
1 

Describing Differences between Databases 
Heiko Müller 

Humboldt-Universität zu Berlin 
Unter den Linden 6 

10099 Berlin, Germany 
 

hmueller@informatik.hu-berlin.de 

Johann-Christoph Freytag 
Humboldt-Universität zu Berlin 

Unter den Linden 6 
10099 Berlin, Germany 

 

freytag@informatik.hu-berlin.de 

Ulf Leser 
Humboldt-Universität zu Berlin 

Unter den Linden 6 
10099 Berlin, Germany 

 

leser@informatik.hu-berlin.de 

 
 

ABSTRACT 
We study the novel problem of efficiently computing the update 
distance for a pair of relational databases. In analogy to the edit 
distance of strings, we define the update distance of two databases 
as the minimal number of insert, delete and modification opera-
tions necessary to transform one database into the other. In con-
trast to related approaches we consider set-oriented instead of 
one-tuple-at-a-time operations. We show how this distance can be 
computed by traversing a search space of database instances con-
nected by update operations. This insight leads to a family of 
algorithms that compute the update distance or approximations of 
it. In our experiments we observed that a simple heuristic per-
forms surprisingly well in most considered cases. 

Our motivation for studying distance measures for databases 
stems from the field of scientific databases. There, replicas of a 
single database are often maintained at different sites, which typi-
cally leads to (accidental or planned) divergence of their content. 
To re-create a consistent view, these differences must be resolved. 
Such an effort requires an understanding of the process that pro-
duced them. We found that minimal update sequences of set-
oriented update operations are a proper and concise representation 
of systematic errors, thus giving valuable clues to domain experts 
responsible for conflict resolution. 

1. INTRODUCTION 
Today, many scientific databases overlap in their sets of repre-
sented objects due to redundant data generation or data replica-
tion. For instance, in life science research it is common practice to 
distribute the same set of samples, such as clones, proteins, or 
patient’s blood, to different laboratories to enhance the reliability 
of analysis results. Whenever overlapping data is generated or 
administered at different sites, there is a high probability of the 
occurrence of differences. These differences do not need to be 
accidental, but could be the result of different data production and 
processing workflows. For example, the three protein structure 
databases OpenMMS [5], MSD [6], and Columba [19] are all 
copies of the Protein Data Bank PDB [4]. However, due to differ-
ent cleansing strategies, these copies vary substantially. Thus, a 

biologist is often faced with conflicting copies of the same set of 
real world objects and with the problem of solving these conflicts 
to produce a consistent view of the data. 

Many inconsistencies are highly systematic caused by the usage 
of different controlled vocabularies, different measurement units, 
different abbreviations, or by consistent bias during experimental 
analysis. Learning about the reasons that led to inconsistencies is 
valuable information when assessing the quality of and reasons 
for contradicting values to resolve conflicts. Unfortunately, in 
most cases only the final databases are accessible without any 
additional knowledge about the data generation or manipulation 
processes. Assuming that conflicts do not occur randomly, but 
follow specific (but unknown) regularities, patterns of the form 
“IF condition THEN conflict” provide valuable knowledge to 
facilitate their understanding. A domain expert could evaluate 
these patterns to assess the correctness of conflicting values and 
therefore for conflict resolution. In [16] we proposed an algorithm 
for finding such patterns using association rule mining. 

In this paper, we develop a different approach for describing 
“regular differences” among contradicting databases: The detec-
tion of minimal update sequences that transform one database into 
the other. We consider SQL-like update operations because these 
are the fundamental operations for the manipulation of data stored 
in relational databases. Given a pair of contradicting databases, 
each operation may (i) directly represent an update operation that 
has been applied to one of the databases if they both evolved from 
a common ancestor (as in the PDB example), or (ii) describe sys-
tematic differences between the databases. Consider the example 
in Figure 1 showing the fictitious results of two groups investigat-
ing the same set of owls (identified by their IDs). For transform-
ing DBOwl into OWLBase Latin species names must be replaced 
with common names. We also need to modify the color for all 
snowy owls, as DBOwl uses a finer grained distinction in colors. 
Therefore, regardless of how these databases were generated, 
there are update operations that allow an inference on possible 
reasons for the existing conflicts. 

DBOwl OWLBase 
ID Species Color  ID Species Color 

1 Bubo Bubo brown  1 Eagle Owl brown 
2 Ath. Noctua brown  2 Little Owl brown 
3 N. Scandica white & gray  3 Snowy Owl white 
4 N. Scandica snow-white  4 Snowy Owl white 

 

Figure 1: Contradicting databases resulting from different 
groups investigating the same set of objects. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee. 
Conference’06, Month 1–2, 2006, City, State, Country. 
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00. 
 



2 

We propose to use minimal sequences of update operations that 
turn one database into the other. We call this number the update 
distance between two databases. Each sequence of operations as 
long as the update distance is one of the simplest possible expla-
nations for the observed differences. Following the “Occam’s 
Razor” principle, we conclude that the simplest explanations are 
also the most likely. Minimal update sequences give valuable 
clues on what has happened to a database to make it different 
from its original state. Therefore, the update distance is a seman-
tic distance measure, as it is inherently process-oriented in con-
trast to purely syntactic measures such as counting different val-
ues. 

The update distance is defined analogous to the edit distance for 
strings [14], i.e., the minimal number of edit operations that trans-
form one string into another. In contrast to editing strings, set-
oriented database updates strongly influence each other thus giv-
ing importance to the order of operations. To give an idea of the 
complexity of the problem, consider the two databases of Figure 
2. A first approach for transforming r1 into r2 solves each conflict 
individually (Figure 2a). The five resulting operations could be 
executed in any order. A greedy approach, solving as many con-
flicts as possible with each operation, would result in a total of 
four update operations (Figure 2b). However, the minimal update 
sequence for transforming r1 into r2 has three update operations 
(Figure 2c). Intuitively, it is often necessary to use operations that 
in first place introduce new conflicts, because these conflicts can 
be used as discriminating conditions in later update operations. 
The first operation in Figure 2c temporarily increases the total 
number of conflicts, but this is compensated in later operations. 
Clearly, the minimal update sequence can be determined by enu-
merating update sequences of increasing length until one se-
quence is found that implements all necessary changes. In this 
example, this would generate 294,998 intermediate states, as we 
show in Section 4.1. 

r1    r2   
A1 A2 A3  A1 A2 A3 

1 1 1  1 1 1 
2 1 1  2 1 1 
3 1 1  3 1 1 
4 2 1  4 2 0 
5 3 1  5 3 0 
6 4 1  6 4 0 
7 5 1  7 5 0 
8 6 1  8 6 0 
9 1 0  9 1 0 
10 1 0  10 1 0 

 
a) UPDATE r1 SET A3 = 0 WHERE A1 = 4 
 UPDATE r1 SET A3 = 0 WHERE A1 = 5 
 UPDATE r1 SET A3 = 0 WHERE A1 = 6 
 UPDATE r1 SET A3 = 0 WHERE A1 = 7 
 UPDATE r1 SET A3 = 0 WHERE A1 = 8 
 
b) UPDATE r1 SET A3 = 0 
 UPDATE r1 SET A3 = 1 WHERE A1 = 1 
 UPDATE r1 SET A3 = 1 WHERE A1 = 2 
 UPDATE r1 SET A3 = 1 WHERE A1 = 3 
 
c) UPDATE r1 SET A3 = 2 WHERE A2 = 1 AND A3 = 1 
 UPDATE r1 SET A3 = 0 WHERE A3 = 1 
 UPDATE r1 SET A3 = 1 WHERE A3 = 2 

Figure 2: A pair of contradicting databases with three differ-
ent update sequences. 

