
Fixed-parameter tractability of the graph
isomorphism and canonization problems

Frank Fuhlbrück

September 25, 2013

Fixed-parameter tractability of the graph
isomorphism and canonization problems

Diplomarbeit

zur Erlangung des akademischen Grades
Diplominformatiker

H-U  B
M-N F II

I  I

eingereicht von: Frank Fuhlbrück
geboren am: 16.08.1986
in: Berlin

Gutachter: Prof. Dr. Johannes Köbler
Dr. habil. Oleg Verbitsky

eingereicht am: 25.9.2013 verteidigt am: 10.10.2013

Preface

With this thesis, I would like to take you on journey to the place where the graph isomor-
phism problem and parametrized complexity meet.

The graph isomorphism problem asks whether there is a bijection between the vertex sets
of two graphs that maps edges to edges and non-edges to non-edges. Its importance for
complexity theory arises from the fact that it is neither known to be in P nor known to be
NP-complete. As the polynomial time hierarchy collapses if the graph isomorphism problem
is NP-complete [Sch88], the latter option is regarded as unlikely.

As a close relative, the graph canonization problem asks for the computation of a canonical
form, that is, a mapping that assigns to every graph an isomorphic graph such that any
two isomorphic graphs are mapped to the same graph. Obviously, any canonical form can
be used to decide the graph isomorphism problem and thus the isomorphism problem is
polynomial time Turing reducible to the canonization problem. Whether a reduction in the
converse direction is also possible, is an open question. Notwithstanding this, many practical
graph isomorphism algorithms for restricted classes easily generalize to graph canonization
algorithms.

Parameterized complexity theory is, among other things, a helpful tool to differentiate be-
tween levels of computational complexity within NP. It does so by basing the analysis of
complexity not only on the size of the input as a string, but also on some other parameter
like the number of variables in a boolean formula. The notion of tractability is represented
by the class of fixed-parameter tractable problems, that is, problems for which there is an
algorithm with polynomial runtime whose degree does not depend on the parameter.

Since graphs permit a great spectrum of possible parameterizations (degree distribution, size
of substructures …) and as the complexity of the graph isomorphism problem is unsettled,
parameterized complexity may help to describe hard and easy instances of the graph isomor-
phism problem. So it is natural to ask for which parameters the graph isomorphism problem
is fixed-parameter tractable. Furthermore, we may ask the same for the graph canonization
problem and if it turns out to be fixed-parameter tractable for some parameter, it is inter-
esting to look at the asymptotic runtime differences between graph isomorphism and graph
canonization (if there are any).

This thesis aims to provide a survey of the graph isomorphism and canonization problems
in the context of fixed-parameter tractability and to describe most known results in detail.
It is divided into three parts. The first part briefly introduces parameterized complexity
with a strong focus on fixed-parameter tractability and defines the graph isomorphism and
canonization problems. It further outlines how different flavors of both problems relate if we
parameterize them by the same parameter and discusses some basic algorithms to which we
will refer in the later chapters. The second part exhibits four (classes of) parameters for which
graph isomorphism is known to be fixed-parameter tractable. Moreover, it investigates the
usage of modular decompositions in combination with bounded parameters. Eventually, the

3

third part knots the loose ends together by assembling a comparison graph between various
parameters which occurred in the earlier chapters and by listing additional results.

Acknowledgements

I am grateful to my wife Frederike for her inspiration, support, patience and some valuable
hours of sleep as well as to our daughter Freya for the happiest year of my life so far. Further-
more, I thank my advisor Prof. Dr. Johannes Köbler and Sebastian Kuhnert for the helpful
comments, especially those to my talks in this summer, Sebastian for annotating my Studi-
enarbeit and Johannes for the remarks in and after the evaluation. Many thanks to Dr. Oleg
Verbitsky, who gave helpful hints and further directions in his evaluation and spotted some
additional errors and unclear passages (see second list on the next page, most of the changes
are due to his remarks). Finally, I am thankful to Stephan Verbücheln for proofreading this
thesis.

4

Changes with respect to my Studienarbeit

The chapters 0, 1, 2, 3 (there section 3.1), 4 (there section 3.2) and 9 (there chapter 4) were al-
ready part of my Studienarbeit. There are, however, several amendments and some changes
as listed in the following table:

Chapter Changes
0 only minor corrections
1 definitions of parameterized problems, FPT and fpt-reductions expanded to in-

clude sets of functions/relations (for parametrized C L and G
C), treewidth, figure 1.1 is new, definition of XL and para-L

2 section 2.3 is new, sections 2.1 and 2.4 (was 2.3) were expanded (corrections in 2.4.2)
3 section 3.4 is new, section 3.5 (former 3.4) was changed from G I to

C L, small changes in the introduction and some notation changes
4 only minor corrections
9 distance widths are now covered in detail and are thus removed from the overview

