
Nondeterministic Functions and the Existence

of Optimal Proof Systems 1

Olaf Beyersdorff a,2 Johannes Köbler b Jochen Messner c

aInstitut für Theoretische Informatik, Leibniz Universität Hannover, Germany

bInstitut für Informatik, Humboldt-Universität zu Berlin, Germany

cInstitut für Theoretische Informatik, Universität Ulm, Germany

Abstract

We provide new characterizations of two previously studied questions on nondeter-
ministic function classes:

Q1: Do nondeterministic functions admit efficient deterministic refinements?
Q2: Do nondeterministic function classes contain complete functions?

We show that Q1 for the class NPMVt is equivalent to the question whether the
standard proof system for SAT is p-optimal, and to the assumption that every
optimal proof system is p-optimal. Assuming only the existence of a p-optimal
proof system for SAT, we show that every set with an optimal proof system has
a p-optimal proof system. Under the latter assumption, we also obtain a positive
answer to Q2 for the class NPMVt.

An alternative view on nondeterministic functions is provided by disjoint sets
and tuples. We pursue this approach for disjoint NP-pairs and its generalizations to
tuples of sets from NP and coNP with disjointness conditions of varying strength.
In this way, we obtain new characterizations of Q2 for the class NPSV. Question
Q1 for NPSV is equivalent to the question whether every disjoint NP-pair is easy to
separate. In addition, we characterize this problem by the question whether every
propositional proof system has the effective interpolation property. Again, these
interpolation properties are intimately connected to disjoint NP-pairs, and we show
how different interpolation properties can be modeled by NP-pairs associated with
the underlying proof system.

Key words: optimal proof systems, nondeterministic functions, disjoint NP-pairs

Preprint submitted to Elsevier Science 5 December 2007

1 Introduction

Most computational tasks are naturally formulated as a functional problem,
i.e., for a given input a solution to the problem instance has to be computed.
Quite in contrast, computational complexity theory mainly studies language
problems and their associated complexity classes. Of course, by studying the
undergraph {〈x, y〉 | y ≤ f(x)} of a function f , every functional problem can
be transformed into a corresponding decision version, which justifies the focus
on language complexity. On the other hand, some computational phenomena
are most naturally addressed in the functional setting, and this particularly
applies to nondeterministic functions (cf. [51] for a beautiful argument on this
theme).

Prominent questions in the functional context are in particular:

Q1: Do nondeterministic functions possess efficient deterministic refinements?
Q2: Do nondeterministic function classes possess complete functions?

During the last decade these problems have been intensively studied for a
variety of function classes (cf. [50] for a comprehensive taxonomy or [22,28]
for equivalent characterizations). Question Q1 is important in connection with
cryptographic applications, as Q1 (for the function class NPMVt) is equivalent
to the question whether all polynomial-time computable onto honest functions
are invertible in polynomial time. The question was further characterized by
Fenner, Fortnow, Naik, and Rogers [14] by a number of previously studied
complexity-theoretic assumptions, and they named the list of these equiva-
lences as “Q” (cf. also [15]). Determining the precise strength of Q seems to
be intricate. On the one hand, Q has unlikely collapse consequences such as
P = NP ∩ coNP. On the other hand, Q does not seem as strong as to imply a
collapse of the polynomial hierarchy [10].

In this paper we will argue that the above two questions on function classes are
closely connected to disjoint NP-pairs and their generalizations, as well as to
problems about proof systems. Disjoint NP-pairs have recently been intensively
studied [40,16–20,47,3–5], mainly, because they are suitable objects to model
the security of cryptosystems [21,32], and further, because they are intimately
connected to propositional proof systems [43,40,18,20,4].

Email addresses: beyersdorff@thi.uni-hannover.de (Olaf Beyersdorff),
koebler@informatik.hu-berlin.de (Johannes Köbler), jochen messner@web.de

(Jochen Messner).
1 Part of the results of this paper appeared in an extended abstract in the proceed-
ings of the conference FSTTCS 2000 [26]
2 Work done while at Humboldt-University Berlin, Supported by DFG grant KO
1053/5-1

2

Nondeterministic functions were already linked to disjoint coNP-pairs by Fen-
ner et al. [14]. Here we will extend this connection to further function classes
and disjoint NP-pairs as well as tuples of disjoint NP-sets (cf. [3]) and dis-
joint coNP-pairs. This correspondence provides an alternative view on disjoint
NP-pairs and allows elegant characterizations of Questions Q1 and Q2 above.
Namely, Q1 is equivalent to the statement that every disjoint NP-pair is easy
to separate, while Q2 is equivalent to the problem, whether the class of disjoint
NP-pairs (and its generalizations) possess complete elements. In the context
of NP-pairs, this question was posed by Razborov [43], and it has been inten-
sively studied during the last years [16,17,3–5]. Our characterizations restate
and unify some of these recent results in terms of nondeterministic functions.

Another important connection of nondeterministic functions (and equivalently
of disjoint sets) is to the field of proof systems, as introduced for arbitrary
languages by Cook and Reckhow [11]. We will show that in this setting, Ques-
tion Q1 (for functions from NPSV) can be restated as the question, whether
all propositional proof systems satisfy the effective interpolation property (cf.
[30,32]). This again is equivalent to the statement that every disjoint NP-
pair is P/poly-separable, which in turn implies that NP ∩ coNP ⊆ P/poly and
UP ⊆ P/poly .

Similarly, we also provide another characterization of Q (or equivalently, Ques-
tion Q1 for functions from NPMVt). Namely, we investigate the problem,
whether the standard proof system sat for SAT is p-optimal 3 , where proofs
in sat are given by a satisfying assignment for the formula in question. We
show that this question is equivalent to the assertion Q, and it is further
characterized by the statement that the two common notions of reductions
between proof systems, i.e., simulations [31] and p-simulations [11], coincide.
Thus Q is also equivalent to the statement that every optimal proof system is
p-optimal. Under the weaker assumption of the mere existence of a p-optimal
proof system for SAT we can still show that every language with an optimal
proof system also has a (possibly different) p-optimal proof system.

The (likely) assumption that there are no p-optimal proof systems for SAT (as
well as for TAUT) also has some practical implications due to its connection
to the existence of optimal algorithms (cf. [31,46,47,34]). Note that usually
a decision algorithm for SAT also provides a satisfying assignment for any
positive instance. However, if sat is not p-optimal, then no decision algorithm
for SAT that produces satisfying assignments for positive instances can be
optimal (cf. Theorem 14). In fact, a stronger consequence can be derived: if
sat is not p-optimal, then there is a non-sparse set of easy instances from SAT

for which it is hard to produce a satisfying assignment (cf. Theorem 18).

3 Pavel Pudlák posed this question during the discussion after Zenon Sadowski’s
talk at CSL’98 [45]

3

It has been observed in [44,27] that (p-)optimal proof systems for certain
languages can be used to define complete sets for certain promise classes.
For example, if TAUT has an optimal proof system, then NP ∩ Sparse has a
many-one complete set, and if TAUT as well as SAT have a p-optimal proof
system, then NP∩ coNP has a complete set. We complete this picture here by
showing that already a p-optimal proof system for SAT can be used to derive
completeness consequences.

In particular, we prove that a p-optimal proof system for SAT implies com-
plete functions for NPMVt (which in turn implies complete disjoint coNP-
pairs). Further, the existence of an optimal proof system for TAUT implies
the existence of complete functions for NPkV (or equivalently, complete tuples
of NP-sets with some disjointness conditions). And finally, the existence of op-
timal proof systems for TAUT and p-optimal proof systems for SAT implies
the existence of complete functions for NPSVt (or equivalently, complete sets
for NP ∩ coNP).

Overview of the Paper

This paper is organized as follows. After fixing notation and reviewing relevant
definitions about function classes, proof systems, and disjoint tuples (Sect. 2),
we start in Sect. 3 by exploring the connections between nondeterministic
functions and pairs (as well as tuples) of disjoint sets. Particular attention is
directed towards the problem of the existence of complete functions and pairs
for the respective classes (Question Q2 above).

Section 4 is devoted to Question Q1 above, i.e., whether functions from NPSV

possess total refinements in FP or FP/poly . It turns out that this questions
is intimately connected to different interpolation properties of propositional
proof systems, and we characterize these interpolation properties by disjoint
NP-pairs, associated with the proof system.

In Sect. 5 we investigate whether the standard proof system sat for SAT is
p-optimal. We show this question to be equivalent to the assertion Q from
[14] (and hence to Question Q1 for NPMVt). In addition we provide several
new characterizations of this problem in terms of simulations and optimal
algorithms.

Finally, in Sect. 6 we analyse the weaker question whether there exists a
p-optimal proof system for SAT. We show that this is equivalent to the state-
ment that every language with an optimal proof system also has a p-optimal
proof system, and derive some collapse consequences from these assumptions.

4

2 Preliminaries and Notation

Let Σ = {0, 1}. We denote the cardinality of a set A by ‖A‖ and the length
of a string x ∈ Σ∗ by |x|. The empty word is denoted by λ. FP is the class
of (partial) functions that can be computed in polynomial time. A set S is
called sparse if the cardinality of S ∩ Σn is bounded above by a polynomial
in n. S is called printable if there exists a function in FP which on input 1n

outputs all elements in S of length n. We use 〈·, · · · , ·〉 to denote a standard
polynomial-time computable tupling function. For the definitions of standard
complexity classes like P, NP etc. we refer to the monographs [2] and [37].

A function h is called FP-invertible if there is a function f ∈ FP that inverts
h, i.e., h(f(y)) = y for each y in the range of h. A function h is honest if for
some polynomial p, p(|h(x)|) ≥ |x| holds for all x in the domain of h. We call a
function g an extension of a function f if f(x) = g(x) for any x in the domain
of f . A function r : N → N is called super-polynomial if for each polynomial
p, r(n) > p(n) for almost every n ≥ 0. A set B ∈ P with B ⊆ L is called a
P-subset of L.