In this paper, we present exact and approximate algorithms for 
computing the update distance and for finding minimal sequences 
of update operations for a pair of databases. Even though we con-
sider only a restricted form of updates (namely those where at-
tribute values are set to constants), our algorithms for computing 
the exact solution require exponential space and time. However, 
we also present greedy strategies that lead to good results in all 
examples we considered. The rest of this paper is structured as 
follows: In the next section we discuss related work. Section 3 
gives our definition of update distance and derives an upper and 
lower bound, which are important for optimization. In Section 4, 
algorithms for finding minimal sequences are presented. Section 5 
discusses fast approximate algorithms. In Section 6 we present 
experimental results, and Section 7 concludes our paper. There is 
also a longer version of this paper available for further de-
tails [17]. 

2. RELATED WORK 
To the best of our knowledge the problem of finding minimal 
sequences of set-oriented update operations for relational data-
bases has not been considered before. The main areas of related 
work are: definitions of distance for databases, representing dif-
ferences of databases, and finding patterns in conflicting data. 

There are other definitions of database distance based on the 
modification of databases. One comes from the area of computing 
consistent query answers for inconsistent databases [1]. Here, a 
repair for a database r violating a set of integrity constraints IC is 
defined as a database r’ that satisfies IC and has minimal distance 
to r. In this context, the distance is defined as the number of tuples 
that are contained in one database, but not in the other. Thus, the 
distance definition is very different from ours, as we need to find 
the actual update sequences for transforming one database into the 
other. Bohannon et al. presented an algorithm for finding a repair 
that is the cheapest under a cost model for modifications and up-
dates, also leading to a quite different notion of distance [7]. 
While their approach needs to consider the order of their opera-
tions they do not consider set-oriented update operations. 

The latter is also true for other approaches that represent differ-
ences between databases. Chawathe et al. and Labioet et al. use 
sequences of insert, delete, and update operations to represent 
differences between database snapshots [13] or hierarchically 
structured data [8]. Both approaches consider only operations that 
affect a single tuple. Since databases are manipulated with (set-
oriented) SQL commands, we consider our problem as more natu-
ral than a tuple-at-a-time approach. Several other applications use 
so called “update deltas” to represent differences between data-
bases. In database versioning they are used as memory effective 
representation of different database versions [10]. However, ver-
sioning collects the actual operations during execution instead of 
having to rediscover them from two given versions. 

Other methods for finding patterns in contradictory data to sup-
port conflict resolution are presented in [16] and [11]. In [11], the 
authors distinguish between context dependent and context inde-
pendent conflicts. Context dependent conflicts represent system-
atic disparities that are consequences of conflicting assumptions 
or interpretations. Context independent conflicts are idiosyncratic 
in nature and are consequences of random events, human errors, 
or imperfect instrumentation. Accordingly, we consider only con-
text dependent conflicts. However, in contrast to [11], we do not 



3 

consider complex data conversion rules for conflict resolution. 
Instead we always use one of the conflicting values as solution. 
We consider the discovery of conflict conversion rules as future 
work in Section 7. However, we do consider the conflict causing 
context to be identifiable as data patterns. In [16], we use a fre-
quent itemset mining algorithm to find conflicts frequently occur-
ring together with certain patterns in the data. These patterns can 
only provide a static view on the differences and do not take into 
account possible dependencies between conflicts. In the approach 
presented here, such dependencies are implicitly captured by the 
order of update operations within a (minimal) update sequence. 

A prerequisite of our approach is the ability to identify identical 
real-world objects in different databases. In general, this is a diffi-
cult problem with a long history of research [12, 15, 22] that we 
consider as orthogonal to our problem. Throughout this paper, we 
assume the existence of a source-spanning object identifier. These 
identifiers may have been assigned to tuples by a preceding dupli-
cate detection step. 

3. UPDATE DISTANCE 
In this section we formally define the update distance, i.e., the 
minimal update sequence, between two relational databases. Each 
database consists only of a single relation r, following the same 
schema R(A1, …, An). The domain of each attribute A is denoted 
by dom(A). Without loss of generality we assume dom(A) = ℕ for 
all A ∈ R and that A1 being the primary key of each r. We will 
use ID as a synonym for A1. Tuples are denoted by t and attribute 
values of a tuple are denoted by t[A]. We use t{j} to refer to the 
tuple with primary key value j, j = 1, …, m. As stated in the pre-
vious section, we do not consider the problem of assigning unique 
key values to tuples that allow the association of tuples represent-
ing the same real-world objects in different databases. 
In the following, we introduce the necessary concepts to define 
update sequences. Section 3.1 defines matches and conflicts be-
tween two databases. Section 3.2 introduces the types of basic 
operations we assume as possible updates and assembles them 
into update sequences. These types naturally lead to the notion of 
shortest update sequences. In Section 3.3, we define a first upper 
and lower bound for update distances which we use later for prun-
ing. 
Our basic update operations essentially are SQL updates that set 
attributes selected by conjunctions of equality patterns to con-
stants. Even with this simple model, computing minimal update 
distances is not trivial, as we shall see in Section 4. Thus, we 
leave extensions to databases consisting of multiple relations and 
to more powerful updates operations for future work.  

3.1 Contradicting Databases 
A pair of tuples from databases r1 and r2 is called a matching pair 
if they posses identical primary key values. The set of all match-
ing pairs between databases (i.e., relations) r1 and r2 is denoted by 
M(r1, r2). Let m = (t1, t2) be a matching pair from M(r1, r2). The 
different tuples from m are denoted by tup1(m) and tup2(m). The 
equal primary key value of both tuples is denoted by id(m). A pair 
of databases r1 and r2 is called overlapping if M(r1, r2) ≠ ∅. Note 
that we are only interested in finding regularities between the 
overlapping parts of databases. We do not consider finding regu-
larities within the sets of tuples missing in either of the databases. 
Therefore, we assume |r1| = |r2| = |M(r1, r2)|. 

Within a matching pair several conflicts may occur. We represent 
each conflict by the matching pair m and the attribute A in which 
the conflict occurs. 