Changes after evaluation
• some notation fixes (product of permutation groups)
• fixed index error in the definition of the weft hierarchy
• added reference to [Mil79] in the beginning of chapter 2
• fixed first reduction step in the proof of lemma 2.20
• explicitly required d ≥ 2 for everything related to the Weisfeiler-Lehman algorithm

(naïve vertex refinement (= 1-dim WL) is not discussed in detail in this thesis)
• clarified the rule of Lagrange's theorem in section 3.1
• added “∈ C” in definition 4.1 (graph has to be in the desired class after modification)
• explicit comparison spw vs. pdw in lemma 8.3
• added lemma 8.12 (vc � ′κ) and modified figure accordingly

5

Contents

Preface . 3

I Introduction
0. Notation and basic definitions . 11

1. Parameterized complexity theory . 13
1.1. Parameterized problems . 13
1.2. Graph parameters . 14
1.3. FPT and fpt-reductions . 15
1.4. The weft hierarchy . 18
1.5. Other classes . 20

2. The graph isomorphism problem . 22
2.1. Graph isomorphisms and canonical forms . 22
2.2. Parameterized isomorphism problems . 24
2.3. Parameterized canonization problems . 27
2.4. Basic algorithms . 29

2.4.1. The Weisfeiler-Lehman algorithm . 29
2.4.2. Linear time algorithms for trees . 31
2.4.3. Linear time isomorphism algorithm for colored cycles 33
2.4.4. Disconnected graphs . 34

II Parameterized problems in FPT

3. Color multiplicity . 37
3.1. Towers of groups . 37
3.2. The sift-and-close-algorithm . 38

3.2.1. sift … . 38
3.2.2. …and close . 40

3.3. Application to G I(cm) . 42
3.3.1. Stabilizing the sets of equally colored edges 42
3.3.2. Algorithm, its correctness and runtime . 44

3.4. Application to C L(cm) . 46

7

Contents

3.5. Consequences . 47

4. Modification sets . 49
4.1. Finite set of forbidden induced subgraphs . 50

4.1.1. Find a minimal forbidden induced subgraph 51
4.1.2. Application to G I . 52
4.1.3. Classes with forbidden subgraphs . 54

4.2. Feedback vertex set . 54
4.2.1. Find a feedback vertex set, … . 55
4.2.2. … ensure that the graphs have a short cycle … 56
4.2.3. … and use them to fix a pair of vertices. 59

5. Modular decompositions . 62
5.1. Cographs . 62
5.2. Modules and the uniqueness of the modular decomposition 64
5.3. The modular decomposition tree and its computation 67
5.4. Application to G I . 68
5.5. Application to C L . 70

6. Distance widths . 73
6.1. Rooted path distance width . 73

6.1.1. Isomorphism test . 74
6.1.2. Canonical labelings . 75

6.2. Connected and clustered path distance width . 77
6.2.1. Connected path distance width . 77
6.2.2. Clustered path distance width . 79

6.3. Rooted tree distance width . 80
6.3.1. Isomorphism test . 83
6.3.2. Canonical Labelings . 85

6.4. c-connected d-separating tree distance width . 90

7. Tree-depth . 92
7.1. Some equivalent definitions . 92
7.2. Computation of tree-depth and decompositions 93

7.2.1. Characterization via forbidden subgraphs 94
7.2.2. Bounded treewidth and Courcelle's theorem 95

7.3. Application to C L(td = k) . 97
7.3.1. An isomorphism order for subdecompositions 98
7.3.2. Canonical labeling algorithm . 99

III Overview, Conclusion and Outlook
8. Relations among parameters . 102

8.1. Treewidth and related parameters . 102

8

Contents

8.2. Parameters vs. prime parameters . 107
8.2.1. Prime distance widths . 109
8.2.2. Some incomparability lemmas . 111

8.3. Graph of the cover relation . 112

9. Overview of results . 113
9.1. Table of all results . 113

10. Outlook and Conclusion . 115

IV Appendix
A. List of Figures . 119

B. List of Algorithms . 120

C. Bibliography . 121

9

Part I.

Introduction

We bury the roots, …

10

0. Notation and basic definitions

Sets and numbers: We will use Z and N as the sets of integers and nonnegative integers
(i.e 0 ∈ N) and Zm stands for the quotient ring Z/mZ. By [n, m] we refer to the discrete
interval {i ∈ Z | n ≤ i ≤ m}, while [n] stands for [1, n] and thus [0] = ∅. For any sets M and
N, (M

k) stands for the set of all k-elementary subsets of M, NM for the set of functions from
M to N, ℘(M) denotes the power set of M and M4N = (N \M) ∪ (M \ N). We use double
braces {{}} to denote multisets and a ∈k M to denote the multiplicity of a in a multiset M, i.e.
a ∈k M ⇔ IM(a) = k (where IM is the generalized indicator function of M). If not stated
otherwise log n means dlog2 ne. For functions and binary relations dom and rng denote the
sets of first and second components (i.e. range (image) and domain in the case of a function).
Images of sets A ⊂ dom(f) under a function f are denoted by f (A) = { f (a) | a ∈ A}. We
use 1 to denote the identity function.