Nondeterministic Function Classes

A nondeterministic polynomial-time Turing machine (NPTM, for short) is a
Turing machine N such that for some polynomial p, every accepting path of
N on any input of length n is at most of length p(n). A nondeterministic
transducer is a nondeterministic Turing machine T with a write-only output
tape. On input x, T outputs y ∈ Σ∗ (in symbols: T (x) 7→ y) if there is an
accepting path on input x along which y is written on the output tape. Hence,
the function f computed by T on Σ∗ could be multi-valued and partial. Using
the notation of [9,50] we denote the set {y | f(x) 7→ y} of all output values of
T on input x by set-f(x).

The class of all multi-valued, partial functions computable by some nondeter-
ministic polynomial-time transducer T is denoted by NPMV. But also various
subclasses of NPMV are of interest. NPSV is the class of functions f in NPMV

that are single-valued, i.e., ‖set-f(x)‖ ≤ 1. Thus, the functions from NPSV are
functions in the usual sense, and we use f(x) to denote the unique string in
set-f(x). Relaxing the condition ‖set-f(x)‖ ≤ 1 by allowing ‖set-f(x)‖ ≤ k for
some fixed number k ≥ 1 leads to the classes NPkV, defined in [36,14]. Even
more generally, Fenner, Fortnow, Naik, and Rogers [14] considered functions
f where the cardinality of set-f(x) is bounded by a function g(x) rather than
a constant. For a function g, this function class is denoted by NPgV.

The domain of a multi-valued function is the set of those inputs x where
set-f(x) 6= ∅. A function is called total if its domain is Σ∗. For a function

5

class F we denote by Ft the class of total functions in F . We use Ft ⊆c FP

to indicate that for any g ∈ Ft there is a total function f ∈ FP that is a
refinement of g, i.e., f(x) ∈ set-g(x) for all x ∈ Σ∗. Occasionally it is useful to
explicitly indicate the range of a multi-valued function in the notation. To do
this we collect in the class FA all functions from F which range over subsets
of A ⊆ Σ∗,i.e., set-f(x) ⊆ A for all x ∈ Σ∗.

We say that a multi-valued function h many-one reduces to a multi-valued
function g (denoted by h ≤p

m g), if there is a function f ∈ FP such that for
every x ∈ Σ∗ set-g(f(x)) = set-h(x).

Proof Systems

Cook and Reckhow [11] defined the notion of an abstract proof system for
a set L ⊆ Σ∗ as a (possibly partial) polynomial-time computable function
h : Σ∗ → Σ∗ with range L. In this setting, an h-proof for the membership of
ϕ to L is given by a string w with h(w) = ϕ. We use the notation h ⊢≤m ϕ to
indicate that there exists an h-proof of ϕ of size ≤ m. Proof systems for the
set of all tautologies TAUT are called propositional proof systems.

To compare the relative strength of different proof systems, Cook and Reckhow
[11] introduced the notion of p-simulation. A proof system h p-simulates a
proof system g if g-proofs can be translated into h-proofs in polynomial time,
i.e., there is a polynomial-time computable function f such that for each v in
the domain of g, h(f(v)) = g(v). Similarly, h is said to simulate g if for each
g-proof v there is an h-proof w of length polynomial in the length of v with
h(w) = g(v). A proof system for a set L is called (p-)optimal if it (p-)simulates
every proof system for L (cf. [31]). It is a natural question to ask whether a set
L has a p-optimal (or at least an optimal) proof system. Note that a p-optimal
proof system has the advantage that from any proof in another proof system
one can efficiently obtain a proof for the same instance in the p-optimal proof
system. Hence, any method that is used to compute proofs in some proof
system can be reformulated to yield proofs in the p-optimal proof system with
little overhead.

Disjoint Pairs and Tuples

For a class C of sets we call a tuple (A1, . . . , Al) of sets A1, . . . , Al ∈ C a disjoint
C-tuple if Ai ∩Aj = ∅ for all 1 ≤ i < j ≤ l. For l = 2 we just say that (A1, A2)
is a disjoint C-pair, or simply a C-pair. For such a disjoint pair (A1, A2) of
languages let us say that (A1, A2) is D-separable if there is a language S ∈ D
which separates (A1, A2), i.e., A1 ⊆ S and A2 ∩ S = ∅ (cf. [21]).

Grollmann and Selman [21] introduced a notion of many-one reducibility be-

6

tween disjoint NP-pairs, a stronger version of which was studied in [27]. In [3]
these reductions were generalized to tuples as follows. Let (B1, . . . , Bl) and
(C1, . . . , Cl) be disjoint NP-tuples. The tuple (B1, . . . , Bl) many-one reduces
to the tuple (C1, . . . , Cl) if there is a function f ∈ FP such that f(Bi) ⊆ Ci

for i = 1, . . . , k. If, in addition, f also respects the complement of the union
B1 ∪ · · · ∪Bl, i.e., f(B1 ∪ · · · ∪ Bl) ⊆ C1 ∪ · · · ∪ Cl, then we call the reduction
strong. We denote these reductions by ≤p and ≤s, respectively. We remark that
f strongly reduces (B1, . . . , Bl) to (C1, . . . , Cl) if and only if f is a many-one
polynomial-time reduction of Bi to Ci for i = 1, . . . , k.

3 Nondeterministic Function Classes and Tuples of NP-Sets

There is a direct correspondence between nondeterministic functions and tu-
ples of NP-sets, which we will explore in this section. The simplest case is pro-
vided by functions from NPSVt and languages from NP ∩ coNP. With respect
to this relation, Selman [50] and Hemaspaandra et al. [23] have shown that
NPSVt = FP

NP∩coNP

t , from which Fenner et al. [14] concluded that NPSVt ⊆ FP

holds if and only if P = NP∩ coNP. We complete the picture by showing that
this correspondence also extends to the question of the existence of complete
problems.

Proposition 1 NP∩ coNP has a many-one complete set if and only if NPSVt

has a many-one complete function.

PROOF. Assume first that C is many-one complete for NP ∩ coNP. Hence,
NPSVt = FP

NP∩coNP

t = FP
C
t . But FP

C
t has a complete function for any C, and

therefore also NPSVt has a complete function.

Now assume that h is a many-one complete function for NPSVt. Since NP ∩
coNP = PNPSVt it follows that NP ∩ coNP = Ph, and Ph has a many-one
complete set for any function h. 2

Now let us consider the function class NPSV. In the same way as NPSVt corre-
sponds to the language class NP∩ coNP, the function class NPSV corresponds
to the class of all disjoint NP-pairs. In fact, if we denote the class of all 0,1-
valued functions in NPSV by NPSV{0,1}, then any function h ∈ NPSV can be
identified with the disjoint NP-pair (D0, D1) where

Db = {x ∈ Σ∗ | h(x) 7→ b}.

7

Generalizing this observation, for some finite set A = {a1, . . . , al} ⊂ Σ∗ con-
taining l ≥ 2 elements, the class NPSVA of all functions in NPSV taking only
values in A corresponds to the class of all disjoint l-tuples of NP-sets, studied in
[3]. If f is a function from NPSVA, then we can define a disjoint l-tuple of NP-
sets Df = (Df

1 , . . . , D
f
l) by Df

i = {x ∈ Σ∗ | f(x) 7→ ai}. Conversely, a disjoint
l-tuple of NP-sets (D1, . . . , Dl) defines a nondeterministic function as follows.
Let Mi be nondeterministic polynomial-time machines that decide the sets
Di, respectively. The machine M(x) first nondeterministically chooses an in-
dex i ∈ {1, . . . , l} and outputs the value ai if the machine Mi(x) accepts. Thus
M computes a function f from the class NPSVA such that Df = (D1, . . . , Dl).

It is not difficult to see that this correspondence between functions from
NPSVA and disjoint tuples of NP-sets also extends to the respective simu-
lations, namely:

Proposition 2 Let A be a finite subset of Σ∗, and let f and g be functions
from NPSVA. Then f ≤p

m g if and only if Df ≤s D
g.

Thus, for example, the class of disjoint NP-pairs has a strongly many-one
complete pair if and only if NPSV{0,1} has a many-one complete function.
As shown in the next theorem, this is even equivalent to the assumption
that NPSV has a many-one complete function. In addition, the theorem gives
alternative and easier proofs for some results from [3] on disjoint NP-tuples.

Theorem 3 The following statements are equivalent.

(1) NPSV has a many-one complete function.
(2) For all polynomial-time decidable sets A ⊆ Σ∗, the class NPSVA has a

many-one complete function.
(3) For some set A ⊆ Σ∗ with at least two elements, the class NPSVA has a

many-one complete function.
(4) For all numbers l ≥ 2 there exist ≤s-complete disjoint l-tuples of NP-sets.
(5) For some number l ≥ 2 there exist ≤s-complete disjoint l-tuples of NP-

sets.
(6) There is a ≤s-complete disjoint NP-pair.

PROOF. To obtain the above equivalences we will verify the following im-
plications: 1 ⇒ 2 ⇒ 4 ⇒ 6 ⇒ 5 ⇒ 3 ⇒ 1, of which the implications 4 ⇒ 6 ⇒
5 are trivial, and 2 ⇒ 4 as well as 5 ⇒ 3 are clear by the preceding discussion
on the reformulation of functions from NPSV as tuples of disjoint NP-sets. It
therefore remains to prove the implications 1 ⇒ 2 and 3 ⇒ 1.

For the first of these implications let g be a function many-one complete for
NPSV and let A ⊆ Σ∗ be decidable in polynomial time. We fix some element

8

a0 ∈ A and define the function σ as

σ(y) =







y y ∈ A

a0 otherwise.

As A is decidable in polynomial time, the function σ is in FP. Then σ ◦ g is
a function in NPSVA. Observe that for a function h ∈ NPSVA any many-one
reduction from h to g also reduces h to σ ◦ g. Thus σ ◦ g is many-one complete
for NPSVA.