DEFINITION 1 (SET OF CONFLICTS): The set of conflicts between a 
pair of databases r1 and r2, denoted by C(r1, r2), is the set of all 
tuples (m, A) where a conflict in attribute A of pair m exists, i.e.,  

C(r1, r2) = {(m, A) | (m, A) ∈ M(r1, r2) × R ∧ 
tup1(m)[A] ≠ tup2(m)[A]}♦ 

A pair of databases r1 and r2 is called contradicting, if there exists 
at least one conflict between them, i.e., C(r1, r2) ≠ ∅. As an ex-
ample, consider the contradicting databases of Figure 2. The set 
of matching pairs contains ten elements, and there are five con-
flicts, i.e., C(r1, r2) = {((t1{4}, t2{4}), A3), ((t1{5}, t2{5}), A3), 
((t1{6}, t2{6}), A3), ((t1{7}, t2{7}), A3), ((t1{8}, t2{8}), A3)}. 

3.2 Update Sequences 
Update operations are used to modify existing databases. They 
can be considered as functions that map databases onto each 
other. Let ℜ(R) denote the infinite set of databases following 
schema R that satisfy the primary key constraint. An update op-
eration is a mapping ψ: ℜ(R) → ℜ(R). For relational databases 
there are three types of basic update operations, namely insert, 
delete, and modify [20]. For space limitations, we consider only 
modify operations and not insert and delete operations for this 
paper. This restriction also has a practical reason: Consider an 
object being stored (with conflicts) in two databases r1 and r2 as 
tuples t1 and t2, respectively. In this case, we want to find the 
modifications that are necessary to unify both descriptions. We 
are not interested in an update sequence that, for transforming r1 
into r2, first deletes t1 and then inserts t2 with new values. How-
ever, our algorithms can be extended to include insert and delete 
operations, as discussed in [17]. 

Before defining sequences of update operations, we first fix the 
expressiveness of our basic update operations.  

DEFINITION 2 (TERM): A term τ over schema R is a pair (A, x), 
with attribute A ∈ R and value x ∈ dom(A). We define 
attr(τ) = A and value(τ) = x.♦ 

A term can be interpreted as a Boolean-function on tuples. A tu-
ple t satisfies τ iff t[attr(τ)] = value(τ). By τ(r) we denote the set 
of tuples from r satisfying τ. We say that the tuples in τ(r) are 
selected by τ. The number of tuples selected by τ is called the 
support of τ in r. Terms are combined to patterns selecting the set 
of tuples affected by an update. 

DEFINITION 3 (PATTERN): A pattern ρ over schema R is a set of 
terms over R, where all terms are defined over different attributes, 
i.e., 

∀ τi, τj ∈ ρ : attr(τi) = attr(τj) ⇔ τi = τj.♦ 

A tuple t satisfies ρ if it satisfies each term within ρ. A pattern is 
therefore a conjunction of terms. The empty pattern is satisfied by 
each tuple of a database. Analogous to the definitions above, ρ(r) 
denotes the set of tuples selected by ρ. A pattern describes which 
tuples should be changed by a modification operation. 

DEFINITION 4 (MODIFICATION OPERATION): A modification opera-
tion ψµ = (τ, ρ) is a term-pattern pair with attr(τ) ∈ R / ID.♦ 



4 

The definition of a modification operation (i) excludes the pri-
mary key attribute from being modified, and (ii) allows only one 
attribute to be modified. When applied to a database r, a modifica-
tion operation modifies all tuples that satisfy ρ. For these tuples, 
the value for attribute attr(τ) is set to value(τ). Note, that there 
does not necessarily exist a reverse operation for each modifica-
tion operation. For example, the operation ψ = ((A2, 7), {(A3, 1)}) 
sets the value for attribute A2 to 7 for the tuples t{1}, …, t{8}, 
when applied to database r1 of Figure 2. We need at least six 
modification operations to undo this single operation. 

DEFINITION 5 (UPDATE SEQUENCE): A list of update operations Ψ = 
<ψ1, …, ψk> is called an update sequence. When applied to data-
base r1, an update sequence generates (or derives) database Ψ(r1) 
by applying the update operations in the given order: 
Ψ(r1) = ψk(…ψ2(ψ1(r1))…).♦ 

Obviously, the order of operations within an update sequence is 
important. For example, update sequences Ψ1 = <ψµ1, ψµ2> and 
Ψ2 = <ψµ2, ψµ1> with ψµ1 = ((A2, 7), {(A3, 1)}) and ψµ2 = ((A3, 7), 
{(A3, 1)}) have different results when applied to database r1 of 
Figure 2. The first sequence results in a database, where the value 
for attribute A2 and A3 is 7 in tuples t{1}, …, t{8}. In the second 
sequence the operation ψµ1 has no effect, as the pattern is no 
longer satisfied by any of the tuples after applying operation ψµ2. 

We call Ψ a transformer for r1 and r2, iff Ψ(r1) = r2. The number 
of update operations within a sequence is called its length and is 
denoted by |Ψ|. Figure 2 lists three update sequences (a-c) of dif-
ferent length, which are transformers for the databases shown. 

DEFINITION 6 (MINIMAL TRANSFORMER): For a pair of databases r1 
and r2, an update sequence Ψ with Ψ(r1) = r2 is called a minimal 
transformer for r1 and r2 if there does not exist another trans-
former Ψ’ with Ψ’(r1) = r2 and |Ψ’| < |Ψ|.♦ 

Clearly, minimal transformers for a pair of databases are not 
unique. The set of all minimal transformers for r1 and r2 is de-
noted as T(r1, r2). 

DEFINITION 7 (UPDATE DISTANCE): For a pair of databases r1 and 
r2, the update distance ∆U(r1, r2) is defined as the length of any 
minimal transformer for r1 and r2.♦ 

Note that the update distance is not a metric as it is not a symmet-
ric relation. Based on our definitions, we are ready to define the 
main problem considered in this paper. 

PROBLEM STATEMENT: Given a pair of databases r1 and r2, find all 
minimal transformers from r1 to r2. 

3.3 Upper and Lower Bounds 
This subsection defines upper and lower bounds for the update 
distance. They are later utilized as pruning criteria. 

DEFINITION 8 (RESOLUTION DISTANCE): For a pair of databases r1 
and r2, the resolution distance ∆R(r1, r2) is defined as the number 
of conflicts between them, i.e., ∆R(r1, r2) = |C(r1, r2)|.♦ 

Transforming a database r1 into a database r2 requires the conflicts 
between them to be solved by replacing conflicting values in r1 
with their according values from r2. Since each tuple can be se-
lected by a pattern using its ID as selection criteria and every 

modification operation can at least change one value, the resolu-
tion distance is an upper bound for the update distance. 

LEMMA 1: For each pair of databases r1 and r2 there exists a trans-
former Ψ of length ∆R(r1, r2). 

