Jedes Constraint-Netz in binäres Constraint-Netz überführbar.

Unäre Constraints ($card(V_i) = 1$) in $Dom(v_i)$ integrieren.

Viele Verfahren sind auf binäre Constraint-Netze beschränkt.

z.B. Vereinfachende Zerlegungen des Constraint-Graphen.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

59

Übergang zu Binärem Constraint-Netz

Gegeben Constraint-Netz $C = \{C_1, ..., C_k\}$

mit Constraints C_i über $V_{Ci} = \{v^{Ci}_1, ..., v^{Ci}_m\}$

 $C_i \subseteq \text{Dom}(v^{Ci}_{1}) \times ... \times \text{Dom}(v^{Ci}_{m})$

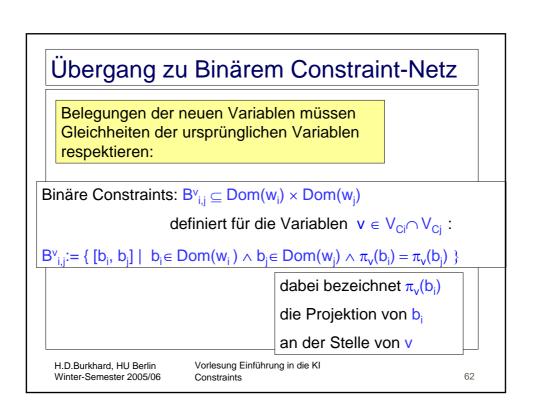
Konstruieren binäres Constraint-Netz

mit Variablen w₁,...,w_k

 $mit \ \mathsf{Dom}(w_i) = C_i \subseteq \mathsf{Dom}(v^{Ci}_1) \times ... \times \mathsf{Dom}(v^{Ci}_m)$

d.h. Werte der neuen Variablen w_i sind die lokal konsistenten Belegungen der Variablen $v^{Ci}_1, ..., v^{Ci}_m$ des Constraints C_i

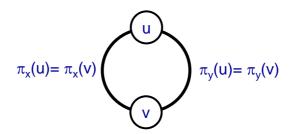
H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints



Übergang zu Binärem Constraint-Netz

Belegungen der neuen Variablen müssen Gleichheiten der ursprünglichen Variablen respektieren:

 $x \in \{1,2\}$ $y \in \{2,4\}$ $z \in \{4,5\}$ x+y=zx < y $\{(1,4,5), (2,2,4)\}$



 $\{(1,2), (1,4), (2,4)\}$

Constraint-Propagation im Allen-Kalkül

Allen-Kalkül: Modell für Zeitliches Schließen

Mögliche Ausgangspunkte:

- Zeitpunkte
- Zeitintervalle
- Ereignisse/Abläufe

Weitere Modelle für zeitliche Abläufe:

- Situationenkalkül
- Algorithmische Logik, z.B. CTL*
- Automaten, Petri-Netze, ...

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Beispiel Allen-Kalkül

```
\begin{aligned} & \text{HOLDS}(\text{offside-punishable}(p), \langle max(s_j, s_m), min(e_l, e_m) \rangle) \Leftrightarrow \\ & \exists j, k, l, m, p_2: \\ & \text{OCCUR}(\text{kick}(p_2), j) \land \text{HOLDS}(\text{offside-position}(p), k) \land \\ & \text{HOLDS}(\text{ball-free}, l) \land \text{HOLDS}(\text{approaching}(p, ball), m) \land \\ & starts(j, l) \land in(j, k) \land contemporary(l, m) \land \text{team}(p) = \text{team}(p_2). \end{aligned}
```

starts, in, contemporary bezeichnen Beziehungen zwischen Intervallen

(aus Dissertation Andrea Miene - Bremen, 2003)

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

65

Allen-Kalkül

Logisch formaler Zugang für die Repräsentation von zeitlichen Abläufen auf der Basis von Zeit-Intervallen

- Syntax
- Semantik

Ausdrucksmöglichkeiten für

- Intervalle
- Beziehungen zwischen Intervallen (Relationen)
- Stattfinden von Ereignissen (OCCUR)
- Gültigkeit von Fakten (HOLDS)

H.

– ...