To prove that item 3 implies item 1, we show that NPSV can be characterized
as FP

NPSVA , where the value Mf (x) computed by the deterministic oracle
transducer M on input x is only defined if all oracle queries belong to the
domain of the functional oracle f . We first show that FP

NPSVA ⊆ NPSV.
Clearly, any function in FP

NPSVA is single-valued. Also a computation ofMf on
input x where f ∈ NPSVA can be simulated by a nondeterministic transducer
N that simulates M , and for each query z guesses an accepting path of the
nondeterministic transducer that computes f and answers with f(x). This
guarantees that Mf (x) = N(x) if all oracle queries of Mf on input x are
in the domain of f . If not, then by definition, Mf (x) is undefined, and also
set-N(x) = ∅, i.e., N(x) is undefined. This shows FP

NPSVA ⊆ NPSV.

To see that every function in f ∈ NPSV is in FP
NPSVA, we fix two distinct

elements a0 and a1 in A and define the following function g ∈ NPSVA:

g(z) =















aj if z = 1〈i, x〉 and the ith bit of f(x) is j,

a0 if z = 0〈l, x〉 and |f(x)| < l,

a1 if z = 0〈l, x〉 and |f(x)| = l.

Notice that z is in the domain of g, if z = 1〈i, x〉 with some x in the domain
of f and 1 ≤ i ≤ |f(x)|, or if z = 0〈l, x〉 with some x in the domain of f and
l ≤ |f(x)|. Now an oracle transducer Mg computes f as follows. On input x
Mg first determines the length l of f(x) by querying 0〈l, x〉 for l = 0, 1, . . .
until g(0〈l, x〉) = a1 (if x is not in the domain of f , then the first query leads
to a reject of Mg, otherwise all the strings queried are in the domain of g).
If l = 0, then Mg outputs λ, otherwise the output of Mg is the bit string
y1 · · · yl, where yi = 1 if and only if g(1〈i, x〉) = a1. Therefore Mg computes
the function f .

Now the assumption that there is a complete function g for NPSVA implies
NPSV = FP

NPSVA = FP
g, hence also NPSV has a complete function. 2

Additionally, we can get results on tuples obeying less restrictive disjointness
conditions. Namely, we call a collection of sets {Di}i∈I k-disjoint if

⋂

i∈J Di = ∅

9

for all J ⊆ I such that ‖J‖ > k. For k = 1 this is just the usual pairwise dis-
jointness condition, but for increasing k this leads to successively weaker no-
tions. Reductions are easily generalized to this context, i.e., f strongly reduces
(C1, . . . , Cl) to (D1, . . . , Dl) if f is a many-one polynomial-time reduction from
the components Ci to Di for i = 1, . . . , l.

Similarly as above, there is a direct correspondence between k-disjoint l-tuples
of NP-sets and functions from NPkVA, where NPkVA denotes all functions from
NPMV with ‖set-f(x)‖ ≤ k and set-f(x) ⊆ A for all x ∈ Σ∗. Then we have:

Proposition 4 For all numbers l > k ≥ 1, there exist ≤s-complete k-disjoint
l-tuples of NP-sets if and only if NPkVA has complete functions for all subsets
A ⊆ Σ∗ of size ‖A‖ = l.

Similarly as in [3] we can show that the question of the existence of complete
k-disjoint tuples does not depend on the number of components of the tuple,
i.e., for all numbers l, l′ > k ≥ 1, complete k-disjoint l-tuples exist if and only
if complete k-disjoint l′-tuples exist.

Instead of considering functions from NPkVA, it is probably more natural to
investigate the function class NPkV, that contains all functions from NPMV

such that ‖setf(x)‖ ≤ k for all x ∈ Σ∗ (cf. [14,51]). Naik, Rogers, Royer,
and Selman [36] showed that the classes NPkV, k ≥ 1, form a strict hierar-
chy (called the output-multiplicity hierarchy), unless the polynomial hierarchy
collapses to its second level.

Functions from NPkV correspond to k-disjoint tuples of NP-sets where the
number of components is not restricted. Analogously to the implication 1 ⇒
2 in Theorem 3 we can show the following proposition.

Proposition 5 For all polynomial-time decidable sets A ⊆ Σ∗, NPkV con-
tains complete functions if and only if NPkVA contains complete functions.

Fenner, Fortnow, Naik, and Rogers [14] investigated the problem whether total
functions in NPkV possess refinements in FP. In particular, they proved that
the answer to this question is independent of k, i.e., if NPkVt ⊆c FP for some
k ≥ 2, then NPkVt ⊆c FP holds for all k ≥ 2. Here we are interested in the
question, whether these function classes contain complete sets. Concerning
this problem we can prove:

Theorem 6 (1) If TAUT has an optimal proof system, then for all k, NPkV
has a complete function.

(2) Let g(x) be a polynomial-time computable function such that for all x ∈
Σ∗ we have g(x) ≤ p(|x|) for some polynomial p. Then the existence
of optimal proof systems for TAUT implies the existence of complete
functions for NPgV.

10

PROOF. The proof follows the general method developed in [27], that
amounts to bound the complexity of the promise predicates for NPkV and
NPgV. In particular, we have to show that these promise predicates are defin-
able in coNP.

For this let N be an NP transducer. Then the promise that N(x) outputs at
most k different values can be defined by the formula

∀y1 . . .∀yk+1





(

k+1
∧

i=1

yi ∈ set-f(x)

)

→
∨

1≤i<j≤k+1

yi = yj



 , (1)

where f is the NPMV function computed by N . As the premise
∧k+1

i=1 yi ∈
set-f(x) defines an NP-predicate, the whole formula (1) is a condition in coNP.
By choosing suitable polynomial-size nondeterministic circuits for f , we can
translate the formula (1) to a sequence of polynomial-size propositional for-
mulas θk,f

n (p̄, q̄, r̄), which contain propositional variables p̄ = p1, . . . , pn for the
input x, variables q̄ for y1, . . . , yk+1, as well as auxiliary variables r̄ for the
gates of the circuits for f .

From the construction of θk,f
n it is clear, that f is indeed a function from NPkV

if and only if (θk,f
n)n≥0 is a sequence of propositional tautologies. As for each

NP transducer N the sequence θk,f
n can be constructed in polynomial time,

we can easily define a proof system hf which admits polynomial-size proofs of
the sequence θk,f

n . By assumption there exists an optimal proof system h. As
h simulates all proof systems hf , we have polynomial-size h-proofs of θk,f

n for
all f ∈ NPkV.

We now claim that the following function fk is complete for NPkV: fk takes
inputs of the form 〈x,N, 0m〉. From this input, fk first computes the formula
θk,f
|x| . Then it guesses an h-proof π of size ≤ m and verifies whether h(π) =

θk,f
|x| . If this is not the case, then fk stops without producing any output.

Otherwise, fk simulates N(x) for at most m steps and gives the corresponding
output. Clearly, fk belongs to NPkV. To verify its completeness let N be an
NP transducer computing a function f ∈ NPkV and let p be a polynomial
bounding the running time of N as well as the size of h-proofs for θk,f

n . Then
f many-one reduces to fk via the mapping x 7→ 〈x,N, 0m〉.

For item 2 let g ∈ FP such that for all x ∈ Σ∗ we have g(x) ≤ p(|x|) for some
polynomial p. Similarly as above, we define for each function f ∈ NPgV the
promise of f(x) with respect to NPgV by

∀y1 . . .∀yg(x)+1









g(x)+1
∧

i=1

yi ∈ set-f(x)



→
∨

1≤i<j≤g(x)+1

yi = yj



 . (2)

11

By the conditions on g, the propositional translations of (2) have polyno-
mial size in the length of x. A complete function for NPgV is then obtained
analogously as in the proof of item 1. 2

Note that if g(x) is a function with super-polynomial increase in |x|, then
it is not clear whether the formulas (2) can be described by propositional
formulas of size polynomial in |x|, and therefore the above proof method fails
for such functions g. We also leave it open, whether the reverse implications
of items 1 and 2 are valid. As a more general programme, it seems interesting
to determine the relationship between the assumptions of the existence of
complete functions in NPkV and NPgV for different numbers k and functions
g.

We conclude this section by observing that the class of disjoint coNP-pairs
corresponds to the class NPbVt of all 0,1-valued functions in NPMVt, studied
in [14]. With a disjoint coNP-pair (A0, A1) we associate the function h ∈ NPbVt

defined by set-h(x) = {b | x /∈ Ab}).

Again, it is interesting to see what happens if we extend the range from {0, 1}
in NPbVt to arbitrary sets A ⊆ Σ∗. If A = {a1, . . . , ak} contains exactly k
elements, then a function g from NPMVt,A corresponds to a tuple (A1, . . . , Ak)
of coNP-sets with Ai = {x | ai /∈ set-g(x)}. As every x can be contained in at
most k−1 sets from A1, . . . , Ak, the tuple (A1, . . . , Ak) is (k−1)-disjoint (but
not necessarily pairwise disjoint).

Given this correspondence between coNP-tuples and functions from NPMVt,
we can prove the following theorem by using a similar argument as for the
implication 1 ⇒ 2 in Theorem 3.

Theorem 7

(i) If NPMVt has many-one complete functions, then there exist strongly
many-one complete disjoint coNP-pairs.

(ii) More generally, if NPMVt has complete functions, then there exist com-
plete (k − 1)-disjoint k-tuples of coNP-sets for all k ≥ 2.

We leave it open whether the reverse implications also hold.

4 Collapse of NPSV and Effective Interpolation

In this section we investigate the question whether functions from NPSV admit
total extensions in FP or FP/poly . We show that this question can be char-
acterized by interpolation properties, which in turn are intimately connected

12

with disjoint NP-pairs associated with propositional proof systems. We will
start by reviewing different notions of interpolation along with their connec-
tions to disjoint NP-pairs.