PROOF: Omitted for space limitations.♦ 

To define a lower bound as well, we recognize that each update 
operation modifies only one attribute according to our definition. 
We subsume the conflicts that are potentially solvable using a 
single modification operation within a conflict group.  
DEFINITION 9 (CONFLICT GROUP): Given a pair of databases r1 and 
r2. A conflict group κ is an attribute-value pair (A, x) with attr(κ) 
= A and value(κ) = x. κ represents the subset of conflicts (m, A) 
between r1 and r2 having the following property: 

(m, A) ∈ C(r1, r2) ∧ attr(κ) = A ∧ value(κ) = tup2(m)[A].♦ 

Thus, all conflicts represented by a conflict group κ occur in the 
same attribute A and have the same solution x. These conflicts are 
hence solvable using a modification operation with κ as the modi-
fication term. Let K(r1, r2) be the set of all conflict groups be-
tween a pair of databases. According to this definition, the only 
conflict group for the databases in Figure 2 is κ = (A3, 0). 
LEMMA 2: For each pair of databases r1 and r2, there cannot exist a 
transformer for r1 and r2 that is shorter than |K(r1, r2)|. We denote 
this lower bound as LB(r1, r2). 
PROOF: To transform r1 into r2 we need at least one modification 
ψµ operation per conflict group κ ∈ K(r1, r2), with τ = κ.♦ 
For the example in Figure 2 the update distance is three, as shown 
by the update sequence in c). The lower bound of the update dis-
tance is one and the upper bound is five. 

4. TRANSIT– COMPUTING MINIMAL 
TRANSFORMERS 
This section describes the TRANSIT algorithms to determine the 
set of minimal TRANSformers for contradIcting daTabases r1 and 
r2. Both algorithms essentially enumerate the space of all data-
bases reachable by applying sequences of modifications to r1. 
Doing so efficiently poses several challenges for which we de-
scribe solutions. First, we introduce transition graphs as formal-
izations of the search problem. Since many update sequences lead 
to the same database state, duplicate detection is of outmost im-
portance. We describe a hashing scheme for efficient duplicate 
checking. We show how we use the upper and lower bounds de-
fined in Section 3.3 to prune the search space, leading to a branch 
and bound algorithm. We then describe a breadth-first strategy for 
traversing the search space and briefly sketch a depth-first strat-
egy. In Section 4.2, we show how - given a database state - the set 
of all possible modification operations can be computed using a 
mining algorithm that computes closed frequent itemsets. 

4.1 Search Space Exploration 
Given a pair of databases ro and rt, called origin and target, our 
goal is to determine T(ro, rt). Our approach essentially starts by 
determining all databases derivable from ro by a single modifica-
tion operation, called level-1 databases. Level-2 databases are 
computed by using all level-1 databases as starting point for an-
other modification. This process continues until we reach rt. The 
level at which the target is reached first reflects the minimal num-



5 

ber of modification operations necessary to derive rt from ro, i.e., 
the update distance. To determine T(ro, rt) the algorithm also 
needs to enumerate all other sequences that are of the same 
length. We maintain the sequence of modification operations with 
each database. Since multiple sequences may generate the same 
database, level-n databases may have an update distance that is 
actually shorter than n. We later treat the detection of duplicated 
databases. Since we enumerate all possible modifications at each 
level and for each database, we ensure that our first match with rt 
defines the shortest possible sequence. 

Transition Graph 
We represent the search space using a directed labeled graph, 
called the transition graph. Vertices of this graph are databases 
connected by directed edges representing modification operations. 

DEFINITION 10 (TRANSITION GRAPH): For two databases ro and rt, 
the transition graph GT = (V, E) with vertices V and edges E is 
defined as follows: V is the set of all databases derivable from ro 
using an update sequence of length shorter than or equal to the 
update distance ∆U(ro, rt). This implies that rt ∈ V. E is the set of 
all edges e = (r1, r2, ψ) for which ψ(r1) = r2, r1 ,r2 ∈ V. We call r1 
the source of e, denoted by source(e), and r2 the target of e, de-
noted by target(e).♦ 

DEFINITION 11 (PATH): A path ϕ = <e1, …, ep> within transition 
graph GT = (V, E) is a sequence of edges from E, with source(ei) 
= target(ei-1) for all 1 <i ≤ p. Two databases r1 and r2 are con-
nected by ϕ if source(e1) = r1 and target(ep) = r2♦ 

Each path between two databases r1 and r2 defines a transformer 
Ψ(r1) = r2. In accordance to DEFINITION 6 a path is minimal if no 
shorter path between the same two databases exists. 

The TRANSIT-algorithms iteratively construct the transition 
graph starting with database ro as the only vertex. Figure 3 shows 
an example. Levels are outlined by horizontal lines and derivable 
databases are only shown at the level of their update distance 
from ro. Vertices and edges on the minimal paths between the 
origin and target are enclosed within a gray box. 

 

Figure 3: An exemplified transition graph as generated by the 
TRANSIT algorithm without performing any pruning of 

databases. 

Duplicate Detection 
Duplicates at different levels of the graph may introduce cycles. 
Since the corresponding edges - delineated by dotted lines for 
clarity in Figure 3 - cannot be part of a minimal transformer, they 
are not included in the graph. Intra-level duplicates may result in 
multiple edges between two vertices on adjacent distance levels. 
As we will show in Section 6, a large portion of all generated 
databases are duplicates. For example, the operations ψ1 = ((A3, 
0), {(A3, 1)}) and ψ2 = ((A3, 0), {}) derive the same result when 
applied to database r1 of Figure 2. Also, many update sequences 
derive a database from itself. For example, the update sequence 
<((A2, 0), {(A1, 1)}), ((A2, 1), {(A1, 1)})> derives r1 from r1 using 
a 2-step update sequence. We must detect duplicates efficiently to 
avoid unnecessary explosion of the search space. 

Duplicate detection requires comparison of entire databases. To 
reduce the number of duplicate checks, we compute a hash value 
for each database and maintain a hash table for generated data-
bases. Complete database comparisons are only performed when 
the hash values of two databases are equal, which drastically re-
duces the number of (expensive) full database comparisons at the 
price of having to maintain the hash table. 

We currently employ the following hash function for databases: 
Without a loss of generality we assume the IDs to be integers in 
the range 1, …, m. We number the attribute values of the particu-
lar tuples in the following order 0:t{1}[A1], 1:t{1}[A2], …, 
(m*n)-1:t{m}[An], called the cell index. With each database we 
maintain a list of the conflicting values with an order based on 
this cell index. We select k values from this list, having cell index 
values c1, …, ck. The final hash value is an integer with k digits, 
where the i-th digit is the value of cell ci modulo 10. We also 
tested a hash function based on a histogram of the attribute values 
occurring within a database, but we found the later scheme infe-
rior in our experiments. 

Pruning 
The TRANSIT-algorithms try to avoid generating the complete 
transition graph. The number of vertices outside of the minimal 
transition graph in Figure 3 shows that many of the generated 
databases are not part of any minimal transformer. This observa-
tion is supported by the following example: 

EXAMPLE 1: Enumerating the complete transition graph with du-
plicate detection for the databases shown in Figure 2 results in a 
graph with 294,998 vertices and 768,333 edges. However, only 
two minimal paths from r1 to r2 exist, which together contain only 
six vertices.♦ 

This large difference suggests that pruning is essential. In TRAN-
SIT, pruning uses the upper and lower bounds for the update dis-
tance as defined in Section 3.3. Let β denote the current upper 
bound for the update distance between ro and rt. This bound is 
initialized following LEMMA 1 as ∆R(ro, rt). Each generated data-
base r with LB(r, rt) > (β - ∆U(ro, r)) is not included in the transi-
tion graph, because any path from ro to rt through r will have at 
least ∆U(ro, r) + LB(r, rt) > β edges and is therefore not minimal. 
The update distance ∆U(ro, r) is maintained with each vertex in 
order to avoid recalculation. 

