WS 2021/22 5. Januar 2022

Übungsblatt 10

Abgabe der schriftlichen Lösungen bis 19. Januar 2022, 24:00 Uhr

Aufgabe 42 Zeigen Sie:

 $m\ddot{u}ndlich$

- (a) PSPACE ist unter allen Operatoren in $\{\exists^p, \forall^p, \mathsf{R}, \mathsf{BP}, \exists^{\geq 1/2}, \oplus\}$ abgeschlossen und daher gilt $\mathsf{PH}, \oplus \mathsf{P}, \mathsf{PP} \subseteq \mathsf{PSPACE}$.
- (b) $PH \subseteq PSPACE$, außer wenn PH kollabiert.

Aufgabe 43 mündlich

Eine Offline-Orakelturingmaschine (kurz Offline-OTM) ist eine Offline-TM mit einem zusätzlichen write-only Orakelband. Der Platzverbrauch einer Offline-OTM M ist genauso definiert wie bei einer Offline-TM, wobei das Orakelband unberücksichtigt bleibt. Sei $L = L(M^A)$ die von einer s(n)-platzbeschränkten Offline-OTM M mit Orakel A erkannte Sprache.

Wir sagen, M stellt ihre Fragen deterministisch und schreiben $L = L(M^{det(A)})$, wenn jede Teilrechnung von M beginnend mit der Ausgabe des jeweils ersten Zeichens auf dem Orakelband bis zum Übergang in den Fragezustand deterministisch ist.

Falls M auch unter Berücksichtigung des Orakelbandes s(n)-platzbeschränkt ist, nennen wir M streng s(n)-platzbeschränkt und schreiben $L = L(M^{strong(A)})$.

Entsprechend erhalten wir die relativierten Klassen DSPACE^A(s(n)), DSPACE^{det(A)}(s(n)) und DSPACE^{strong(A)}(s(n)), sowie NSPACE^A(s(n)), NSPACE^{det(A)}(s(n)) und NSPACE^{strong(A)}(s(n)). Zeigen Sie:

- (a) $\mathsf{DSPACE}^{strong(A)}(s(n)) \subseteq \mathsf{DSPACE}^{det(A)}(s(n)) = \mathsf{DSPACE}^A(s(n)).$
- (b) $\mathsf{NSPACE}^{strong(A)}(s(n)) \subseteq \mathsf{NSPACE}^{det(A)}(s(n)) \subseteq \mathsf{NSPACE}^A(s(n)).$
- (c) Für jedes Orakel A gilt $\mathsf{L}^A \subseteq \mathsf{NL}^{det(A)} \subseteq \mathsf{P}^A$ und $\mathsf{NL}^A \subseteq \mathsf{NP}^A$.

Aufgabe 44 10 Punkte

Eine NP-Sprache $A \subseteq \Sigma^*$ hat selfcomputable witnesses $(A \in SCW)$, falls eine (k, p)-balancierte Sprache $B \in P$ und ein polynomiell zeitbeschränkter Orakeltransducer M existieren mit

- $A = \exists^p B$, d.h. $\forall x \in \Sigma^* : x \in A \Leftrightarrow \exists y \in \Gamma_k^{p(|x|)} : x \# y \in B$,
- für jede Eingabe $x \in A$ erzeugt M^A eine Ausgabe $M^A(x)$ der Länge p(|x|) mit $x \# M^A(x) \in B$.

Wir sagen auch, M^A berechnet eine witness-Funktion für A (bzgl. B). Zeigen Sie:

- (a) Sat \in SCW.
- (b) Jede NP-vollständige Sprache besitzt selfcomputable witnesses.
- (c) Jede Sprache $A \in \mathsf{PSK} \cap \mathsf{SCW}$ hat eine witness-Funktion in PSK , d.h. es existieren ein Polynom p, eine (2,p)-balancierte Sprache $B \in \mathsf{P}$ und eine Folge c_n von booleschen Schaltkreisen polynomieller Größe mit p(n) Ausgängen, so dass $A = \exists^p B$ ist und für alle n und alle $x \in A$ der Länge n gilt: $x \# c_n(bin(x)) \in B$.