Due to Craig’s interpolation theorem for propositional logic, for any tautology
ϕ→ ψ there is a formula θ that uses only common variables of ϕ and ψ such
that ϕ → θ and θ → ψ are tautologies [12]. A circuit C that computes the
same function as θ is called an interpolant of ϕ→ ψ.

Lower bounds for the size of interpolants were first considered by Mundici [35],
who proved that the existence of polynomial-size interpolants for all implica-
tions ϕ → ψ implies NP ∩ coNP ⊆ P/poly. As the existence of polynomial-
size interpolants for all implications seems to be a rather strong assumption,
Kraj́ıček [30] suggested to measure the size of an interpolant not merely in
terms of the size of the implication ϕ → ψ, but in terms of the size of the
shortest proof of this implication in some fixed proof system. This leads to the
following definition:

Definition 8 (Kraj́ıček, Pudlák [32]) A proof system h for TAUT admits
effective interpolation if there is a polynomial p such that for any h-proof w
of a formula h(w) = ϕ → ψ, the formula h(w) has an interpolant of size at
most p(|w|).

Effective interpolation is sometimes considered in an efficient version such that
it is possible to generate an interpolating circuit from an h-proof of a formula
ϕ→ ψ in polynomial time. In [40] this property is called feasible interpolation.

Feasible interpolation has been shown for resolution [30], the cutting planes
system [7,30,38], and some algebraic proof systems [41]. Combined with lower
bounds for the separation of the clique colouring pair by monotone Boolean
circuits [42,1], these results yield lower bounds for the proof lengths in the
above proof systems. We refer to the survey [39] for a detailed presentation of
this approach.

The notion of effective interpolation for a proof system h can be characterized
by a disjoint NP-pair associated with the proof system h. For this we define
the following interpolation pair Int(h) with the components

Int1(h) = {〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 0m〉 | x̄ are the common variables of ϕ and ψ,

ϕ(ā, ȳ) is satisfiable, and

h ⊢≤m ϕ(x̄, ȳ) → ψ(x̄, z̄)}

Int2(h) = {〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 0m〉 | x̄ are the common variables of ϕ and ψ,

¬ψ(ā, z̄) is satisfiable, and

h ⊢≤m ϕ(x̄, ȳ) → ψ(x̄, z̄)}.

13

Before we start to explain the link of the interpolation pair to different notions
of interpolation, let us mention a general connection between propositional
proof systems and disjoint NP-pairs. For this connection, disjoint NP-pairs are
represented by sequences of propositional formulas (cf. [4]). More formally,
a propositional representation for an NP-set A is a sequence of propositional
formulas ϕn(x̄, ȳ) with the following properties:

(1) ϕn(x̄, ȳ) has propositional variables x̄ and ȳ such that x̄ is a vector of n
propositional variables.

(2) There exists a polynomial-time algorithm that on input 1n outputs
ϕn(x̄, ȳ).

(3) Let a ∈ {0, 1}n. Then a ∈ A if and only if ϕn(ā, ȳ) is satisfiable (where
we have substituted the propositional variables x̄ by the bits ā of a).

With these propositional descriptions of NP-sets we can represent disjoint NP-
pairs in propositional proof systems. We say that a disjoint NP-pair (A,B)
is representable in a propositional proof system h if there are propositional
representations ϕn(x̄, ȳ) of A and ψn(x̄, z̄) of B such that x̄ are the common
variables of ϕn(x̄, ȳ) and ψn(x̄, z̄) and h ⊢≤p(n) ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) for some
polynomial p.

Let us remark at this point that every disjoint NP-pair (A,B) is representable
in some propositional proof system by simply coding a representation of (A,B)
into a given base system. As a concrete example, let us explain how this works
for the extended Frege proof system EF (cf. [11]). If ϕn(x̄, ȳ) and ψn(x̄, z̄)
are propositional representations for the NP-sets A and B, respectively, then
the pair (A,B) is representable in the system EF + {ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) |
n ≥ 0} which augments EF by additional axioms for the disjointness of the
pair (A,B). Such extensions EF + Φ by polynomial-time decidable sets Φ of
tautologies are of particular interest, as every propositional proof system is
simulated by such a system EF + Φ for suitable axioms Φ (cf. [29]).

Before we explain how the interpolation pair Int(h) captures effective inter-
polation for h, we will show that Int(h) serves as a hard pair for the class of
all pairs representable in the system h (this class was investigated in detail
in [4] under the name DNPP(h)). We formulate this observation in the next
proposition.

Proposition 9 For every proof system h the interpolation pair Int(h) is ≤s-
hard for the class of all disjoint NP-pairs that are representable in h.

PROOF. Let h be a proof system and let (A,B) be a disjoint NP-pair such
that ϕn(x̄, ȳ) and ψn(x̄, z̄) represent A and B, respectively, and h ⊢≤p(n)

ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) for some polynomial p. It is then straightforward to

14

verify that
a 7→ 〈ϕ|a|(x̄, ȳ),¬ψ|a|(x̄, z̄), a, 0

p(|a|)〉

realizes the reduction (A,B) ≤s Int(h). 2

Now we want to argue that Int(h) indeed justifies its qualification as a pair
that describes the effective interpolation property. To this end we consider for
a given proof system h the following three assertions:

A1(h): The interpolation pair Int(h) is P/poly-separable.
A2(h): h has effective interpolation.
A3(h): All disjoint NP-pairs that are representable in h are P/poly-separable.

Then the following implications between these assertions hold.

Proposition 10 (1) For all propositional proof systems h the implications
A1(h) ⇒ A2(h) ⇒ A3(h) hold.

(2) Let h be a proof system of the form EF + Φ with a polynomial-time
decidable set of tautologies Φ. Then the equivalences A1(h) ⇔ A2(h) ⇔
A3(h) hold.

PROOF. To prove the implication A1(h) ⇒ A2(h) for arbitrary proof sys-
tems h, assume that Int(h) is separated by the polynomial-size circuit family
Cn, i.e., for inputs 〈ϕ(x̄, ȳ), ψ(x̄, z̄), a, 0m〉 of length n from Int1(h) the circuit
Cn outputs 1, and Cn outputs 0 for inputs from Int2(h).

Let ϕ(x̄, ȳ) → ψ(x̄, z̄) be an implication that has an h-proof of length m. By
substituting ϕ, ψ, and 0m for the respective input gates of the appropriate
circuit Cn, we obtain a circuit with inputs x̄ that interpolates ϕ and ψ.

For the implication A2(h) ⇒ A3(h) let (A,B) be a disjoint NP-pair that is
representable in h with respect to the representations ϕn(x̄, ȳ) and ψn(x̄, z̄),
i.e., we have h-proofs of length ≤ p(n) for the sequence of formulas ϕn(x̄, ȳ) →
¬ψn(x̄, z̄) with some polynomial p. As h has effective interpolation by A2(h),
there exist interpolating circuits Cn(x̄) for ϕn(x̄, ȳ) → ¬ψn(x̄, z̄). Hence the
circuit family Cn provides a separator for (A,B).

For item 2 it remains to show the implication A3(h) ⇒ A1(h) for proof sys-
tems h of the from EF + Φ with polynomial-time Φ ⊆ TAUT. Choosing nat-
ural representations for the components of Int(h) that arise from translations
of arithmetic formulas, it is straightforward to verify the representability of
Int(h) in the system h (cf. [4] for a detailed description of this procedure). 2

To capture the feasible interpolation property, Pudlák [40] defines an interpo-

15

lation pair (I0
h, I

1
h) for a proof system h with the components

I i
h = {〈ϕ0, ϕ1, π〉 |ϕ0 and ϕ1 do not share variables, ¬ϕi is satisfiable,

and h(π) = ϕ0 ∨ ϕ1}

for i = 0, 1. Under some reasonable assumptions on the proof system h, we can
then show a similar result as in Proposition 10 for the efficient analogues of
A1(h) to A3(h). In particular, h has feasible interpolation if and only if (I0

h, I
1
h)

is P-separable (assuming some simple closure properties of h such as closure
under substitution by constants). The pair (I0

h, I
1
h) is, however, not suitable

for the notion of effective interpolation, for which reason we have defined its
nonuniform version Int(h).

As mentioned above, weak systems like resolution or cutting planes are known
to possess effective interpolation [7,30,38]. In contrast, there is evidence that
strong propositional proof systems like Frege systems and their extensions do
not admit effective interpolation [32,8,6]. In particular, it is observed in [32]
that extended Frege proof systems do not admit effective interpolation if the
RSA cryptosystem is secure.

Partly generalizing this observation, one can state that the existence of an
honest injective function in FP that is not FP/poly-invertible (i.e., a one-
way function that is secure against FP/poly) implies the existence of a proof
system for TAUT that does not admit effective interpolation. Notice that
each injective function in FP is invertible by an NPSV-function. Thus the
assumption that each NPSV-function has a total extension in FP/poly implies
that every injective function is FP/poly-invertible. As the former assumption
implies NP ∩ coNP ⊆ P/poly and the latter is equivalent to UP ⊆ P/poly
(cf. [25,21]), it is presumably stronger. We now show that every function in
NPSV has a total extension in FP/poly if and only if every proof system for
TAUT admits effective interpolation.

Theorem 11 The following statements are equivalent.

(1) Every propositional proof system admits effective interpolation.
(2) Every disjoint NP-pair is P/poly-separable.
(3) Every function in NPSV has a total extension in FP/poly.
(4) For every set S ⊆ TAUT, S ∈ NP, there is a polynomial p, such that

any formula ϕ→ ψ ∈ S has an interpolant of size at most p(|ϕ→ ψ|).
(5) For every printable set S ⊆ TAUT, there is a polynomial p, such that

any formula ϕ→ ψ ∈ S has an interpolant of size at most p(|ϕ→ ψ|).