We decrease β whenever a database r is generated with (∆U(ro, r) 
+ ∆R(r, rt)) < β. For such a database there exists a transformer 
Ψ(ro) = r with |Ψ| = ∆U(ro, r). Then, LEMMA 1 guarantees the exis-



6 

tence of a transformer Ψ’(r) = rt with length |Ψ’| = ∆R(r, rt). The 
following simple Lemma proofs the existence of a transformer 
Ψ’’(ro) = rt having length |Ψ’’| = ∆U(ro, r) + ∆R(r, rt). 

LEMMA 3: Given transformers Ψ1(r1) = r2 and Ψ2(r2) = r3, there 
exists a transformer Ψ3(r1) = r3 with length |Ψ3| = |Ψ1| + |Ψ2|. 

PROOF: Omitted for space limitations.♦ 

Each time the current bound β is decreased we remove all data-
bases r from the transition graph with insufficient bound, i.e., for 
which ∆U(ro, r) + LB(r, rt) > β. 

Breadth-First Algorithm 
The previous approach resembles a branch and bound behavior. 
Therein, we can explore the search space either in breadth-first or 
in depth-first manner. We first describe a breadth-first algorithm 
(see Figure 4). 

The algorithm generates all databases derivable by update se-
quences of increasing length. Within the branch step a database is 
chosen for processing. We generate all databases that are deriv-
able from this database by a single modification operation. Next, 
in the bound step the current bound is decreased if possible and 
databases are pruned as described. After finishing the processing 
of the current database we chose the next database for processing 
from the remaining, untested databases in the graph. We process 
all databases at the current level first before proceeding to data-
bases at the next level. We continue until rt is reached and no 
untested database remains. 

1 TRANSIT-BFS(ro, rt) { 
2  GT := ({ro}, {}); 
3  VP := V(GT); 
4  ∆U := 0; 
5  β := ∆R(ro, rt); 
6  while (rt ∉ VP) { 
7   ∆U := ∆U + 1; 
8   VC := {}; 
9   for each ri ∈ VP do { 
10    MDF := modifier(ri, rt); 
11    for each ψ ∈ MDF do { 
12     rnew := ψ(clone(ri)); 
13     if ((LB(rnew, rt) + ∆U) ≤ β) { 
14      if (rnew ∉ V(GT)) 
15       V(GT) := V(GT) ∪ {rnew}; 
16       E(GT) := E(GT) ∪ (ri, rnew, ψ); 
17       VC := VC ∪ {rnew}; 
18       if ((∆R(rnew, rt) + ∆U) < β) { 
19        β := ∆R(rnew, rt) + ∆U; 
20        prune VP, VC, GT, β; 
21       } 
22      } else if (rnew ∈ VC) { 
23       E(GT) := E(GT) ∪ (ri, rnew, ψ); 
24   } } } } 
25   VP := sort(VC); 
26  } 
27  output min_paths(GT, ro, rt); 
28 } 

Figure 4: The TRANSIT-BFS algorithm. 

Figure 4 shows the corresponding algorithm TRANSIT-BFS. 
Each database from the previous level, maintained in VP, is proc-
essed while enumerating the current level (lines 9-24). The data-
bases at the current level, maintained in VC, afterwards become 
the candidates for the enumeration of the next level (line 25). We 
sort the candidates in ascending order of their lower and upper 
bounds. This is done with the intention of decreasing the current 
bound β as soon as possible, therefore avoiding the unnecessary 
insertion of databases that are pruned afterwards. After reaching 
the destination the algorithm returns the set of minimal paths in 
the transition graph from the origin to the target (line 27). 

If we are interested in calculating the update distance only, the 
algorithm can terminate immediately after rt is derived for the first 
time (check for equality after line 12). 

Processing a database starts by determining the set of possible 
modification operations (line 10 – see Section 4.2 for details). 
Each of the operations is applied to a copy of the database, as 
modification operations alter the given database (line 12). The 
resulting database is added to the transition graph and to VC if it 
does not already occur within the graph (lines 14-17). Otherwise, 
the database is a duplicate. It is an intra-level duplicate, if it also 
occurs in VC. In this case the database has been derived before at 
the current distance level. Intra-level duplicates add additional 
edges. Otherwise, no changes occur. 

Depth-First Algorithm 
The transition graph may also be constructed in depth-first man-
ner. We refer to the corresponding algorithm as TRANSIT-DFS. 
Within this algorithm, we immediately proceed to the next dis-
tance level after finishing the processing of the current database, 
i.e., generating all databases derivable with a single modification 
operation. We chose that database from all generated ones with 
the smallest lower bound as the new current database. Pruning is 
performed as described above. The depth-first approach finds a 
first solution after processing fewer databases then the breadth-
first approach. Although this solution is not necessarily optimal, it 
often helps to perform more pruning. After reaching the target 
database, TRANSIT-DFS needs to return to the previous data-
bases and test them as candidates, again in a depth-first manner. 
The algorithm continues until all databases that have not been 
pruned by the bounding step have been tested. 

Compared to TRANSIT-BFS, duplicate detection is more compli-
cated because identical databases may be generated multiple 
times at decreasing distance levels. Every time a database is de-
rived at a lower level once more, it must be considered as a can-
didate again and cannot be rejected as a duplicate. 

The experiments of Subsection 6.1 show the advantage of using 
the branch and bound approaches over enumerating the complete 
transition graph. 

4.2 Enumerating Modification Operations 
According to DEFINITION 4, a modification operation is a pair 
consisting of a modification term τ and a modification pattern ρ. 
We are only interested in enumerating modification operations 
that change the database. We call these operations valid. Then, 
the set of possible modification operations for a database r is the 
Cartesian product of the set of valid modification terms and the 
set of patterns. 



7 

Valid Modification Terms 
Terms (DEFINITION 2) are attribute-value pairs. Only non-key 
attributes are permitted within modification terms. The set of 
valid modification terms is the union of valid modification terms 
for each non-key attribute. For each attribute A ∈ R / ID this set is 
A × dom(A). A problem is the infinite size of dom(A) that leads to 
an infinite set of modification terms and therefore to an infinite 
set of modification operations. Consequently, the algorithm would 
not terminate, although almost all of the generated databases are 
isomorphic with respect to their ability to participate in a shortest 
update sequence. 

We must therefore restrict the set of possible modification values 
by only using the values occurring within the current database r 
and the target rt. In summary, we permit the following values in 
modification terms for attribute A: 

• All values from the target that occur within attribute A, 
denoted by rt[A]. Some of these values have to be used 
at least once as modification value for conflict solution. 
The remaining values are also contained in the follow-
ing set. 

• All values occurring for attribute A in the current data-
base r, denoted by r[A]. In some situations increasing 
the selectivity of individual values enables to solve 
more conflicts with a single operation afterwards. 