Graphs: Unless stated otherwise all graphs in this work are undirected graphs without
loops, i.e. a graph G is a pair G = (V, E), E ⊆ (V

2), V(G) = V and E(G) = E. The
complement of G will be denoted by G and thus G = (V(G), (V(G)

2) \ E(G)). For any set
V′ ⊆ V(G), G[V′] denotes the induced subgraph on V′, i.e. the graph (V′, E(G)∩ (V′

2)). G \V′

is a shorthand for G[V(G) \V′]. We use +/− to denote the addition and deletion of vertices
and edges: G − v = G \ {v}, G − e = (V(G), E(G) \ {e}), G + e = (V(G), E(G) ∪ {e}),
G± e = (V(G), E(G)4{e}) for v ∈ V(G), e ∈ (V(G)

2). Since we will only consider graphs with
∀u, v ∈ V(G) : v /∈ u, this notion is well-defined. Let G = {G | G is a graph and ∃k ∈ N :
V(G) = [k]}. We will merely use this set as a domain for functions that map graphs to some-
thing. Attributes of vertices and edges are denoted as usual: NG(v) = {u ∈ V(G), {u, v} ∈
E(G)}, degG(v) = |NG(v)|, dG(u, v) = min{k | ∃v1, . . . , vk : v1 = v, vk = u ∧ ∀i ∈ [1, k− 1] :
{vi, vi+1} ∈ E(G)} − 1. We drop the index G in most circumstances, when the graph in
question is implied by context.

Paths and cycles will be regarded as subgraphs, but we will write “let v1, . . . , vl be a cycle C”
or similar and mean E(C) = {{vi, vi+1} | i ∈ [l], vl+1 = v1}. A leaf shall be a vertex with
degree at most one.

The term coloring refers to any function from the vertices to some finite set and thus does not
necessarily mean a proper coloring in the sense of the chromatic number. A (vertex) colored
graph is thus a pair (G, c) where G is a graph and c : V(G)→ C for some class of colors C. A
vertex and edge colored graph is a pair (G, c) such that c : (V(G)∪ E(G))→ C. An injective
coloring will be called a labeling. The set of all colored graphs on nonnegative integers is
denoted by Gc, i.e. Gc = {(G, c) | G ∈ G, c : V(G)→ V(G)}.

The adjacency matrix adj(G, c) of a colored graph (G, c) ∈ Gc with |V(G)| = n is the matrix

11

Notation and basic definitions

(Ai,j)(i,j)∈[n]×[n] with

Ai,j =


c(i) i = j
1 {i, j} ∈ E(G)

0 else
.

For uncolored graphs G the adjacency matrix is adj(G) = adj(G, c0), where c0 : V(G)→ {0}.

Groups: Symn denominates the symmetric group on [n], i.e. the set of all bijections [n] →
[n]. By Sym(M) we refer to the symmetric group of an arbitrary set M. If G1, . . . , Gk are
permutation groups with Gi ⊆ Sym(Vi) and Vi ∩ Vj = ∅ for i 6= j, we treat the product⊗

i∈[k] Gi as identical to the group
G = ({ f ∈ Sym(V) | ∀i ∈ [k]∃ fi ∈ Gi : f |Vi

= fi}, ◦)
where V =

⋃
i∈[k] Vi. To denote a subgroup of G generated by g1, . . . , gk ∈ G we write

〈g1, . . . , gk〉. By 1, we mean the identity element (for any kind of group). For a subgroup
H of a group G, |G : H| denotes the index of H in G.

Encoding as strings and model of computation: As usually we model classical (i.e. non-
parametrized) decision problems as languages L ⊆ Σ∗ over some finite alphabet Σ, but we
do not provide specific encodings for instances, if the encoding is not relevant and e.g. sim-
ply write (G, k) ∈ L for a graph G and an integer k. For graphs we measure runtime with
respect to |V(G)|+ |E(G)| which roughly corresponds to the size of adjacency lists. Hence
by linear time algorithm, we mean one with runtime O(|V(G)|+ |E(G)|), if its input is an
encoded graph w(G) with |w(G)| = |V(G)|+ |E(G)|.

We model algorithms as random access machines (RAMs). RAMs consist of countably in-
finite series (ri)i∈N of registers and a finite state machine (FSM). Each register holds a non-
negative integer of arbitrary size. One of the operations load, store, addition, subtraction or
(rounded down) division by 2 together with a register and an address mode (direct/indirect)
is assigned to every state of the finite state machine. Direct addressing refers to the content
ri of register i, whereas indirect addressing refers to rri . The other operand is always the
register r0, called the accumulator, which will also hold the result of the computation. The
transition function of the finite state machine maps each state to two successor states, one for
the case r0 = 0 (after the operation) and a second one for every other case. At the beginning
of the computation the input word w is written to r1 . . . r|w| (via some bijection s : Σ→ [|Σ|]),
while every other register is set to 0. After reaching a final state the RAM halts and puts
out w′ = s−1(r1) . . . s−1(rk) for k = min{i > 0 | ri = 0} − 1 (or whether r0 6= 0 in the case
of decision problems). The runtime of a RAM is t : N → N such that t(n) is the maximal
number of steps the RAM needs to reach a final state over all inputs w ∈ Σ∗ with |w| = n.