Allen-Relationen für Zeitintervalle

Syntax:

- Ausdrucksmöglichkeiten für binäre Relationen
 s(x,y), s_i(x,y), f(x,y), f_i(x,y), d(x,y), d_i(x,y),
 b(x,y), b_i(x,y), o(x,y), o_i(x,y), m(x,y), m_i(x,y), e(x,y)
- Logische Ausdrucksmöglichkeiten (AK, PK1, ...)
- Verbindung zu Intervallen (HOLDS, OCCURS, ...)

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

67

Allen-Relationen für Zeitintervalle

Semantik(Modelle): Intervallstrukturen

Eine Intervallstruktur ist ein Paar $[I,\{\subseteq,<\}]$, mit

- 1. I nichtleere Menge (von Intervallen),
- c partielle Ordnung (transitiv, reflexiv, antisymmetrisch)
 über I (Teilmengenrelation)
- strikte partielle Ordnung (transitiv, irreflexiv)
 über I (Präzedenz)

Präzedenz trifft zu, wenn ein Zeitintervall vollständig vor einem anderem liegt.

Ein trennendes Zwischenintervall ist nicht erforderlich.

Winter-Semester 2005/06

Constraints

```
Beabsichtigte Bedeutungen STARTS(x,y)
s(x,y) \leftrightarrow x \subseteq y \land \exists z \ (z \subseteq y \land x < z) \land \neg \exists z \ (z \subseteq y \land z < x)
FINISHES(x,y)
f(x,y) \leftrightarrow x \subseteq y \land \exists z \ (z \subseteq y \land z < x) \land \neg \exists z \ (z \subseteq y \land x < z)
DURING(x,y)
d(x,y) \leftrightarrow x \subseteq y \land \exists z \ (z \subseteq y \land x < z) \land \exists z \ (z \subseteq y \land z < x)
BEFORE(x,y)
b(x,y) \leftrightarrow x < y \land \exists z \ (x < z \land z < y)
OVERLAPS(x,y)
o(x,y) \leftrightarrow \exists z \ (z \subseteq x \land z < y) \land \exists z \ (z \subseteq x \land z \subseteq y) \land \exists z \ (z \subseteq y \land x < z)
MEETS(x,y)
m(x,y) \leftrightarrow x < y \land \neg \exists z \ (x < z \land z < y)
EQUALS(x,y)
e(x,y) \leftrightarrow (x \subseteq y \land y \subseteq x)
```

	Beabsichtigte Bedeutungen	
	STARTS(x,y)	
	$s(x,y) \leftrightarrow x \subseteq y \land \exists z (z \subseteq y \land x < z) \land \neg \exists z (z \subseteq y \land z < x)$	
	FINISHES(x,y)	
	$f(x,y) \leftrightarrow x \subseteq y \land \exists z \ (\ z \subseteq y \land z < x \) \land \neg \exists z \ (\ z \subseteq y \land x < z \)$	
	DURING(x,y)	
	$d(x,y) \leftrightarrow x \subseteq y \land \exists z \ (\ z \subseteq y \land x < z \) \land \exists z \ (\ z \subseteq y \land z < x \)$	
	BEFORE(x,y)	
	$b(x,y) \leftrightarrow x < y \land \exists z (x < z \land z < y)$	
	OVERLAPS(x,y)	
	$o(x,y) \leftrightarrow \exists z \ (\ z \subseteq x \land z < y\) \land \exists z \ (\ z \subseteq x \land z \subseteq y\) \land \exists z \ (\ z \subseteq y \land x < z\)$	
	MEETS(x,y)	
	$m(x,y) \leftrightarrow x < y \land \neg \exists z (x < z \land z < y)$	
	EQUALS(x,y)	
	$e(x,y) \leftrightarrow (x \subseteq y \land y \subseteq x)$	

Beabsichtigte Bedeutungen (Inverse)		
Inverse von STARTS(x,y) $s_i(x,y) \leftrightarrow s(y,x)$		
Inverse von FINISHES(x,y) $f_i(x,y) \leftrightarrow f(y,x)$		
Inverse von DURING(x,y) $d_i(x,y) \leftrightarrow d(y,x)$		
Inverse von BEFORE(x,y) $b_i(x,y) \leftrightarrow b(y,x)$		
Inverse von OVERLAPS(x,y) $o_i(x,y) \leftrightarrow o(y,x)$		
Inverse von MEETS(x,y) $m_i(x,y) \leftrightarrow m(y,x)$		

Axiomatik für Allen-Relationen

 Für jedes Intervall t und jede der 13 Relationen r gibt es ein Intervall t' mit r(t,t') bzw. r(t',t) :

$$\forall r \ [\ (\forall t_1 \exists t_2 \text{:} \ r(t_1, t_2)) \land (\forall t_1 \exists t_2 \text{:} \ r(t_2, t_1)) \]$$

• Axiome zum gegenseitigen Ausschluß der Relationen:

$$o(x,y) \rightarrow \neg m(x,y)$$
 usw.