• Any of the remaining values from dom(A) not contained 
in rt[A] ∪ r[A] is a potentially necessary modification 
value, possibly to serve as a unique selection criterion in 
later stages of the algorithm. Thus, the actual value does 
not matter, as long as it is different from all other values 
currently used. We chose such a value using a random 
function. We call these values Skolem constants. 

During TRANSIT, all Skolem constants are maintained within a 
separate list for each attribute.  

Valid Modification Patterns 
Let P(r) denote the set of patterns ρ that select at least one tuple 
from r, i.e., ρ(r) ≠ ∅. If we regard a tuple t as a set of terms 
(A, t[A]) with one term for each attribute A ∈ R, P(r) is effi-
ciently computable using a frequent itemset mining algorithm [2]. 
Very likely, this set contains pairs of patterns ρ1, ρ2 with ρ1 ≠ ρ2 
and ρ1(r) = ρ2(r). Using each pattern in P(r) for enumeration of 
modification operations would therefore result in operations with 
equal effect. We avoid such redundancy by restricting P(r) to the 
set of closed patterns, denoted by PC(r). The following definition 
is taken from [3, 18]: 

DEFINITION 12 (CLOSED PATTERN): Given a database r, a pattern ρ 
with ρ(r) ≠ ∅ is a closed pattern for r if there does not exist a 
pattern ρ’ ⊃ ρ with ρ’(r) = ρ(r).♦ 
A closed pattern ρ represents exactly those terms that occur within 
every tuple of ρ(r) (when viewing the tuples as sets of terms as 
described above). Following this definition there are no two pat-
terns ρ1, ρ2 ∈ PC(r), ρ1 ≠ ρ2, that select equal subsets of r.  

LEMMA 4: Given a database r. For each pattern ρ ∈ P(r) there 
exists a pattern ρ’ ∈ PC(r) with ρ(r) = ρ’(r). 

PROOF: Omitted for space limitations.♦ 

Based on LEMMA 4 it is sufficient to use PC(r) extended by the 
empty pattern instead of P(r) as the set of valid modification pat-
terns. We add the empty pattern to PC(r) in order to allow modifi-
cations of the complete database at once. We are able to use exist-
ing methods for mining closed itemsets like CHARM [23], 
CLOSET+ [21], or FARMER [9]. Within our implementation we 
currently use CHARM [23]. 

Filtering Invalid Operations 
A modification operation has no effect if the modification term τ 
also occurs within the modification pattern. In this case, all se-
lected tuples already possess the new value in the modified attrib-
ute. We remove these operations. 

5. HEURISTICS 
The described TRANSIT-algorithms are only applicable for small 
databases. For larger databases the search space of derivable da-
tabases is enormous due to the large number of closed patterns for 
each database. The maximum number of closed pattern for a da-
tabase r is 2|r|-1, i.e., each non-empty subset of r defines a differ-
ent closed pattern. While this is the worst case, there are at least |r| 
closed patterns for each database, as each tuple forms a closed 
pattern by itself. The large number of closed patterns results in an 
even larger number of modification operations and therefore de-
rivable databases. Despite eliminating duplicates and pruning 
over 95% of the generated databases immediately (see Section 
6.1) processing the remaining databases is still too expensive. 
Within this section we describe heuristics which do not necessar-
ily find the exact solution but are able to handle databases of al-
most arbitrary size. We analyze the quality of the computed re-
sults in Section 6.2. 

5.1 Greedy TRANSIT 
A first simple heuristic is applying a greedy algorithm, called 
GREEDY-TRANSIT. Given a pair of databases ro and rt, the 
greedy algorithm first determines all databases derivable from the 
origin by a single modification operation. From those, the algo-
rithm chooses the database with the smallest upper bound, i.e., the 
least number of conflicts with the target, as starting point for the 
next level. This database is denoted by rs. For database rs again all 
databases derivable by a single modification operation are gener-
ated and the database with the smallest upper bound is chosen as 
the next rs. This is continued until the target database is reached. 
The algorithm returns a single transformer. 

The described procedure ensures that the database chosen as the 
next starting point always has fewer conflicts with rt than any of 
the previous databases. Therefore, neither cycles nor duplicated 
databases at different levels can occur. If a database is derivable 
by more than one modification operation from the current data-
base, only the first operation, depending on the order of their 
enumeration, is returned within the final transformer. Using the 
database with the smallest upper bound follows the assumption 
that this database has the potential of reaching the destination 
first. The example in Figure 2 shows that the assumption is not 
always correct, as the resulting transformer has a length of four. 

The main challenge for the greedy algorithm is the enumeration 
of all derivable databases for rs. Enumerating the complete set of 
modification operations is infeasible for large databases. How-
ever, it is also not necessary. We avoid enumerating all those 



8 

modification operations whose resulting database is not a candi-
date for having the smallest lower bound by interleaving the min-
ing for closed pattern and the generation of derivable databases. 
The algorithm for determining the update operation resulting in 
the next rs is outlined in Figure 5. This is actually an extension of 
the CHARM algorithm being represented here by the function 
nextPattern() (line 3). The parameter minsup specifies the mini-
mal support the returned patterns have to have in rs. 

Let sup(τ, κ) denote the number of tuples selected by τ that con-
tain a conflict belonging in conflict group κ, i.e., 
sup(τ, κ) = |{ts | ts ∈ τ(rs) ∧ (∃tt ∈ rt : ts[ID] = tt[ID] ∧ ts[attr(κ)] ≠ 

value(κ) ∧ ts[attr(κ)] = value(κ))}| 

This number can easily be derived while scanning the databases 
to determine the initial set of terms for closed pattern mining. We 
further define sup(ρ, κ) as the minimum sup(τ, κ) for all the terms 
τ ∈ ρ. This is the maximal number of conflicts the pattern can 
potentially solve from conflict group κ. Every time the pattern 
mining algorithm identifies a new closed pattern ρ, we enumerate 
all modification operations using ρ that are able to reduce the 
number of conflicts more than the currently best operation ψmax. 
These are modification operations having a modification term that 
equals one of the current conflict groups from κ ∈ K(rs, rt) with 
sup(ρ, κ) being above the current maximum in reduction of the 
upper bound. Any other modification term does not have the po-
tential for reducing the current number of conflicts. Whenever an 
operation is enumerated that performs better than ψmax we are 
able to increase minsup and thereby avoid further enumeration of 
patterns that cannot solve more conflicts than the new ψmax. 

GREEDY-TRANSIT calls greedyNext() for each database rs. The 
result of greedyNext() can by empty as we use two as the initial 
minsup. In this case we solve one of the existing conflicts ran-
domly using the tuple where the conflict occurs as closed pattern. 

5.2 Approximation of the Update Distance 
Another heuristic is based on solving the conflicts within each 
conflict group independently. We use the sum of necessary opera-
tions for conflict solution of each conflict group as an approxima-
tion of the update distance. This is called the group solution cost. 
The approximation completely disregards the possible impact that 
the modification of values for some of the tuples may have on 
solving conflicts for other tuples. 