Theorems and proofs: We use the symbol 6� in a theorem if we completely omit the proof.
The ordinary in a theorem means that the proof is either trivially (mostly used for corol-
laries) or contained in the text (and lemmas) preceding the theorem.

12

1. Parameterized complexity theory

Traditionally, time (and space etc.) complexity of a problem are measured with respect to
the length of its instances encoded as strings over some finite alphabet Σ. For instance the
problem of deciding whether a given graph G belongs to some class C may be seen as the lan-
guage L which contains all adjacency lists of graphs in C. To classify its complexity we try to
find upper and lower bounds on the number of computation steps performed by determinis-
tic or nondeterministic Turing machines, the maximal space needed during the computation
by any of the aforementioned or the size and/or depth of different kinds of circuits which
decide for a given w ∈ Σ∗, whether w ∈ L. Irrespective of the model of computation we
choose, we state all these bounds as functions of |w|, i.e. functions of |V(G)| and |E(G)| if w
is an adjacency list. Reductions are a common tool to prove lower bounds (sometimes condi-
tional to assumptions like P 6= NP), but the class of functions to consider as valid reductions
(e.g. logspace many-one reductions) is again defined by their usage of some resource as a
function of the input.

Expressing complexity relative to the size of the input has several advantages, e.g. it is always
well-defined and allows for the comparison of problems with very different nature. There are
however cases where another parameter of the input, which is less agnostic about the nature
of the problem to be decided, grasps the inherent complexity of the task more accurately.
Let us for instance consider the problem C, i.e. the language L of (encoded) pairs (G, k)
such that the graph G has a clique (complete subgraph) of size at least k. There are several
graphs parameters p(G) which limit the size of the maximal clique in G, like the maximum
degree or the treewidth. If we consider the language L′ of those (G, k) ∈ L where G has
maximum degree m, then L′ ∈ P, because we only need to enumerate and check all subsets
of size at most m + 1.

Results of this kind have been stated for decades, but parameterized complexity theory as
developed and initiated by Downey and Fellows (e.g. [DF95a; DF95b]) goes far beyond this.
One of its merits is the analysis of the interaction between parameter and input size, which
(among other results) leads to the definition of fixed-parameter tractability and the
W-hierarchy. During the following introduction we will adopt most definitions from [FG06]
(with the exception of theW-hierarchy), which in some technical aspects differ to those found
in [DF99] and [Nie06]. Note that the bibliographic references of this introductory chapter do
not point to the original publication of each result or definition (which would be [DF95a]
in most cases), but to the most easily comprehensible parts of the three monographs [FG06;
Nie06; DF99].

1.1. Parameterized problems

Parameterized complexity theory treats entities of problems and parameters called parame-
terized problems. We first give a formal definition and discuss it afterwards.

13

Graph parameters Parameterized complexity theory

Definition 1.1. Let Σ be a finite set (the alphabet). A function κ : Σ∗ → N is a parameter
over Σ if κ ∈ FP, i.e. it can be computed in polynomial time. A parameterized (decision)
problem over Σ is a pair (L, κ), where L ⊆ Σ∗ is a language over Σ and κ is a parameter over
Σ. Likewise, a parameterized function problem over Σ is a pair (f , κ), where f : Σ∗ → Γ∗ is
a function and κ a parameter over Σ. Instead of a function f may also be a binary relation
f ⊆ Σ∗ × Γ∗ or set of such functions/relations. We will call (L, κ) ((f , κ)) the problem L (or
f) parameterized by κ. •

We use relations to formalize search problems (f -V C, f -G I) and
sets of functions/relations to specify problems like G C and C
L, which allow multiple solutions for one input but require the outputs for different
inputs to be consistent.

A possibly surprising part of definition 1.1 is, that a parameter κ has to be polynomial time
computable. This seems to be an obstacle to a discussion of parameters like the feedback
vertex number (section 4.2), which are NP-complete [Kar72]. We may however state a very
similar problem, if a parameter κ is not known to be in FP.

Definition 1.2. Let Σ be a finite alphabet, κ : Σ∗ → N, L a language over Σ and f a function
over Σ. L (or f resp.) mediately parameterized by κ shall be the parameterized problem
(L′, κ′) ((f ′, κ′)), where

κ′ : Σ∗ ×N→N such that κ′((w, k)) = k ,

L′ = {(w, k) | w ∈ L, κ(w) = k}
and f ′ is the minimal relation f ′ ⊆ (Σ∗ ×N)× (rng(f) ∪ {null}) such that

((w, k), f (w)) ∈ f ′ if κ(w) = k and
{(w, k)} × { f (w), null} ⊆ f ′ if κ(w) 6= k .