• Axiome bzgl. der Inversen:

$$s(x,y) \rightarrow s_i(y,x)$$
 usw.

• Axiome zur Beschreibung des "transitiven" Verhaltens:

z.B.:
$$m(t_1,t_2) \wedge d(t_2,t_3) \rightarrow o(t_1,t_3) \vee d(t_1,t_3) \vee s(t_1,t_3)$$
 (siehe Tabelle, mit con \leftrightarrow d_i \vee s_i \vee f_i und dur \leftrightarrow d \vee s \vee f)

								_			_	
$ySz \\ xRy$	b	b_i	d	d_i	o	o_i	m	m_i	s	s_i	f	f_i
$_{b}^{\mathrm{before}}$	b	no info	$egin{array}{c} b \ o \ m_s d \ s \end{array}$	b	b	$egin{array}{c} b \ o \ m_s \ d \end{array}$	b	$egin{matrix} b \ o \ m_s \ d \ s \end{matrix}$	b	b	$egin{pmatrix} b \ o \ m_s \ d \ s \end{matrix}$	b
$_{b_{i}}^{\mathrm{after}}$	no info	b_i	$egin{array}{c} b_i \ o_i \ m_i \ d \ f \end{array}$	b_i	$egin{array}{c} b_i \ o_i \ m_i \ d \ f \end{array}$	b_i	$b_i o_i \\ m_i d \\ f$	b_i	$ \begin{array}{c} b_i \ o_i \\ m_i \ d \\ f \end{array} $	b_i	b_i	b_i
$\frac{\mathrm{during}}{d}$	b	b_i	d	no info	$egin{matrix} b & o \\ m & d \\ s \end{matrix}$	$egin{array}{c} b_i \ o_i \ m_i \ d \ f \end{array}$	b	b_i	d	$\begin{bmatrix} b_i \ o_i \\ m_i \ d \\ f \end{bmatrix}$	d	$egin{matrix} b \ o \ m_s d \ s \end{matrix}$
$\operatorname*{contains}_{d_{i}}$	$egin{array}{c} b \ o \ m_i \ d \ f \end{array}$	s_i	$\overset{o\ o_i}{\overset{dur\ con}{=}}$	d_i	$d_i \\ f_i$	$egin{matrix} o_i \ d_i \ s_i \ \end{pmatrix}$	$d_i \\ f_i$	$egin{matrix} o_i \ d_i \ s_i \ \end{pmatrix}$	$egin{array}{c} d_i \ f_i \ o \end{array}$	d_i	$d_i \\ s_i \\ o_i$	d_i
$_{o}^{\mathrm{overlaps}}$	ь	$d_i m_i \atop s_i$	$\overset{o}{\overset{d}{s}}$	$egin{array}{c} b \ o \ m \ d_i \ f_i \end{array}$	$\stackrel{b}{\stackrel{o}{m}}$	$\begin{array}{c} o \ o_i \\ dur \ con \\ = \end{array}$	b	$egin{matrix} o_i \ d_i \ s_i \ \end{pmatrix}$	o	f_i	$\overset{d}{\overset{s}{o}}$	$\stackrel{b}{\stackrel{o}{m}}$
overlapped by o_i	$\begin{bmatrix} b & o \\ m & d_i \\ f_i \end{bmatrix}$	b_i	$egin{array}{c} o_i \ d \ f \end{array}$	$egin{matrix} b_i \ o_i \ m_i \ d_i \ s_i \end{matrix}$	$\begin{array}{c} o \ o_i \\ dur \ con \\ = \end{array}$	$b_i \\ o_i \\ m_i$	$egin{array}{c} o \ d_i \ f_i \end{array}$	b_i	$egin{array}{c} o_i \ d \ f \end{array}$	$egin{array}{c} o_i \ b_i \ m_i \end{array}$	o_i	$egin{matrix} o_i \ d_i \ s_i \ \end{pmatrix}$
$_{m}^{\mathrm{meets}}$	ь	$b_i o_i \\ m_i d_i \\ s_i$	$\overset{o}{\overset{d}{s}}$	b	b	$egin{matrix} o \ d \ s \end{bmatrix}$	ь	f f_i	m	m	$\overset{d}{\overset{s}{o}}$	b
met -by m_i	$egin{array}{c} b \ o \ m \ d_i \ f_i \end{array}$	b_i	$egin{array}{c} o_i \ d \ f \end{array}$	b_i	$egin{array}{c} o_i \\ d \\ f \end{array}$	b_i	$\stackrel{s}{\stackrel{s}{=}}$	b_i	$d \\ f \\ o_i$	b_i	m_i	m_i
$\operatorname*{starts}_{s}$	ь	b_i	d	$egin{array}{c} b \ o \ m \ d_i \ f_i \end{array}$	$\stackrel{b}{\stackrel{o}{m}}$	d f	b	m_i	s	$\overset{s}{\overset{s_i}{=}}$	d	$_{o}^{b}$
$\underset{s_i}{\text{started-by}}$	$egin{array}{c} b \ o \ m \ d_i \ f_i \end{array}$	b_i	$egin{array}{c} o_i \\ d \\ f \end{array}$	d_i	$d_i \\ f_i$	o_i	$d_i \\ f_i$	m_i	$\overset{s}{\overset{s}{\overset{s}{=}}}$	s_i	o_i	d_i
$_{f}^{\mathrm{finishes}}$	ь	b_i	d	$b_i o_i \\ m_i d_i \\ s_i$	${\displaystyle \mathop{d}_{s}}$	$b_i \\ o_i \\ m_i$	m	b_i	d	$egin{matrix} b_i \\ o_i \\ m_i \end{bmatrix}$	f	f f_i
finished-by f_i	b	$\begin{array}{c} b_i \ o_i \\ m_i \ d_i \\ s_i \end{array}$	$egin{matrix} o \ d \ s \end{bmatrix}$	d_i	o	$egin{matrix} o_i \ d_i \ s_i \ \end{pmatrix}$	m	$egin{array}{c} s_i \ o_i \ d_i \end{array}$	o	d_i	f f_i	f_i