1 greedyNext(rs, rt) { 
2  ψmax := ⊥; minsup := 2; 
3  while (ρ = nextPattern(minsup)) { 
4   for each κ ∈ K(rs, rt) { 
5    if (sup(ρ, κ) ≥ minsup) { 
6     rc := (κ,ρ)(r); 
7     if (∆R(rs, rt)– ∆R(rc, rt) ≥ minsup) { 
8      ψmax := (κ,ρ); 
9      minsup := (∆R(rs, rt)– ∆R(rc, rt))+1; 
10  } } } } 
11  return ψmax; 
12 } 

Figure 5: Determine the modification operation that results in 
a database with the smallest upper bound. 

Determining the minimal number of modification operations nec-
essary to solve the conflicts within a conflict group still is expen-
sive, as shown in Section 6.1. Therefore, we restrict the set of 
valid modification operations for approximating the update dis-
tance by considering only operations that reduce the number of 
conflicts and that do not introduce new conflicts or alter conflict-
ing values in existing conflicts. The entire algorithm, called 
TRANSIT-APPROX can be found in [17] but is omitted here due 
to space limitations. 

The group solution cost may also be used as a replacement for the 
lower bound within the algorithms TRANSIT-BFS and TRAN-
SIT-DFS. We thus might miss the exact solution. However, in all 
our experiments this heuristic computed the exact solution. The 
corresponding algorithms are called TRANSIT-BFS (GS) and 
TRANSIT-DFS (GS), respectively. 

6. EXPERIMENTS 
Within this section we discuss some of the results of our experi-
ments applying the defined algorithms on different pairs of data-
bases. We implemented all algorithms using Java™ J2SE 5.0. The 
code and experimental data is available from the authors. 

6.1 Branch and Bound Algorithms 
Computing minimal update sequences using the algorithms de-
scribed in Section 4 is feasible only for small databases. We used 
several small synthetic databases pairs in our experiments. In this 
paper, we only present the result for the databases of Figure 2 to 
give an idea of the complexity of the algorithms. We refer the 
interested reader to [17] for further results. 

TRANSIT-BFS and TRANSIT-DFS  
The necessary computation to determine the set of minimal up-
date sequences that transform r1 into r2 is shown in Table 1a. The 
first two columns list the number of databases processed and 
modification operations executed for building the transition 
graph. We also list are the overall number of databases added to 
the graph together with the number of databases generated as 
duplicates. 

Table 1a shows a huge difference between the number of modifi-
cation operations executed and the number of databases added to 
the graph or being identified as duplicates for both approaches. 
This observation indicates that the majority of the generated data-
bases are pruned due to their upper and lower bounds. The num-
ber of pruned databases is between 80-95% for TRANSIT-BFS 
and above 95% for TRANSIT-DFS. Still, due to the enormous 
number of modification operations and databases derivable at 
each node of the transition graph execution time and memory 
requirements prevent an application of the algorithms for larger 
databases. 

The depth-first approach is inferior for the databases of Figure 2. 
The optimal solution requires the insertion of conflicts at first. 
Thus, the depth-first approach generates a first solution that is 
longer that the actual update distance. It therefore tests several 
databases at distance levels above the actual update distance. This 
is reflected by comparing the number of databases added and 
tested in columns 1 and 3 of Figure 2. For TRANSIF-DFS more 
databases are tested than added to the graph, due to those data-
bases that are added once but tested several times at decreasing 
distance levels. 



9 

Table 1: Experimental Results of the branch and bound 
algorithms 

 DBs 
Tested 

Ops 
Executed 

DBs 
Added 

Intra-
Dupl. 

Inter-
Dupl. 

a) TRANSIT-BFS vs. TRANSIT-DFS 
BFS 279 38,006 3,026 2,832 968
DFS 4,275 603,971 4,204 4,417 4,483
b) TRANSIT-BFS (GS) vs. TRANSIT-DFS (GS) 
BFS(GS) 4 499 27 2 0
DFS(GS) 3 402 23 2 0

 

Comparing the numbers of databases added and tested for 
TRANSIT-BFS shows the general problem of this approach: a 
large number of databases that are added to the graph are never 
processed afterwards. Our experiments show that pruning of data-
bases once added to the graph is not very effective for both ap-
proaches. Therefore, the number of databases in the graph grows 
linearly with the number of added databases. We observe that in 
general the memory requirement for the breadth-first approach is 
higher than that for the depth-first approach. 

TRANSIT-BFS (GS) and TRANSIT-DFS (GS) 
Table 1b shows the necessary effort to determine the set of mini-
mal transformers when using the group solution cost as the lower 
bound for both branch and bound algorithms. In our experiments, 
this heuristic always computes the correct update distance, but 
does not find all minimal update sequences. 

Compared to the numbers in Table 1a, the effort regarding data-
bases tested and added is significantly lower for TRANSIT-
BFS (GS) and TRANSIT-DFS (GS). As a downside, the computa-
tion cost may increase due to the computation of the group solu-
tion cost Therefore, despite the extremely high accuracy the com-
putation cost (and not the memory requirements) prevents us from 
applying this heuristic to larger databases. Finding an efficient 
method for group solution cost computation would yield in a sig-
nificant runtime improvement. We therefore consider improving 
the efficiency of group selection cost computation as future work. 

6.2 Accuracy of GREEDY-TRANSIT and 
TRANSIT-APPROX 
While computing the exact solution is only possible for small 
databases the greedy algorithm and the approximation allow com-
putation of update sequences and distance for large databases. In 
order to assess the accuracy of GREEDY-TRANSIT and TRAN-
SIT-APPROX we used a database of 10 attributes and 100 tuples 
and modified it using arbitrary update sequences of length be-
tween 5 and 50. We then computed the update distance between 
the original and the resulting database using both algorithms. The 
results are shown in Figure 6. The shown values are averaged 
over ten runs. The dark area above the lower bound highlights the 
location of the exact solution between the lower bound and the 
length of the sequences that generated the databases. The greedy 
approach and the approximation are both surprisingly accurate for 
short update sequences. For longer update sequences the accuracy 
decreases but remains in reasonable bounds. Overall, the 
GREEDY-TRANSIT outperforms TRANSIT-APPROX in accu-
racy. 

 
Figure 6: Comparing the accuracy of GREEDY-TRANSIT 

and TRANSIT-APPROX 

The accuracy of GREEDY-TRANSIT decreases, as the number of 
conflicts increases. We used a second database of 20 attributes 
and about 800 tuples and modified it using update sequences as 
described above. Figure 7 shows the resulting greedy update dis-
tances when limiting modification operations within the se-
quences to such whose patterns select at least 10, 20, or 50 tuples 
each. The number of conflicts introduced by theses sequences 
increases as the selectivity of the patterns increases. This resulted 
in database pairs with over 3,500 conflicts between them. The 
decrease in accuracy shown by GREEDY-TRANSIT is even lar-
ger when using TRANSIT-APPROX. 