We extend this definition in an analogous manner to relations and sets of functions/relations.
•

This is in fact close to the definition of a parameterized problem in [Nie06]. We will never
explicitly use the term mediately parameterized in the later chapters, but silently switch to
this definition, whenever a parameter is not known to be in FP. Using the definition from
[FG06] as our main definition allows us not to handle an additional bogus argument k, when
we consider e.g. color class size or rooted path distance width.

Mind that a parameter may be any computable function which includes functions we would
not intuitively call a parameter, because they do not contain any further information about
the input.

Example 1.3. Let w be a word in Σ∗. Then we define size(w) = |w| (for graphs G we set
size(G) = |E(G)|+ |V(G)|) and one(w) = 1. e.g.

1.2. Graph parameters

The implicit usage of definition 1.2 allows us to use the most liberal definition of a graph
parameter. We will now give some examples of graph parameters.

14

Parameterized complexity theory FPT and fpt-reductions

Definition 1.4. We call any function κ : G → N a graph parameter (and assume it is 0 for
words w that do not encode graphs). •

Example 1.5. The maximal degree max deg(G) = maxv∈V(G) degG(v), the average degree
2|E(G)|/|V(G)| of a graph G, the radius rad(G) = minu∈V(G) maxv∈V(G) d(u, v) and the
diameter diam(G) = maxu,v∈V(G) d(u, v) are graph parameters. e.g.

Definition 1.6 (tw: [RS86; RS84],stw: [See85]). Let G be a graph. A tree decomposition of G
is a triple (B, T, r), where

• T is a tree and r ∈ V(T) shall be its root,
• B : V(T)→ ℘(V(G)) maps vertices of T to so called bags such that

⋃
rng(B) = V(G),

• for all e ∈ E(G) there is a t ∈ V(T) such that e ⊆ B(t) and
• for all v ∈ V(G) the graph T[B−1({v})] is connected.

A strong tree decomposition of G is a triple (B, T, r), where

• T is a tree and r ∈ V(T),
• B : V(T)→ ℘(V(G)) such that rng(B) is a partition of V(G) and
• for all e ∈ E(G) ∃t, u ∈ V(T) such that e ⊆ B(t) ∪ B(u) and t = u or {t, u} ∈ E(T).

We will use Bt instead of B(t) in both cases from now on. The width of a tree decomposition
(B, T, r) is max{|Bt| | t ∈ V(T)} − 1, whereas the width of a strong tree decomposition
(B, T, R) is max{|Bt| | t ∈ V(T)}. By the treewidth tw(G) and strong treewidth stw(G) we
mean the minimal width of any tree decomposition of G (or strong tree decomposition of G
respectively). •

We remark that the −1 ensures tw(T) = stw(T) = 1 for a tree T.

Example 1.7. Let G ∈ G and |V(G)| = n. The spectrum spec(G) of G is the spectrum of its
adjacency matrix A = adj(G) together with the eigenvalue multiplicities a multiset, i.e.
λ ∈k spec(G) ⇔ k = max{l|∃p′ : pA(t) = (t−λ)l · p′(t)} ⇔ dim({r ∈ Rn|Ar = λr}) = k ,

where pA is the characteristic polynomial of A. As adjacency matrices are symmetric the
geometric and algebraic multiplicities coincide. Two natural graph parameters are the size of
the spectrum as a simple set and the (maximal) eigenvalue multiplicity em(G) of G, em(G) =
max{k | ∃λ : λ ∈k spec(G)} . e.g.

1.3. FPT and fpt-reductions

Definition 1.8. Let (L, κ) be a parameterized problem over some alphabet Σ. (L, κ) is fixed-
parameter tractable, if there is an algorithm that decides for all w ∈ Σ∗ whether w ∈ L in
at most g(κ(w)) · p(|w|) steps, where g is an arbitrary computable function and p is a fixed
polynomial (i.e. not depending on κ(w)). The class of all such parameterized problems is
denoted by FPT. We also use the term fixed-parameter tractable for parameterized function
problems (f , κ) computable in time g(κ(w)) · p(|w|) (subject to the same conditions) and de-
note their class by FFPT. If f is a binary relation, the algorithm may output any w′ such that
(w, w′) ∈ f , if f is a set of functions or relations we require f ∩ FFPT 6= ∅ to say that f is
fixed-parameter tractable. •

15

FPT and fpt-reductions Parameterized complexity theory

Note that the name FFPT is not widely used notation (it is used for counting problems (i.e.
rng(f) ⊆ N) in [CTW08]). A parameter κ can also be seen as a function problem. If κ
mediately parameterized by κ itself is fixed-parameter tractable, we simply say κ ∈ FFPT
from now on.

Example 1.9. For any decidable language L the parameterized problem (L, one) is in FPT if
and only if L ∈ P, because f (one(w)) is a constant for any w ∈ Σ∗ and computable f . On
the other hand, (L, size) is always fixed-parameter tractable, since its runtime is computable
and can be hidden as a function of size(w). e.g.