PROOF. For the proof we will show the implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5
as well as 4 ⇒ 1 and 5 ⇒ 2. The implication 4 ⇒ 5 is immediate, as item 5

16

is a weakening of item 4.

Items 1 and 2 are the universally quantified versions of the assertions A2(h) and
A3(h), respectively, i.e., item 1 expresses that A2(h) holds for all propositional
proof systems h. Similarly, this holds for item 2 and assertion A3(h), as every
disjoint NP-pair (A,B) is representable in a proof system EF + {ϕn → ¬ψn}
with arbitrary representations ϕn and ψn for A and B, respectively. Therefore
the equivalence of items 1 and 2 is a direct consequence of Proposition 10.

The implication 2 ⇒ 3 was shown in the unpublished manuscript [49], but for
the sake of completeness we include a proof. Assume that all disjoint NP-pairs
are P/poly-separable, and let f be a function in NPSV. With f we associate a
pair (Af

0 , A
f
1) with the components

Af
i = {〈x, j〉 | (∃y)y ∈ set-f(x), 1 ≤ j ≤ |y|, and the j-th bit of y is i}.

This disjoint NP-pair describes all bits of the values of f . To determine the
length of f -values we define a second NP-pair (Bf

0 , B
f
1) with the components

Bf
0 = {〈x, j〉 | (∃y)y ∈ set-f(x) and j ≤ |y|}

Bf
1 = {〈x, j〉 | (∃y)y ∈ set-f(x) and j > |y|}.

By assumption the pairs (Af
0 , A

f
1) and (Bf

0 , B
f
1) can be separated by

polynomial-size circuit families Cn and Dn, respectively. Using these circuits
we devise a function g ∈ FP/poly that refines f as follows. Let p be a polyno-
mial bounding the running time of f . At input x, the function g evaluates all
respective circuits from Dn on inputs 〈x, 1〉, . . . , 〈x, p(|x|)+1〉 to determine the
length l of the possible output value of f(x). After l is computed, g evaluates
the circuits Cn on inputs 〈x, 1〉, . . . , 〈x, l〉. The output of g is then just the
bitwise concatenation of these values. From the construction it is clear that
g ∈ FP/poly refines the function f .

The proof of the implication 3 ⇒ 4 is obtained by extending an idea from
[49]. Let S ⊆ TAUT, S ∈ NP. Let f be a function such that for any formula
ϕ ∈ S, ϕ = ϕ0(x̄, ȳ) → ϕ1(x̄, z̄), it holds

f(〈α, ϕ〉) =







1 if for some β, ϕ0(α, β) holds

0 if for some γ, ¬ϕ1(α, γ) holds.

Otherwise, and for any other input let f be undefined. First observe that
f is well defined, i.e., that f is single valued. This is due to the fact that
ϕ = ϕ0(x̄, ȳ) → ϕ1(x̄, z̄) ∈ TAUT. Further, f can be computed by a nonde-
terministic machine N that first (in deterministic polynomial time) validates
that the input is of the appropriate form 〈α, ϕ〉, ϕ = ϕ0(x̄, ȳ) → ϕ1(x̄, z̄).
Then N guesses a certificate for ϕ ∈ S and, if successful, guesses some string

17

w. Now if w is of an appropriate length and if ϕ0(α,w) holds, then N outputs
1, if ϕ1(α,w) holds, N outputs 0. Hence f ∈ NPSV.

Assuming 3, f has a total extension in FP/poly . Thus there is a polynomial
p and for any n ≥ 0 a circuit Cn of size at most p(n) such that for any
tuple v = 〈α, ϕ〉 of length n in the domain of f , Cn(v) = f(v). Fixing the
input bits of Cn that belong to the formula ϕ, we obtain a circuit Cϕ with
Cϕ(α) = Cn(〈α, ϕ〉) = f(〈α, ϕ〉), and thus Cϕ is of size polynomial in |ϕ|. Now
observe that Cϕ is an interpolant for the formulas ϕ0(x̄, ȳ) and ϕ1(x̄, z̄). If
ϕ0(α, ȳ) ∈ TAUT, then Cϕ(α) = 1, and if Cϕ(α) = 1, then for no γ it holds
¬ϕ1(α, γ) and therefore ϕ1(α, z̄) ∈ TAUT.

To prove the implication 4 ⇒ 1, let pad: Σ∗ × {0}∗ → Σ∗ be a function in FP

with the following properties:

(1) pad(ϕ, 0n) ∈ TAUT if ϕ ∈ TAUT.
(2) given an implication ϕ → ψ ∈ TAUT as an input, the output pad(ϕ →

ψ, 0n) is also an implication ϕ′ → ψ′ that has the same interpolants as
ϕ→ ψ.

(3) |pad(ϕ, 0n)| ≥ |ϕ| + n.

Notice that there is such a padding function. Now let h be a proof system for
TAUT, and let

S = {ϕ | ∃n ≤ |ϕ| ∃w, |w| ≤ n, pad(h(w), 0n) = ϕ}.

Clearly S ∈ NP, as pad and h are functions in FP. Because h is a proof system
for TAUT and due to property 1 of pad, S ⊆ TAUT. Thus by assumption 4
there is a monotone polynomial p, such that any formula ϕ′ → ψ′ ∈ S has an
interpolant of size at most p(|ϕ′ → ψ′|). As pad, h ∈ FP there are monotone
polynomials q, r such that |h(w)| ≤ q(|w|) and |pad(ϕ, 0n)| ≤ r(|ϕ| + n) for
any w, ϕ ∈ Σ∗, n ≥ 0. Let ϕ → ψ ∈ TAUT and let w be an h-proof for
ϕ→ ψ. Now by property 3 of pad ϕ′ → ψ′ = pad(ϕ→ ψ, 0|w|) ∈ S, therefore
by the property 2 of pad, ϕ → ψ has an interpolant of size at most p(|ϕ′ →
ψ′|) ≤ p(r(q(|w|) + |w|)).

To finish the proof let us show that the implication 5 ⇒ 2 holds. Let (A,B)
be a disjoint NP-pair. We choose arbitrary representations ϕn(x̄, ȳ) for A and
ψn(x̄, z̄) for B. By the disjointness of A and B, ϕn(x̄, ȳ) → ¬ψn(x̄, z̄) is a print-
able sequence of tautologies. Assuming 5 we get polynomial-size interpolating
circuits for these formulas. These circuits separate the pair (A,B). 2

Part of the equivalences of the last theorem were already shown by Schöning
and Torán in the unpublished manuscript [49]. There they proved that items 2,
3, and 5 are equivalent, and that these hypotheses imply NP∩ coNP ⊆ P/poly

18

and UP ⊆ P/poly.

Let us note that Theorem 11 also holds in an efficient version, where FP/poly
is replaced by FP, and effective interpolation is strengthened to feasible inter-
polation. It is readily checked that the proof of Theorem 11 is easily modified
to this efficient context. Hence Theorem 11 along with its proof yield the
following corollary:

Corollary 12 The following statements are equivalent.

(1) Every propositional proof system admits feasible interpolation.
(2) Every disjoint NP-pair is P-separable.
(3) Every function in NPSV has a total extension in FP.

Let us mention that the above list of equivalences also relates to the impor-
tant concept of automatizability, as recently noted by Sadowski [47]. In [8] a
proof system h is called automatizable if there exists a deterministic procedure
that takes as input a formula ϕ and outputs an h-proof of ϕ in time polyno-
mial in the length of the shortest h-proof of ϕ. A proof system g is called
weakly automatizable if there exists an automatizable system h that simulates
g (cf. [40]). In [47] Sadowski proves that items 2 and 3 from Corollary 12 are
equivalent to the statement that every propositional proof system is weakly
automatizable.

It is easy to see that a proof system g admits effective interpolation if g
is simulated by a proof system h that admits effective interpolation. As a
corollary from Theorem 11 we obtain:

Corollary 13 If there is an optimal proof system for TAUT that admits
effective interpolation, then items 1 to 5 from Theorem 11 hold.

5 Is the Standard Proof System for SAT P-optimal?

In this section we will consider the question whether the standard proof system
for SAT is p-optimal, where by the standard proof system sat for SAT we
mean the following procedure of checking the truth value of a given assignment:

sat(x) =







ϕ if x = 〈α, ϕ〉 and α is a satisfying assignment for ϕ

undef. otherwise.

It will turn out that the question whether sat is p-optimal is (in some disguise)
actually well studied in the literature. The assumption that sat is p-optimal
is equivalent to a variety of complexity-theoretic assumptions (which have
unlikely collapse consequences such as P = NP ∩ coNP).

19

In [14] the following statements were all shown to be equivalent. There, Q
is defined to be the proposition that one (and consequently each) of these
statements is true. In this section we show that Q is also equivalent to the
p-optimality of sat .

Theorem 14 (Fenner, Fortnow, Naik, Rogers [14]) The following
statements are equivalent.

(1) For each NPTM N that accepts SAT there is a function f ∈ FP such
that for each accepting path α of N on input ϕ, f(〈ϕ, α〉) is a satisfying
assignment of ϕ.

(2) Each honest function f ∈ FP with range Σ∗ is FP-invertible.
(3) NPMVt ⊆c FP.
(4) For all P-subsets S of SAT there exists a function g ∈ FP such that for

all ϕ ∈ S, g(ϕ) is a satisfying assignment of ϕ.

Clearly, each nondeterministic Turing machine N corresponds to a proof sys-
tem h for SAT with h(w) = ϕ if w encodes an accepting path of N on input
ϕ. Now h is honest if and only if N is a NPTM. This leads to the obser-
vation that Statement 1 in Theorem 14 is equivalent to the condition that
sat p-simulates every honest proof system for SAT. Hence, we just need to
delete the term ‘polynomial-time’ in the Statement 1 of Theorem 14 to obtain
the desired result that Q is equivalent to the p-optimality of sat . That this
is possible without changing the truth of the theorem is shown by a padding
argument.

Theorem 15 The following statements are equivalent.