Execution time of the branch and bound approaches lies between 
a few milliseconds and up to four minutes for the databases we 
considered. The execution time increases dramatically for larger 
databases. GREEDY-TRANSIT had execution times between two 
seconds for short sequences and one minute for long sequences in 
the experiments of Figure 7. We also applied this algorithm on the 
protein structure databases Columba and OpenMMS, having over 
20,000 tuples each and nearly 10,000 conflicts between them. The 
resulting update sequence contained over 10,000 update opera-
tions and computation took more than 24 hours. The result shows 
the clear disadvantage of the greedy approach as more than 97% 
of the operations in the sequences solved less than ten conflicts. 
Still, by interpreting the operations at the start of the sequence, we 
discovered update operations that describe the commonly known 
differences between the databases like usage of different value 
representations or vocabularies in some of the attributes. 

 
Figure 7: Accuracy of GREEDY-TRANSIT for update se-

quences with different pattern selectivity 



10 

7. CONCLUSION & OUTLOOK 
We described several algorithms for determining update se-
quences of SQL-like update operations that transform one data-
base into another one. If conflicts between two databases are due 
to systematic manipulation, the operations within update se-
quences are valuable to domain experts interested in solving the 
conflicts. Minimal sequences may also be used as retrospective 
documentation of manipulations performed on a given database. 
Due to the complexity of the problem, exact solutions are only 
feasible for very small databases. Therefore, we investigated sev-
eral heuristics that, in our experiments, found near-optimal solu-
tions and are applicable also to larger data sets. 

In out current research work we investigate several directions. A 
major challenge is to reduce the memory requirements of our 
algorithms. For instance, instead of holding entire databases in 
main memory, one could represent a database by its generating 
operations plus the hash key. This reduces memory consumption 
while increasing the execution time for duplicate checks. Another 
considerable cost factor is the necessary computation of closed 
patterns to find all valid modifications. However, deriving the set 
of closed patterns for a database from the set of closed patterns 
from its predecessor database using some incremental approach 
could be highly advantageous since both database vary only very 
little. 

We also consider several extensions to our approach. First, en-
hancing the expressiveness of update operations, including modi-
fications like SET A = f(A) as described in [11], would be very 
important; yet the cost of finding such functions is probably pro-
hibitive. Second, assuming that two contradicting databases have 
been derived from a single ancestor database, it is natural to ask 
the following question (studied in biology under the term phy-
logenetics): Given two database r1 and r2, compute the database r 
whose update distance to r1 plus its update distance to r2 is mini-
mal. Thus, we could actually reconstruct the original database. 

8. REFERENCES 
[1] M. Arenas, L. Bertossi, J. Chomicki. Consistent Query An-

swers in Inconsistent Databases. Proc. ACM Symposium on 
Principles of Database Systems (PODS), Philadelphia, Penn-
sylvania, 1999. 

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining As-
sociation Rules, Proc. Int. Conf. On Very Large Data Bases 
(VLDB), Santiago de Chile, Chile, 1994. 

[3] J. Bayardo, Jr. Efficiently mining long patterns from data-
bases. Proc. ACM SIGMOD Int. Conf. on Management of 
Data, Seattle, Washington, United States, 1998, 85 – 89. 

[4] H.M.Berman, J.Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, 
H. Weissig, I.N. Shindyalov, P.E. Bourne. The Protein Data 
Bank. Nucleic Acids Research, Vol. 28(1), 2000, 235-242 

[5] T.N. Bhat, et al. The PDB data uniformity project, Nucleic 
Acid Research, Vol. 29(1), 2001, 214-218. 

[6] H. Boutselakis, et al. E-MSD: the European Bioinformatics 
Institute Macromolecular Structure Database. Nucleic Acid 
Research, Vol. 31(1), 2003, 458-462. 

[7] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A Cost-
Based Model and Effective Heuristic for Repairung Con-
straints by Value Modifications. Proc. ACM SIGMOD Int. 

Conf. on Management of Data, Baltimore, Maryland, United 
States, 2005. 

[8] S. Chawathe, H. Garcia-Molina. Meaningful change detec-
tion in structured data. Proc. ACM SIGMOD Int. Conf. on 
Management of Data Tucson, Arizona, May 1997. 

[9] G. Cong, A.K.H. Tung, X. Xu, F. Pan, and J. Yang. 
FARMER: finding interesting rule groups in microarray 
datasets. Proc. ACM SIGMOD Int. Conf. on Management of 
Data, Paris, France, 2004, 143 – 154. 

[10] P. Dadam, V.Y. Lum, H.-D. Werner. Integration of Time 
Versions into a Relational Database System. Proc. Int. Conf. 
on Very Large Data Bases, Singapore, 1984, p.p. 509-522 

[11] W. Fan, H. Lu, S.E. Madnick, and D. Cheung. Discovering 
and reconciling value conflicts for numerical data integra-
tion. Information Systems, Vol. 26, 2001, 635-656. 

[12] M.A. Hernandez, S.J. Stolfo. The merge/purge problem for 
large databases. Proc of ACM SIGMOD Int. Conf. On Man-
agement of Data, San Jose, California, 1995 

[13] W. J. Labio and H. Garcia-Molina. Efficient Snapshot Dif-
ferential Algorithms for Data Warehousing. Proc. Int. Conf. 
On Very Large Data Bases (VLDB), Bombay, India, Sep-
tember 1996, pp. 63-74 

[14] V.I. Levenshtein. Binary codes capable of correcting inser-
tions and reversals. Sov. Phys. Dokl., 10:707-10, 1966. 

[15] A.E. Monge, C.P. Elkan. An efficient domain-independent 
algorithm for detecting approximately duplicate database 
tuples. Proc. SIGMOD Workshop on Data Mining and 
Knowledge Discovery, 1997 

[16] H. Müller, U. Leser, and J.-C. Freytag. Mining for Patterns 
in Contradictory Data, Proc. SIGMOD Int. Workshop on In-
formation Quality for Information Systems (IQIS'04), Paris, 
France, 2004. 

[17] H. Müller, J.-C. Freytag, and U. Leser. On the Distance of 
Databases, Technical Report, HUB-IB-199, March 2006. 

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing Frequent Closed Itemsets for Association Rules. Lecture 
Notes in Computer Science, Vol. 1540, 1999, 398-416. 

[19] K. Rother, H. Müller, S. Trissl, I. Koch, T. Steinke, R. 
Preissner, C. Frömmel, U. Leser. COLUMBA: Multidimen-
sional Data Integration of Protein Annotations, Int. Work-
shop on Data Integration in Life Sciences (DILS 2004), 
Leipzig, Germany, 2004. 

[20] G. Vossen. Data Models, Database Languages and Data-
base Management Systems. Addison-Wesley Publishers, 
ISBN 0-201-41604-2, 1991 

[21] J. Wang, J. Han, and J. Pei. CLOSET+: searching for the 
best strategies for mining frequent closed itemsets. Proc. 
ACM SIGKDD Int. Conf. on Knowledge Discovery and 
Data Mining, Washington, D.C., 2003, 236 – 245. 

[22] W. Winkler. The state of record linkage and current re-
search problems. Technical report, Statistical Research Divi-
sion, U.S. Bureau of the Census, Washington, DC, 1999. 

[23] M.J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm 
for closed itemset mining. In Proc. of the Second SIAM Int. 
Conference on Data Mining, Arlington, VA, 2002. 