When it comes to natural parameters and problems, the standard example for a parameter-
ized problem in FPT is V C.

Definition 1.10. Let G be a graph and M ⊆ V(G). M is a vertex cover of G if for all edges
e ∈ E(G) the intersection e ∩M is not empty. By vc we denote the size of the smallest vertex
cover in G. M is a clique of G if E(G[M]) = (M

2) and an independent set of G if E(G[M]) =
∅ (or, equivalently, if V(G) \ M is a vertex cover of G). This leads to the definition of the
following parameterized problems:

V C
Input : Graph G and k ∈N

Parameter : k
Question : Does G have a vertex cover of size at most k?

f -V C
Input : Graph G and k ∈N

Parameter : k
Output : A vertex cover of size at most k if one exists

I S(vc)
Input : Graph G and k ∈N

Parameter : |V(G)| − k
Question : Is there an independent set of G of size at least k?

I S
Input : Graph G and k ∈N

Parameter : k
Question : Is there an independent set of G of size at least k?

•

Lemma 1.11. V C, f -V C and I S(vc) are fixed-parameter
tractable.

Proof sketch. A graph has an independent set of size at least k if and only it has a vertex cover
of size at most |V(G)| − k. Since any edge of a graph agrees on at least one vertex with every
vertex cover, we may recursively choose an arbitrary edge, try to remove one of its members
a time and repeat the procedure on both resulting graphs until we either found a vertex cover
or have unsuccessfully deleted k vertices. The recursion tree of the algorithm has at most 2k

leaves and checking whether a set of vertices is a vertex cover can be done in linear time.

We only sketched the idea of an algorithm, since we will discuss so called modification sets
in section 4.1.3 and a vertex cover is nothing but an edgeless graph deletion set. It is easier

16

Parameterized complexity theory FPT and fpt-reductions

to see the difference between I S(vc) and Independent Set after we discussed
fpt-reductions, which we will do now. However, as this work is aimed at a single classi-
cal problem and only the parameters change, we single out a constraint of the definition in
[FG06] and define it separately inspired by the discussion of the relationship between width
parameters in [YBFT99].

Definition 1.12. Let κ and κ′ be parameters over Σ and Σ′ respectively and f : Σ∗ → Σ′∗.
We say κ′ f -covers κ (κ � f κ′) if there is a computable function g : N → N such that
∀w ∈ Σ∗ : κ′(f (w)) ≤ g(κ(w)). If Σ = Σ′ and f is the identity on Σ, we omit f . •

It may seem strange that κ and κ′ switch sides relative to� and≤within the above definition.
This is, however, consistent with the following definition of fpt-reducibility. We will discuss
the purpose of the previous definition afterwards.

Definition 1.13. Let (L, κ) and (L′, κ′) be parameterized problems over Σ and Σ′ respectively.
We say (L, κ) is fpt (many-one) reducible to (L′, κ′) ((L, κ) ≤fpt-m (L′, κ′)) via the fpt reduction
function f : Σ∗ → Σ′∗ if

1. for all w ∈ Σ∗: w ∈ L ⇔ f (w) ∈ L′,
2. (f , κ) ∈ FFPT and
3. κ � f κ′.

•

The first two parts look similar to the definition of polynomial time many-one reducibility,
whereas the third is a crucial property to ensure that FPT is closed under fpt-reductions.

Definition 1.14. Let (f , κ) and (f ′, κ′) be parameterized function problems over Σ and Σ′

respectively such that f and f ′ are functions. We say (f , κ) is fpt Turing reducible to (f ′, κ′)
((f , κ) ≤fpt-T (f ′, κ′)) if there is an algorithm that, equipped with an oracle for (f ′, κ′), com-
putes f (w) for an instance w ∈ Σ∗ in time g(κ(w)) · p(|w|) (as in the definition of FPT) such
that for all queries h(w) made during the computation κ �h κ′ holds. The definition for
relations and languages is analogous. If f and f ′ are sets of relations or functions, we define

(f , κ) ≤fpt-T (f ′, κ′) ⇔ ∀h′ ∈ f ′∃h ∈ f : (h, κ) ≤fpt-T (h′, κ′) .

Whenever one of f and f ′ is a set of objects and the other is not, we replace the single object
by the singleton set { f } (or { f ′} respectively). •

We will use the reduction definition for sets when we reduce G I to G
C in section 2.3.

Example 1.15. I S(vc) ≤fpt-m V C. Assume that the parameters are
named κ and κ′ respectively. As in an NP-completeness proof we choose the reduction func-
tion f that maps (G, k) to (G, |V(G)| − k). Then f is computable in polynomial time and
the first two conditions are fulfilled. We now look at the parameters and see κ(G, k) = k
and κ′(f (G, k)) = κ′(G, |V(G)| − k) = |V(G)| − (|V(G)| − k) = k = κ(G, k). So κ′ can be
bounded from above by a function of κ that does not depend on the instance. If we tried to
reduce I S with the same f , we would get κ′(f (G, k)) = |V(G)| − κ(G, k). This
violates the third condition. e.g.