(1) For each nondeterministic Turing machine N that accepts SAT there is
a function f ∈ FP such that for each accepting path α of N on input ϕ,
f(〈ϕ, α〉) is a satisfying assignment of ϕ.

(2) For each NPTM N that accepts SAT there is a function f ∈ FP such
that for each accepting path α of N on input ϕ, f(〈ϕ, α〉) is a satisfying
assignment of ϕ.

(3) sat is a p-optimal proof system for SAT.

PROOF. By the preceding discussion, it is clear that items 1 and 3 are
equivalent. Also, item 1 trivially implies item 2. Hence it remains to prove
that 2 implies 3.

For this assume that item 2 holds, and let h be a proof system for SAT. We
will show that sat p-simulates h. Let t be some tautology, and let t1 = t,
tn = t ∧ tn−1 for n ≥ 2 (i.e., tn is a tautology of length ≥ n that is easy to

20

compute from 0n). Let h′ ∈ FP be a proof system defined by

h′(x) =















ϕ ∧ t|x|−1 if x = 1w and h(w) = ϕ,

ϕ if x = 0w and sat(w) = ϕ,

undef. otherwise.

Notice that h′ is honest (in fact, h′ is length increasing). Hence, sat p-simulates
h′ by the following argument. Let Nh′ be a nondeterministic polynomial-time
Turing machine that on input y guesses some w and accepts if h′(w) = y.
Since Nh′ accepts SAT, by item 2 there is a function f ∈ FP such f(〈y, α〉)
is a satisfying assignment of y for any accepting path α of Nh′ on input y.
Thus there is a function f ′ ∈ FP with sat(f ′(w)) = ϕ ∧ t|w| for any w with
h(w) = ϕ. But it is clear that from a satisfying assignment of ϕ ∧ t|w| we can
easily compute a satisfying assignment of ϕ, i.e., there is a function g with
sat(g(f ′(w), h(w))) = h(w) for any w in the domain of h. 2

It is known that the assumption NP = P implies NPMVt ⊆c FP which in turn
implies NP ∩ coNP = P (cf. [52]). Also, in [24] it has been shown that the
converse of these implications is not true in suitable relativized worlds. The
consequence NP ∩ coNP = P also shows that the assumption that sat is p-
optimal is presumably stronger than the assumption that SAT has a p-optimal
proof system. Namely the p-optimality of sat implies that NP ∩ coNP = P,
whereas the existence of a p-optimal proof system follows already if any super-

tally set in ΣP
2 belongs to P, where any set L ⊆ {022

n

| n ≥ 0} is called
super-tally [27].

The assumption that sat is a p-optimal proof system also has an effect on
various reducibility degrees, as has been mentioned in [14] for Karp and Levin
reducibility. Also in [33] it is shown that NPMVt ⊆c FP if and only if γ-
reducibility equals polynomial-time many-one reducibility. Furthermore it is
shown in [13] that Statement 4 of Theorem 14 is equivalent to the assumption
that the approximation class APX is closed under L-reducibility (see [13] for
definitions).

The equivalence between the p-optimality of sat and NPMVt ⊆c FP directly
leads to the following theorem.

Theorem 16 The following statements are equivalent.

(1) sat is p-optimal.
(2) For all languages the notions of simulation and p-simulation coincide,

i.e., for every language L and all proof systems h and g for L we have
g ≤ h if and only if g ≤p h.

(3) The notions of simulation and p-simulation coincide for propositional

21

proof systems, i.e., for all propositional proof systems h and g we have
g ≤ h if and only if g ≤p h.

(4) Every optimal proof system is p-optimal.

PROOF. We will show the implications 1 ⇒ 2 ⇒ 3 ⇒ 1 and 2 ⇒ 4 ⇒ 1,
of which 2 ⇒ 3 and 2 ⇒ 4 are obvious, and 4 ⇒ 1 follows, because sat is
optimal.

To show the implication 1 ⇒ 2, assume that sat is a p-optimal proof system.
Clearly, if h p-simulates g, then h also simulates g.

Therefore, let us assume that h simulates g. Then there is a polynomial p such
that for every x in the domain of g there is some w of length at most p(|x|) with
g(x) = h(w). Let N be a nondeterministic polynomial-time Turing machine
that on input of any x in the domain of g guesses some w of length ≤ p(|x|) and
outputs w if h(w) = g(x) (if x is not in the domain of g, which can be decided
in polynomial time, N outputs λ). Clearly, N computes a function in NPMVt.
As by assumption sat is p-optimal, we get NPMVt ⊆c FP by Theorems 14
and 15. Hence there exists a function f ∈ FP with h(f(x)) = g(x) for every x
in the domain of g. Therefore h p-simulates g.

Now we prove the remaining implication 3 ⇒ 1. For this let g be an arbitrary
propositional proof system, and let N be an NPTM for SAT. From g and N
we define a propositional proof system h1 by

h1(π) =







































g(π′) if π = 0π′, and g(π′) is not of the form ⊤∨ ϕ

with some propositional formula ϕ

⊤ ∨ ϕ if π = 1〈ϕ, 1m〉 and m ≥ 2|ϕ|

⊤ ∨ ϕ if π = 1〈ϕ,w〉 and w is an accepting path of N(ϕ)

⊤ otherwise,

where ⊤ stands for a fixed tautology. Clearly, h1 is computable in polynomial
time and outputs only tautologies. Moreover, all tautologies appear in the
range of h1, according to the first two lines of its definition. Hence h1 is a
propositional proof system.

Similarly, we construct a propositional proof system h2 by replacing N by sat
in the third line of the definition of h1.

h2(π) =







































g(π′) if π = 0π′, and g(π′) is not of the form ⊤∨ ϕ

with some propositional formula ϕ

⊤ ∨ ϕ if π = 1〈ϕ, 1m〉 and m ≥ 2|ϕ|

⊤ ∨ ϕ if π = 1〈ϕ, α〉 and α is a satisfying assignment for ϕ

⊤ otherwise.

22

Apparently, h1 and h2 are equivalent, as they differ only in proofs for formulas
⊤∨ϕ with ϕ ∈ SAT, and these tautologies have polynomial-size proofs in both
h1 and h2 (these formulas also have exponential-size proofs in both systems).
Thus, assuming 3, h1 and h2 are p-equivalent. Let f ∈ FP compute a p-
simulation of h1 by h2, and let w be an accepting path of N on input ϕ. Then
f computes on input 1〈ϕ,w〉 a satisfying assignment α for ϕ (the complete
output of f is 1〈ϕ, α〉). Thus assertion 2 of Theorem 15 holds, which we have
already shown to be equivalent to the p-optimality of sat in Theorem 15. 2

The equivalence 2 ⇔ 3 of the preceding theorem states that any simulation of a
propositional proof system can be turned into a p-simulation if and only if any
simulation of an arbitrary proof system can be turned into a p-simulation. In
contrast, we cannot expect a similar equivalence with respect to the existence
of optimal and p-optimal proof systems since item 4 of the previous theorem is
probably stronger than the statement that every optimal propositional proof
system is p-optimal. The reason for this is that optimal propositional proof
systems are unlikely to exist (cf. [27]). Therefore, item 4 restricted to proposi-
tional proof systems would be trivially true, whereas item 4 is probably false,
as it is equivalent to Q and hence leads to unlikely collapse consequences.

In [34] it has been observed that given a p-optimal proof system h for a
language L, the problem to find an h-proof for y ∈ L is not much harder
than deciding L. More precisely, we can transform each deterministic Turing
machine M with L(M) = L to a deterministic Turing machine M ′ that on
input y ∈ L yields an h-proof of y in timeM ′(y) ≤ p(|y|+ timeM(y)), for some
polynomial p determined by M . Using this observation and the equivalences in
Theorems 14 and 15 we obtain the following result: sat is p-optimal if and only
if any deterministic Turing machine M that accepts SAT can be converted
to a deterministic Turing machine that computes a satisfying assignment for
any formula ϕ ∈ SAT and runs not much longer than M on input ϕ.

Theorem 17 The following statements are equivalent.

(1) sat is p-optimal.
(2) For any deterministic Turing machine M that accepts SAT in timeM(ϕ)

steps for any ϕ ∈ SAT, there is a deterministic Turing machine M ′ and
a polynomial p such that for every ϕ ∈ SAT, M ′ produces a satisfying
assignment of ϕ in timeM ′(ϕ) ≤ p(|ϕ|+timeM(ϕ)) steps.

PROOF. It is easy to see that 2 implies Statement 4 of Theorem 14: Com-
bine a polynomial-time machine that decides a P-subset S of SAT with a
standard machine that decides SAT to obtain a machine M for SAT whose
running time timeM(ϕ) is polynomial in |ϕ| for ϕ ∈ S. Assuming 2 there is

23

a machine M ′ that on input ϕ ∈ S produces a satisfying assignment of ϕ in
time polynomial in |ϕ|.

To show the implication 1 ⇒ 2 assume that sat is p-optimal. Let M be an
arbitrary deterministic Turing machine that decides SAT. We will construct a
suitable machine M ′ to show that 2 holds. Define a proof system hM for SAT

with hM(〈ϕ, 0s〉) = ϕ if M accepts ϕ in at most s steps. As sat is p-optimal
there is a function g ∈ FP with sat(g(x)) = hM(x) for each x in the domain of
hM . Now on input ϕ,M ′ simulates M . If M accepts after s steps, M ′ computes
the sat-proof g(〈ϕ, 0s〉) of ϕ and extracts the satisfying assignment. Otherwise
M ′ rejects. Clearly, on input ϕ ∈ SAT, M ′ needs time at most polynomial in
|ϕ|+timeM(ϕ). 2

Under the assumption that sat is not p-optimal it follows from Theorem 17
that there is a Turing machine M that decides SAT such that any machine M ′

that on input ϕ ∈ SAT has to produce a satisfying assignment for ϕ is much
slower on some SAT instances. In some sense this appears counter-intuitive as
probably all SAT algorithms used in practice produce a satisfying assignment
in case the input belongs to SAT. Of course it follows from Theorem 17 that
M is superior to any such M ′ on an infinite set of instances. As shown in the
following theorem M is even superior to any M ′ on a fixed non-sparse set of
SAT instances. The result is due to the paddability of SAT, and uses ideas
from the theory of complexity cores (cf. [48]).