Axiomatik für Allen-Relationen

Modelle der Axiome sind Intervall-Strukturen für eine

- nicht-verzweigende
- in beiden Richtungen unbeschränkte Zeit.

Im Prinzip ist Reduktion möglich auf MEETS:

- Alle Relationen mittels MEETS definierbar,
- Axiome für MEETS.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Zeitliche Inferenzen

Es sind Beziehungen zwischen Intervallen gegeben

Weitere Beziehungen sollen abgeleitet werden (z.B. genaue Reihenfolge festlegen)

Allen-Axiome können als Constraints verwendet werden (insbesondere Tabelle)

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

75

Beispiel: (A, B, C, D sind Zeitintervalle)

A beginnt während B

B beginnt nicht vor C

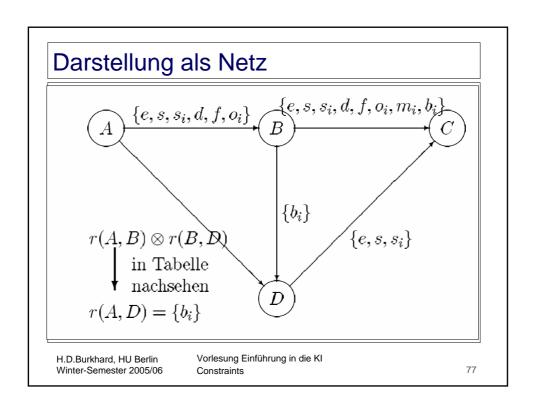
B liegt zeitlich völlig nach D

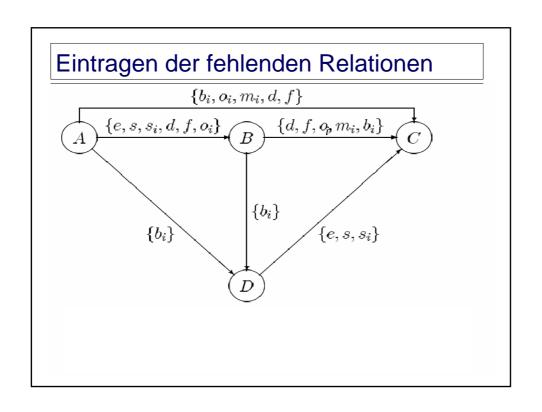
C und D beginnen gleichzeitig

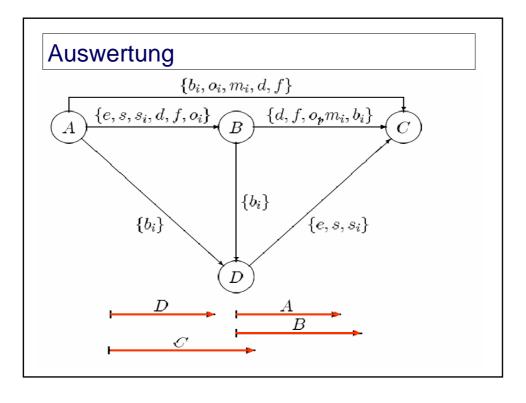
- Was kann über Beziehungen zwischen A und D gesagt werden?
- Können dafür Aussagen (Constraints) bzgl. A und B sowie B und D geeignet kombiniert werden?
- Führen solche Kombinationen zu verschärften Aussagen über die ursprünglichen Constraints?

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI

Constraints







Allen-Netz

Ein Allen-Netz ist gegeben durch A = [T, C] mit

- T ist eine Menge von Intervall-Variablen und
- C ist eine Abbildung C: T x T \rightarrow 2^{s,si,...,e}

 $\{s,s_i,...,e\}$ = Menge der Allen-Relationen.)

- Dabei gilt für alle t₁, t₂ aus T x T die Bedingung:

 $C(t_2, t_1)$ = Inverse der Relationen in $C(t_1, t_2)$

 $C(t_1,t_2)$ gibt die zwischen den Intervallen t_1 und t_2 vorgegebenen Beziehungen an.

Ein Allen-Netz lässt sich als Graph ("Netz")

mit Knoten T und Kantenbeschriftungen $C(t_1,t_2)$ darstellen.