Lemma 1.16. FPT is closed under fpt-reductions, i.e. if (A, κ) ≤fpt-m (B, κ′) and (B, κ′) ∈ FPT
then (A, κ) ∈ FPT.

17

The weft hierarchy Parameterized complexity theory

Proof. Let r(κ′(w))p(|w|) the runtime bound of some algorithm for (B, κ′) according to the
definition of FPT and f a reduction function for (A, κ) ≤fpt-m (B, κ′). Further let g be an
upper bound for κ′ as guaranteed by κ � f κ′ and (h, p′) be the runtime of an FFPT com-
pliant algorithm computing the reduction function f . Then an algorithm for (A, κ) may
first compute f (w) for its input w and then use the algorithm for (B, κ′). This takes at most
h(κ(w))p′(|w|) + r(g(κ(w)))p(| f (w)|) computation steps. Since | f (w)| ≤ h(κ(w))p′(|w|)
and q(ab) ≤ q(a)q(b) for a polynomial q, we obtain an overall runtime bound that is again
polynomial in |w|. Furthermore all operations on the runtime are computable as well as all
functions involved (r, h and g) and thus (A, κ) ∈ FPT.

Observe that the polynomial dependence on |w| could be violated, if g could depend on w
in another way than via κ. We close the discussion of fpt-reductions with a corollary. As
already mentioned, this handles the case when A is a fixed classical problem (e.g. G
I) and only the parameter changes. See chapter 8 for examples of parameters
that (do not) cover other parameters.

Corollary 1.17. If κ � κ′ and (A, κ′) ∈ FPT then (A, κ) ∈ FPT.

1.4. The weft hierarchy

WhileP is the standard notion of tractability in the non-parameterized world, the polynomial
time hierarchy captures increasing levels of intractability by alternating quantifiers. Similar
hierarchies also exists for the parameterized world. The weft hierarchy (or W-hierarchy)
classifies problems by their fpt-reducibility to certain problems for boolean formulas with
“interwoven” (i.e. alternating) levels of

∧
and

∨
.

Definition 1.18. Let I = (I(j,i))j∈[t],i∈[d] be a series of index sets containing integers in [d]
and let ψ be a mapping of integers i in [d] to a disjunction of 2 literals ψi = λ1 ∨ λ2 (λj = x
(negation) or λj = x for some variable x). We define the propositional formula φI,ψ as

φI,ψ =
∧

i1∈I1,1

∨
i2∈I1,i1

· · ·
∨

it∈It−1,it−1

ψit if t is even and φI,ψ =
∧

i1∈I1,1

∨
i2∈I1,i1

· · ·
∧

it∈It−1,it−1

ψit else .

An assignment of φI,ψ with weight k is a function from the variables of φI,ψ to the set {true,
false} such that exactly k variables are set to true. Further, we define the parameterized
problem W t-N S as:

W t-N S
Input : ((I(j,i))j∈[t],i∈[d], ψ, k), where I, ψ are as above, k ∈N

Parameter : k
Question : Is there an assignment of true/false to the variables xj in φI,ψ such that

exactly k variables are set to true and φI,ψ becomes true?
•

Definition 1.19. Let t ∈N \ {0}. The tth level of the W-hierarchy (W[t]) is
{(L, κ) | (L, κ) ≤fpt-m W t-N S}

•

18

Parameterized complexity theory The weft hierarchy

This is the definition used in [Nie06], whereas [FG06] uses a descriptive definition via Fagin
definability and the original definition (e.g. in [DF99]) used circuits. Since we focus on algo-
rithmic aspects the most important classes of this hierarchy are W[0] = FPT and W[1], i.e. if
a parameterized problem is W[1]-hard, and therefore intractable under current assumptions,
we do not care “how intractable” it is. Observe that W[1] is defined via reducibility to the
problem of deciding whether there is an assignment with k variables set to true for a given
formula of the form ∧

i∈[d]
λi,1 ∨ λi,2 ,

where each λi,j is some literal. If we require the literals to be negative, the formula is an-
timonotone, i.e. switching a variable from true to false cannot change the evaluation of the
entire formula from true to false. These formulas directly correspond to a graph whose ver-
tices are variables and whose edges are the sets of variables which appear together in one
clause. An assignment of weight k corresponds to an independent set of size k, since we may
only choose one variable per clause and one vertex per edge. It turns out that antimonotone
formulas suffice to characterize W[1] (and W[t] in general, see e.g. [FG06, Theorem 7.29]), i.e.
the problem W t-N A S is W[1]-complete, which
in turn also holds for I S.

Theorem 1.20. I S is W[1]-complete (under fpt-reductions). 6�

We omit the reduction type from now on, since we only consider fpt-reductions, when deal-
ing with W[t]-completeness.

Corollary 1.21. The parameterized problem
I S I

Input : G, H ∈ G
Parameter : |V(G)|+ |E(G)|
Question : Is G isomorphic to an induced subgraph of H?

is W[1]-complete.