Theorem 18 The following statements are equivalent.

(1) sat is not p-optimal.
(2) There is a P-subset S of SAT such that for any deterministic Turing

machine M ′ that on input ϕ ∈ S produces a satisfying assignment of ϕ
and for any polynomial p the set

{ϕ ∈ S | timeM ′(ϕ) > p(|ϕ|)}

is not sparse.
(3) There is a P-subset S of SAT, a non-sparse subset L of S, and a super-

polynomial function f such that for any deterministic Turing machine
M ′ that on input ϕ ∈ S produces a satisfying assignment of ϕ

timeM ′(ϕ) > f(|ϕ|)

for almost every ϕ ∈ L.
(4) There is a machine M accepting SAT, a non-sparse subset S of SAT,

and a super-polynomial function f such that for any deterministic Turing
machine M ′ that on input ϕ ∈ SAT produces a satisfying assignment of
ϕ

timeM ′(ϕ) > f(|ϕ| + timeM(ϕ))

24

for almost every ϕ ∈ S.

PROOF. Let pad: Σ∗×Σ∗ → Σ∗ be an injective function that is FP-invertible
with the following further properties

(1) pad(ϕ,w) ∈ SAT if ϕ ∈ SAT.
(2) from a sat-proof for ψ = pad(ϕ,w) one can easily compute a satisfying

assignment for ϕ.
(3) |pad(ϕ,w)| = |ϕ| + c(|w| + 1) for some constant c.

Notice that there is such a padding function.

To see that item 1 implies item 2, assume that the contrary of 2 holds. We will
see that this implies Statement 4 in Theorem 14 which completes the proof of
this implication. Let S be an arbitrary P-subset of SAT and let

T = {pad(ϕ,w) | w ∈ Σ∗, ϕ ∈ S} .

As pad is invertible we also have T ∈ P. Assuming the contrary of 2 there is
a polynomial p and a deterministic Turing machine M ′ that on input ϕ ∈ T
produces a satisfying assignment of ϕ such that the set

Q = {ϕ ∈ T | timeM ′(ϕ) > p(|ϕ|)}

is sparse. Let q be a polynomial bound for the density of Q (i. e., ‖Q∩Σn‖ ≤
q(n) for each n).

Now a function g ∈ FP that on input ϕ ∈ S yields a satisfying assignment for ϕ
can be computed as follows. Let q′(n) denote the polynomial q(n+c(n+1))+1.
Let ϕ ∈ S be an input of length n. First assume that n is sufficient large,
i.e., q′(n) ≤ 2n. Let w1, . . ., wq′(n) denote the q′(n) lexicographically first
strings of Σn. Now simulate ‘in parallel’ the computations of M ′ on input of
pad(ϕ,w1), . . ., pad(ϕ,wq′(n)), i. e. perform a simulation in stages, in stage i
for each 1 ≤ j ≤ q′(n) simulate the ith step of the computation of M ′ on
pad(ϕ,wj); notice that each stage i can be completed in time (q′(n) · i)2. Stop
the simulation as soon as the first of those computations produces a satisfying
assignment, say e. g. for pad(ϕ,wj). From this assignment obtain a satisfying
assignment for ϕ. For the finitely many input lengths n that do not satisfy
q′(n) ≤ 2n determine a satisfying assignment by a table look-up.

This construction guarantees that for some polynomial r and every ϕ ∈ S we
obtain a satisfying assignment of ϕ after at most

r(n+ min{timeM ′(pad(ϕ,wj)) | 1 ≤ j ≤ q′(n)})

steps. Observe further that the set {pad(ϕ,wj) | 1 ≤ j ≤ q′(n)} ⊆ Σn+c(n+1)

25

is of cardinality q′(n) = q(n+ c(n+1))+1 and thus cannot be fully contained
in Q. Thus by assumption for some wj M

′ produces a satisfying assignment of
pad(ϕ,wj) in time p(|pad(ϕ,wj))|). This shows that the time needed for the
above computation is bounded by a polynomial.

For the implication 2 ⇒ 3 let S be a set such that 2 is fulfilled. A suitable
subset L ⊆ S is obtained by the following construction. Let M ′

1,M
′
2, . . . be

a (non effective) enumeration of the deterministic Turing machines that on
input ϕ ∈ S produce a satisfying assignment of ϕ.

Set n0 = 0, and for k > 0 let nk be the smallest number n > nk−1 such that
the set

Sn
k := {ϕ ∈ S ∩ Σn | timeM ′

i
(ϕ) > nk + k for all i ≤ k}

has cardinality greater than nk + k.

Observe that for each k there is such a number nk. If this were not the case
for some k, then for the least such k the set

T = {ϕ ∈ S | timeM ′

i
(ϕ) > |ϕ|k + k for all i ≤ k}

would be sparse (namely for each n > nk−1 we had ‖T ∩ Σn‖ ≤ nk + k).
However, this contradicts 2 if we let M ′ be a deterministic Turing machine
that in parallel simulates the machines M ′

1, . . . ,M
′
k (notice that this parallel

simulation is even possible without overhead since k is constant).

Now let L =
⋃

k>0 S
nk

k , and let f(n) = nk(n) + k(n) where k(n) = max{k |
nk ≤ n}.

Clearly f is super-polynomial, and L is non-sparse. To see that f and L also
fulfill the last condition in 3 let M ′

i be a deterministic Turing machine that on
input ϕ ∈ S produces a satisfying assignment of ϕ. By the construction, we
have for each k ≥ i, and for each ϕ ∈ Snk

k

timeM ′

i
(ϕ) > |ϕ|k + k = f(|ϕ|).

Thus for each ϕ ∈ L with |ϕ| ≥ ni, timeM ′

i
(ϕ) > f(|ϕ|).

Clearly 3 implies 4 by an argument similar to the one given in the proof of
implication 2 ⇒ 1 in Theorem 17. The implication 4 ⇒ 1 follows directly from
Theorem 17. 2

26

6 On the Existence of P-optimal Proof Systems

In Theorem 16 it is observed that sat is p-optimal if and only if every optimal
proof system is p-optimal. Although the assumption of the mere existence of
a p-optimal proof system for SAT is presumably weaker than the assumption
that sat is p-optimal, it is still equivalent to a quite similar statement, namely
that any set with an optimal proof system has a p-optimal proof system. For
the proof of this result we use the following observation from [27].

Lemma 19 ([27]) If L has a (p-)optimal proof system, and T ≤p
m L, then T

has a (p-)optimal proof system (respectively).

Using this lemma we can prove the following ‘existentially quantified’ version
of Theorem 16 from the previous section.

Theorem 20 The following statements are equivalent.

(1) SAT has a p-optimal proof system.
(2) Any language L that has an optimal proof system also has a p-optimal

proof system.

PROOF. Clearly, item 2 implies item 1, as SAT has an optimal proof system.
To see the converse implication assume that SAT has a p-optimal proof sys-
tem, and let L be an arbitrary nonempty language with an optimal proof sys-
tem. Let TL (cf. [27]) be the following language consisting of tuples 〈M,x, 0s〉
where M is a deterministic Turing transducer, s ≥ 0, and x ∈ Σ∗.

TL = {〈M,x, 0s〉 | timeM(x) > s or M(x) ∈ L}.

Notice that TL is many-one reducible to L. Hence, the assumption that there
is an optimal proof system for L implies that TL has an optimal proof system,
say h. Let

Sh = {〈〈M,x, 0s〉, 0l〉 | h ⊢≤l 〈M,x, 0s〉}.

Clearly Sh ∈ NP. Therefore by assumption there is a p-optimal proof system
g for Sh. Let now f be the following proof system.

f(w) =















y if g(w) = 〈〈M,x, 0s〉, 0l〉,

and on input x, M outputs y in ≤ s steps,

undef. otherwise.

First notice that y ∈ L if f(w) = y. This is due to the fact that g(w) =
〈〈M,x, 0s〉, 0l〉 implies 〈〈M,x, 0s〉, 0l〉 ∈ Sh which in turn implies 〈M,x, 0s〉 ∈
TL. On the other hand, each y ∈ L is easily seen to have an f -proof, hence f
is a proof system for L.

27

We now show that f p-simulates every proof system f ′ for L. Assume that
f ′ is computed by the transducer Mf ′ in polynomial time p(n). Observe that
〈Mf ′ , x, 0p(|x|)〉 ∈ TL for any x ∈ Σ∗. Hence, one may define a proof system
for TL such that for any x the tuple 〈Mf ′ , x, 0p(|x|)〉 has the short proof 1x.
Consequently, due to the optimality of h, there is a polynomial q such that
〈Mf ′ , x, 0p(|x|)〉 has an h-proof of size ≤ q(|x|). Now 〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉 ∈
Sh for any x, and one may define a proof system g′ for Sh with g′(1x) =
〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉 for any x. As g is p-optimal, g p-simulates g′, i.e., there
is a function t ∈ FP such that g(t(1x)) = g′(1x) = 〈〈Mf ′ , x, 0p(|x|)〉, 0q(|x|)〉.
Observe now that f(t(1x)) = f ′(x) for any x. Hence f p-simulates f ′. 2

As shown in [27], the assumption that SAT and TAUT both have p-optimal
proof systems implies that NP∩coNP has a many-one complete set. In fact, due
to Theorem 20 it suffices to assume that SAT has a p-optimal proof system
and TAUT only has an optimal proof system. Together with Proposition 1
we obtain:

Corollary 21 If SAT has a p-optimal and TAUT has an optimal proof sys-
tem, then NP∩coNP has a many-one complete set, and NPSVt has a many-one
complete function.