Entspricht Constraint-Graph für binäre Constraints.

Winter-Semester 2005/06

Constraints

Modell eines Allen-Netzes A = [T, C]

Voraussetzung: Gegebene Intervallstruktur $[I,\{\subseteq,<\}]$

Ein *Modell* für A = [T, C] ist eine Belegung $\beta: T \rightarrow I$ mit:

Für alle $t_1, t_2 \in T$ gilt:

 $\beta(t_1)$, $\beta(t_2)$ stehen in einer durch C zugelassenen Relation

d.h.
$$r(\beta(t_1), \beta(t_2)) \in c(t_1, t_2)$$

(rist eindeutig aufgrund der Axiome)

Globale Konsistenz:

A = [T, C] ist global konsistent, wenn es ein Modell besitzt

(andernfalls: global inkonsistent)

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

81

Betrachtung als Constraint-Problem

Variable t_i für Intervalle

Wertbereiche Dom(t_i):

Menge I der Intervalle einer Intervallstruktur [I,{ \subseteq , < }] Constraints:

Axiome der Allen-Relationen

z.B. für
$$o(x,y) \rightarrow \neg m(x,y)$$

$$C = \{ [t_x,t_y] / o(t_x,t_y) \rightarrow \neg m(t_x,t_y) \}$$

- Beziehungen gemäß Problemstellung

z.B. für "A beginnt während B":

$$C = \{ [t_A, t_B] / e(t_A, t_B) \lor s(t_A, t_B) \lor s_i(t_A, t_B) \lor d(t_A, t_B) \lor f(t_A, t_B) \lor o_i(t_A, t_B) \}$$

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Lokale Konsistenz

Lokale Konsistenz bei Allen-Netzen wird bezogen auf die Intervall-Axiome zur Beschreibung des "transitiven" Verhaltens:

```
z.B.: m(t_1,t_2) \wedge d(t_2,t_3) \rightarrow o(t_1,t_3) \vee d(t_1,t_3) \vee s(t_1,t_3) (siehe Tabelle)
```

Ein Netz A = [T, C] ist *lokal konsistent* an der Stelle $\{t_1, t_2, t_3\}$ falls die Einschränkung A/ $\{t_1, t_2, t_3\}$ = [$\{t_1, t_2, t_3\}$, C/ $\{t_1, t_2, t_3\}$] von A auf $\{t_1, t_2, t_3\}$ global konsistent ist.

Das Teilnetz A/{t₁,t₂,t₃} ist ein "Teildreieck" von A.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

83

Prüfung auf lokale Konsistenz

Gegeben: A = [T, C].

Überprüft werden "Dreiecke" $\{t_1, t_2, t_3\}$ auf lokale Konsistenz.

Dabei werden die möglichen "Beschriftungen" der Kanten (t_i,t_i) sukzessive verringert bis zur Stabilisierung.

Verringerungen ergeben sich aus Inkonsistenzen bzgl. der Intervall-Axiome des "transitiven" Verhaltens.

Der Algorithmus benutzt

Einen Stack K für aktuell zu prüfende Intervallpaare und Eine Abbildung

R: T x T \rightarrow 2^{s,si,...,e} der aktuellen "Beschriftungen"

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Prüfung auf lokale Konsistenz

```
Initialisierung:
      K := Liste der Paare (t_1, t_2) \in T \times T,
      R(t_1, t_2) := C(t_1, t_2)
Äußerer Zyklus:
        Falls K=[]: EXIT(lokal konsistent),
                       (t_1,t_2) := pop(K) und inneren Zyklus ausführen.
        sonst:
  Innerer Zyklus:
       Für alle t∈T die Schritte (a) und (b) ausführen:
        (a) Falls
                      R(t_1,t) \supset R(t_1,t) \cap (R(t_1,t_2) \times R(t_2,t)):
               setze R(t_1,t) := R(t_1,t) \cap (R(t_1,t_2) \times R(t_2,t)),
               falls dann R(t_1,t) = \emptyset: EXIT(lokal inkonsistent),
               andernfalls: push(t_1,t) (einkellern).
       (b) Falls
                       R(t, t_2) \supset R(t, t_2) \cap (R(t, t_1) \times R(t_1, t_2)):
                setze R(t, t_2) := R(t, t_2) \cap (R(t, t_1) \times R(t_1, t_2)),
                falls dann R(t, t_2) = \emptyset: EXIT(lokal inkonsistent),
                andernfalls: push(t, t2) (einkellern)
```

Evaluierung des Verfahrens

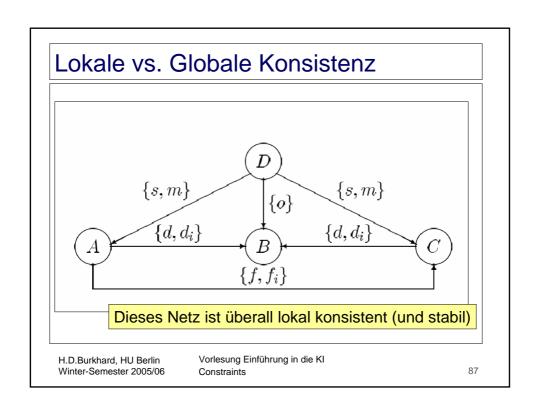
Der Algorithmus bricht nach maximal O(n³) Schritten ab.

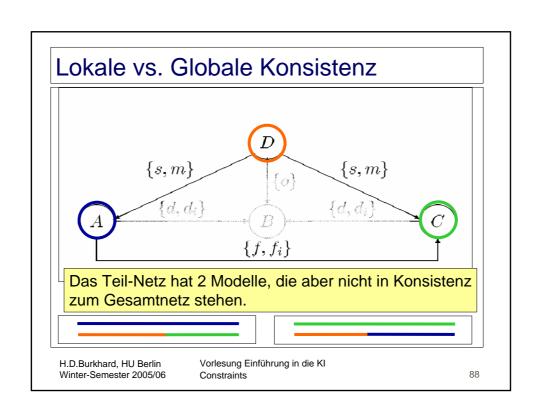
(n = Anzahl der Knoten im Allen-Netz).

```
O(n²) für äußere Schleife:
höchstens 13mal (Anzahl der Relationen)
für jedes der n² Paare (t_1, t_2) \in T \times T.
O(n) für innere Schleife.
```

Beim Abbruch wird das korrekte Resultat bzgl. lokaler Konsistenz geliefert.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints





Anwendung des Verfahrens

Es gibt lokal konsistente Allen-Netze, die nicht global konsistent sind.