Next we show that a p-optimal proof system for SAT implies a complete
function for the class NPMVt. The proof uses ideas from [27].

Theorem 22 If SAT has a p-optimal proof system, then NPMVt has a many-
one complete function.

PROOF. Consider the NP-set L = {〈N, x, 0s〉 | there is an accepting path
of N on input x of length ≤ s}. If SAT has a p-optimal proof system, then
due to Lemma 19 there is a p-optimal proof system h for L. We show that the
following function g is complete for NPMVt.

If the input is a tuple u = 〈N, x, 0s, w〉 with the property that h(w) =
〈N, x, 0s〉, then set-g(u) = {y | y is an output of N on an accepting path of
length ≤ s on input x}. Otherwise set-g(u) = {λ}.

It is clear that g is in NPMVt. To see that g is hard for NPMVt let f ∈ NPMVt

be computed by a nondeterministic Turing machine Nf with a polynomial
time-bound p. It is easy to see that there is a proof system h′ for L with
h′(1x) = 〈Nf , x, 0

p(|x|)〉 for any x. As h p-simulates h′ there is a function t ∈ FP

such that h(t(1x)) = 〈Nf , x, 0
p(|x|)〉 for any x. So, x 7→ 〈Nf , x, 0

p(|x|), t(1x)〉 is
a many-one reduction from f to g. 2

28

By Theorem 7 we obtain:

Corollary 23 If SAT has a p-optimal proof system, then there exists a
strongly many-one complete disjoint coNP-pair.

In the following table we collect some of the implications proven in this section.

Assumption Consequence

p-optimal proof system for SAT and complete set for NP ∩ coNP and

optimal proof system for TAUT complete function for NPSVt

optimal proof system for TAUT complete function for NPkV, k ≥ 1

p-optimal proof system for SAT
complete function for NPMVt and

complete disjoint coNP-pair

7 Conclusion

We have shown that the assumption that certain proof systems are (p-)optimal
can be used to derive collapse results. Also we presented some relations be-
tween completeness assumptions for different classes. It would be interesting
to know whether these observations can be extended to further proof systems
and promise classes.

Acknowledgements

We thank Sebastian Müller for detailed suggestions on how to improve the
presentation of the paper.

References

[1] N. Alon and R. B. Boppana. The monotone circuit complexity of boolean
functions. Combinatorica, 7:1–22, 1987.

[2] J. L. Balcázar, J. D́ıaz, and J. Gabarró. Structural Complexity I.
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin
Heidelberg, second edition, 1995.

[3] O. Beyersdorff. Tuples of disjoint NP-sets. Theory of Computing Systems. To
appear.

29

[4] O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer

Science, 377:93–109, 2007.

[5] O. Beyersdorff. The deduction theorem for strong propositional proof
systems. In Proc. 27th Conference on Foundations of Software Technology

and Theoretical Computer Science, volume 4855 of Lecture Notes in Computer

Science, pages 241–252. Springer-Verlag, Berlin Heidelberg, 2007.

[6] M. L. Bonet, C. Domingo, R. Gavaldà, A. Maciel, and T. Pitassi. Non-
automatizability of bounded-depth Frege proofs. Computational Complexity,
13(1-2):47–68, 2004.

[7] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs
with small coefficients. The Journal of Symbolic Logic, 62(3):708–728, 1997.

[8] M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization for
Frege systems. SIAM Journal on Computing, 29(6):1939–1967, 2000.

[9] R. Book, T. Long, and A. L. Selman. Quantitative relativizations of complexity
classes. SIAM Journal on Computing, 13:461–487, 1984.

[10] H. Buhrman, L. Fortnow, M. Koucký, J. D. Rogers, and N. K. Vereshchagin.
Inverting onto functions and polynomial hierarchy. In Proc. 2nd International

Computer Science Symposium in Russia, pages 92–103, 2007.

[11] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44:36–50, 1979.

[12] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic, 22:269–285, 1957.

[13] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation
classes. SIAM Journal on Computing, 28(5):1759–1782, 1999.

[14] S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions.
Information and Computation, 186:90–103, 2003.

[15] L. Fortnow and J. Rogers. Separability and one-way functions. Computational

Complexity, 11:137–157, 2002.

[16] C. Glaßer, A. L. Selman, and S. Sengupta. Reductions between disjoint NP-
pairs. Information and Computation, 200(2):247–267, 2005.

[17] C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM

Journal on Computing, 33(6):1369–1416, 2004.

[18] C. Glaßer, A. L. Selman, and L. Zhang. Survey of disjoint NP-pairs and relations
to propositional proof systems. In O. Goldreich, A. L. Rosenberg, and A. L.
Selman, editors, Essays in Theoretical Computer Science in Memory of Shimon

Even, pages 241–253. Springer-Verlag, Berlin Heidelberg, 2006.

[19] C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of
propositional proof systems. Theoretical Computer Science, 370:60–73, 2007.

30

[20] C. Glaßer, A. L. Selman, and L. Zhang. The informational content of canonical
disjoint NP-pairs. Technical Report TR07-018, Electronic Colloquium on
Computational Complexity, 2007.

[21] J. Grollmann and A. L. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

[22] A. Große and H. Hempel. On functions and relations. In Proc. 4th International

Conference on Discrete Mathematics and Theoretical Computer Science, pages
181–192, 2003.

[23] L. A. Hemaspaandra, A. V. Naik, M. Ogihara, and A. L. Selman. Computing
solutions uniquely collapses the polynomial hierarchy. SIAM Journal on

Computing, 25(4):697–708, 1996.

[24] R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proc.

3rd Structure in Complexity Theory Conference, pages 29–38, 1988.

[25] K.-I. Ko. On some natural complete operators. Theoretical Computer Science,
37:1–30, 1985.

[26] J. Köbler and J. Messner. Is the standard proof system for SAT P-optimal? In
Proc. 20th Conference on Foundations of Software Technology and Theoretical

Computer Science, volume 1974 of Lecture Notes in Computer Science, pages
361–372. Springer-Verlag, Berlin Heidelberg, 2000.

[27] J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete
sets for promise classes. Information and Computation, 184:71–92, 2003.

[28] S. Kosub, H. Schmitz, and H. Vollmer. Uniform characterizations of complexity
classes of functions. Int. J. Found. Comput. Sci., 11(4):525–551, 2000.

[29] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory,
volume 60 of Encyclopedia of Mathematics and Its Applications. Cambridge
University Press, Cambridge, 1995.

[30] J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems and
independence results for bounded arithmetic. The Journal of Symbolic Logic,
62(2):457–486, 1997.

[31] J. Kraj́ıček and P. Pudlák. Propositional proof systems, the consistency of first
order theories and the complexity of computations. The Journal of Symbolic

Logic, 54:1963–1079, 1989.

[32] J. Kraj́ıček and P. Pudlák. Some consequences of cryptographical conjectures
for S1

2 and EF . Information and Computation, 140(1):82–94, 1998.

[33] T. J. Long. On γ-reducibility versus polynomial time many-one reducibility.
Theoretical Computer Science, 14:91–101, 1981.

[34] J. Messner. On optimal algorithms and optimal proof systems. In Symposium

on Theoretical Aspects of Computer Science, pages 541–550, 1999.

31

[35] D. Mundici. Tautologies with a unique Craig interpolant, uniform vs.
nonuniform complexity. Annals of Pure and Applied Logic, 27:265–273, 1984.

[36] A. Naik, J. Rogers, J. Royer, and A. L. Selman. A hierarchy based on output
multiplicity. Theoretical Computer Science, 207(1):131–157, 1998.

[37] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[38] P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone
computations. The Journal of Symbolic Logic, 62:981–998, 1997.

[39] P. Pudlák. The lengths of proofs. In S. R. Buss, editor, Handbook of Proof

Theory, pages 547–637. Elsevier, Amsterdam, 1998.

[40] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical

Computer Science, 295:323–339, 2003.

[41] P. Pudlák and J. Sgall. Algebraic models of computation and interpolation
for algebraic proof systems. In P. W. Beame and S. R. Buss, editors, Proof

Complexity and Feasible Arithmetic, volume 39 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, pages 279–296. American
Mathematical Society, 1998.

[42] A. A. Razborov. Lower bounds on the monotone complexity of boolean
functions. Doklady Akademii Nauk SSSR, 282:1033–1037, 1985. English
translation in: Soviet Math. Doklady, 31, pp. 354–357.

[43] A. A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006,
Electronic Colloquium on Computational Complexity, 1994.

[44] Z. Sadowski. On an optimal quantified propositional proof system and a
complete language for NP ∩ co-NP. In Proc. 11th International Symposium on

Fundamentals of Computing Theory, volume 1279 of Lecture Notes in Computer

Science, pages 423–428. Springer-Verlag, Berlin Heidelberg, 1997.

[45] Z. Sadowski. On an optimal deterministic algorithm for SAT. In Workshop on

Computer Science Logic, pages 179–187, 1998.

[46] Z. Sadowski. On an optimal propositional proof system and the structure of
easy subsets of TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

[47] Z. Sadowski. Optimal proof systems, optimal acceptors and recursive
presentability. Fundamenta Informaticae, 79(1–2):169–185, 2007.

[48] U. Schöning. Complexity and Structure, volume 211 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin Heidelberg, 1986.

[49] U. Schöning and J. Torán. A note on the size of Craig interpolants. Unpublished
manuscript, 1996.

[50] A. L. Selman. A taxonomy of complexity classes of functions. Journal of

Computer and System Sciences, 1994.

32

[51] A. L. Selman. Much ado about functions. In IEEE Conference on

Computational Complexity, pages 198–212, 1996.

[52] L. Valiant. Relative complexity of checking and evaluation. Information

Processing Letters, 5(1):20–23, 1976.

33