- Verfahren prüft auf lokale Konsistenz
- Wenn diese nicht vorliegt, ist das Netz auch global inkonsistent
- Bei lokaler Konsistenz kann unter den verbliebenen Möglichkeiten nach einer globalen Lösung gesucht werden.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

89

Constraints: Weiteres

- "Harte" Constraints
- "Weiche" Constraints
- Verbindung mit logischer Programmierung:
 Constraint-logische Verfahren

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Abschluss: Was ist die Idee bei CSP?

Zusammenhänge im Suchraum explizit machen:

Einschränkende Bedingungen für Lösungen

Ziel: Keine Suche in Bereichen, die keine Lösung enthalten können.

Modellierung

Suchraum als Parameterraum.

Constraints:

- Beschränkungen zwischen Werten der Parameter
- Lösung muss allen Beschränkungen genügen

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

91

Abschluss: Was ist die Idee bei CSP?

Lösungsraum einschränken:

Zusätzliche Constraints schränken Lösungsmenge ein.

Besonders bequem:

Einschränkungen der Definitions-Bereiche.

Constraint-Propagation:

- Definitions-Bereiche sukzessive einschränken.

Ergebnis ist ein kleinerer Suchraum.

- am Ende steht meist wieder eine Suche.

Verzicht auf Suche in Bereichen, die keine Lösung enthalten können.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

CSP: Zerlegungen des Problemraums

Und-Zerlegung (= Problemzerlegung)
(separierte Constraint-Netze)

Zerlegung der Variablenmenge

Probleme einzeln lösen,

Gesamtergebnis aus Einzel-Ergebnissen zusammengesetzt

Beispiele:

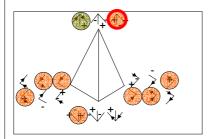
- Bildverarbeitung: nicht zusammenhängende Objekte
- Allen-Netze: Nicht verknüpfte zeitliche Angaben
- Färbungsproblem für Inseln

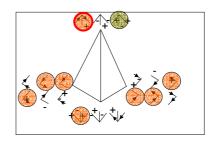
H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

93

CSP: Zerlegungen des Problemraums

Oder-Zerlegung für eine Variable v mit (möglichst eingeschränktem) Wertebereich W Aufteilung: Suche in Teilräumen für jeden Wert w∈W:





Es genügt, eine Lösung in einem Teilraum zu finden

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

CSP: Zerlegungen des Problemraums

Kombination von und/oder-Suche.

Beispiel:

Annahme: Constraint-Graph G=[V,C] kann aus zwei Teilgraphen $G_1 = [V_1,C_1]$ und $G_2 = [V_2,C_2]$ kombiniert werden, die nur einen Knoten v gemeinsam haben:

 $V_1 \cap V_2 = \{v\}$, W sei Wertebereich von v

Dann kann für jedes w∈W die Lösung in den separierten Graphen G₁ und G₂ gesucht werden.

Oder-Zerlegung: Alternativen für $w \in W$ Und-Zerlegung: Suche in G_1 und G_2

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

95

Lokale Suche für CSP

Suchraum: Belegungen der Parameter mit Werten.

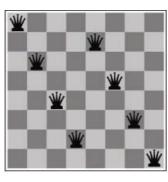
Start mit einer (Erfolg versprechenden) Belegung Sukzessive Werte einer Variablen ändern, so dass Zahl der Constraint-Verletzungen sinkt (Heuristik für Suche)

Beispiel: 8-Damen-Problem (s.u.)

Ansatz oft sehr erfolgreich, wenn es viele im Parameterraum gleichmäßig verteilte Lösungen gibt.

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

8 Damen auf dem Schachfeld so platzieren, dass keine eine andere angreifen kann (im Beispiel nicht erfüllt)



H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

97

Fallstudie: 8-Damen-Problem

Behandlung als Suchproblem Formulierung S1:

Zustände: 0...8 Damen in beliebiger Position auf dem Schachbrett Ausgangszustand: leeres Brett

Zielzustand: 8 Damen auf dem Brett, keine angegriffen Zustandsübergang: eine Dame auf ein freies Feld stellen

Komplexität:

 $64 \bullet 63 \bullet 62 \bullet 61 \bullet 60 \bullet 59 \bullet 58 \bullet 57 \approx 3 \bullet 10^{14}$ Folgen untersuchen

Formulierung S2:

Zustandsübergang: Dame auf nicht-angegriffenes Feld setzen Sonst wie S1

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Behandlung als Suchproblem Formulierung S3:

Zustände: 0...8 Damen auf dem Schachbrett,

in jeder Spalte höchstens 1 Dame,

Links liegende Spalten belegt, rechte Spalten frei

Zustandsübergang:

Wähle die am weitesten links liegende freie Spalte

Setze eine Dame auf ein nicht angegriffenes Feld in dieser Spalte

Sonst wie S1

Komplexität: 2057

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI

Constraints

99

Fallstudie: 8-Damen-Problem

Behandlung als heuristisches Suchproblem Formulierung S4 (Bergsteigen, "greedy search"):

Zustände: 8 Damen auf dem Schachbrett,

in jeder Spalte genau 1 Dame

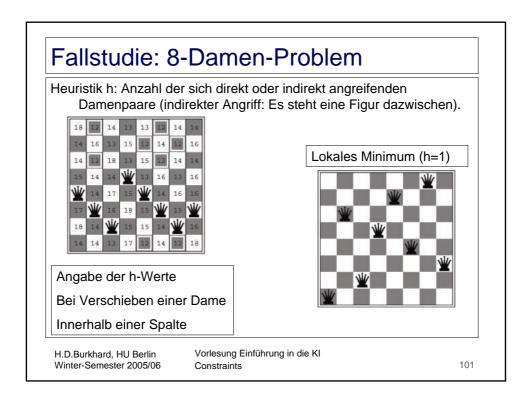
Anfangszustand: Beliebig aus dieser Menge

Zielzustand: 8 Damen auf dem Brett, keine angegriffen Zustandsübergang: Eine Dame in ihrer Spalte verschieben

Heuristik: Anzahl der sich direkt oder indirekt angreifenden Damenpaare (indirekter Angriff: Es steht eine Figur dazwischen).

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI

Constraints



Anwendung genetischer Algorithmen Formulierung G

Individuen: 8 Damen auf dem Schachbrett,

in jeder Spalte genau 1 Dame

Fitness: Paare von Damen, die sich nicht gegenseitig angreifen

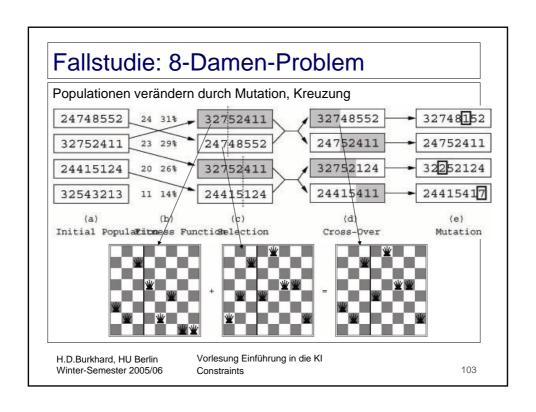
(f=28 für Lösung)

Genetische Kodierung eines Individuums durch 8 Ziffern:

Angabe der Zeilen, in denen die Damen stehen.

86427531

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints



Behandlung als Constraint-Problem

Formulierung C:

```
Variable v_1,...,v_8 mit Wertebereichen Dom(v_i)=\{1,...,8\}
          (v_i = j \text{ bedeutet: Dame in der Spalte i steht auf Zeile } j)
Constraints C_{kl} für Variablenpaare [v_k, v_l], 1 \le k < l \le 8:
          CkI = "Dame in Spalte k greift Dame in Spalte I nicht an"
```

H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

Behandlung als Constraint-Problem mit lokaler Suche

Formulierung CL:

Variable $v_1,...,v_8$ mit Wertebereichen $Dom(v_i)=\{1,...,8\}$

($v_i = j$ bedeutet: Dame in der Spalte i steht auf Zeile j)

Constraints C_{kl} für Variablenpaare $[v_k, v_l]$, $1 \le k < l \le 8$:

C_{kl} = "Dame in Spalte k greift Dame in Spalte I nicht an"

Zustandsraum: Variablenbelegungen (d.h. Stellungen wie in S3)

Ausgangszustand: Eine Variablenbelegung

Zustands-Übergang: Änderung des Wertes einer Variablen

Heuristik: Constraint-Verletzungen minimieren

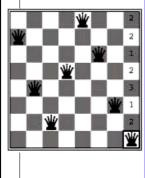
H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI

Constraints

105

Fallstudie: 8-Damen-Problem

Behandlung als Constraint-Problem mit lokaler Suche



H.D.Burkhard, HU Berlin Winter-Semester 2005/06 Vorlesung Einführung in die KI Constraints