Proof. The W[1]-hardness is obvious via a reduction from I S (since there are
no edges, the parameter is exactly the same). The other direction goes by a reduction to I-
 S. Let (G, H) be a candidate pair for I S I, we construct
a graph HG such that V(HG) = V(G)×V(H) and any two-element set {(u, v), (w, x)} is in
E(HG) if and only if it is not an isomorphism from G[{u, w}] to H[{v, x}]. Now any inde-
pendent set S of HG is an isomorphism from G[dom(S)] to H[rng(S)] and any such partial
isomorphism is an independent set. We output (HG, |V(G)|) as an instance for I
S and observe that the parameter never increases, while the size of HG is polynomial in the
size of G and H.

Chen, Thurley and Weyer were able to show that this even holds for every unbounded class
of graphs from which we may choose G.

Theorem 1.22 ([CTW08, Corollary 4]). Let C be a family of graphs without an upper bound on the
number of edges. Then the problem

19

Other classes Parameterized complexity theory

C I S I
Input : G ∈ C, H ∈ G
Parameter : |V(G)|+ |E(G)|
Question : Is G isomorphic to an induced subgraph of H?

is W[1]-complete. 6�

1.5. Other classes

Early parameterized results (e.g. [Luk82; Bod90]) usually do not handle all instances of a
certain problem and study the role of the parameter, but discuss subproblems where all in-
stances share the same parameter (partial k-trees and graphs with treewidth k). Classical
problems of this kind are called slices in parameterized complexity. We now look at the
class of parameterized problems, whose slices are decidable in polynomial time (in a uni-
form manner).

Definition 1.23. Let (L, κ) be a parameterized problem over Σ. The lth slice of (L, κ) is the
language (L, κ)l = {w ∈ Σ | κ(w) = l}. Then (L, κ) shall be contained in the class XP if
there is a computable function A from N to a set of algorithms, such that for all l ∈ N the
algorithm A(l) decides (L, κ)l in polynomial time. •

Equivalently we can define XP as the class of parameterized problems (L, κ), for which there
exists a an algorithm and a computable function f , such that for each w ∈ Σ the algorithm
decides whether w ∈ L in at most f (κ(w)) · |w| f (κ(w)) computation steps. Problems in XP
would actually also deserve the attribute “fixed-parameter tractable”, since handling each
slice separately is what is referred to as “fixing a value” in other areas of mathematics. While
other names (“slowly increasing” is used in [EP99] to refer to FPT) might better distinguish
between XP and FPT, we continue to use the standard naming.

Theorem 1.24. For all t < t′ ∈N: FPT ⊆ W[t] ⊆ W[t′] ⊆ XP.

Proof sketch. W[t] is closed under fpt-reductions by definition and thus contains FPT. Further
a formula φ is equivalent to

∧
i∈[1] φ and

∨
i∈[1] φ and thus W[t] ⊆ W[t′]. Finally we can decide

whether φ ∈W t-N Sl, by testing all (i.e. O(|φ|l)) assignments
of weight l.

On the other hand (by a parameterized diagonalization argument and the time hierarchy
theorem, see e.g. [FG06, Corollary 2.26]) the outermost classes of this chain are different.

Theorem 1.25. FPT ⊂ XP 6�

Similar classes can be defined for space complexity. However, we do this using multi-tape
Turing machines. We assume that every Turing machine has a non-writable input tape, a
write-only output tape (i.e. the head may only stay or move to the right) and an arbitrary
number of working tapes. The amount of space used by a machine on an input is the maximal
number of used cells on all work tapes combined over all configurations during its execution.
There are two classes which correspond to classical logarithmic space (L):

20

Parameterized complexity theory Other classes

Figure 1.1. Illustration of the difference between FPT and XP: For a parameterized problem
in FPT and algorithm with runtime bound f (k)p(|w|) there is a polynomial p1(|w|) = |w| ·
p(|w|) that bounds the runtime if k ≤ f−1(|w|). With increasing |w| instances with slightly
larger κ become tractable (relative to |w|), these are the blue instances under the curve in the
left picture. By contrast the right picture depicts the situation for problems in XP. For each
possible value κ(w) = k there is a polynomial pk that bounds the runtime of some algorithm.
But whenever we choose some series of instances such that k ∈ ω(|w|) the runtime cannot
be bounded by any pi, i ∈N

2
4

6
8

10

|w|

k
=

κ
(w

)

p1

0
2

4
6

8
10

|w|

k
=

κ
(w

)

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

.

Definition 1.26. Let (L, κ) be a parameterized problem over Σ. The class XL contains (L, κ)
if every slice (L, κ)l can be decided in logarithmic space by a uniform family of algorithms
analogously to XP. (L, κ) is in para-L if there is an algorithm and a computable function f ,
such that for every w ∈ Σ the algorithm decides whether w ∈ L in at most f (k) +O(log |w|)
computation steps. •

With a similar argument as in the classical case (only polynomial many different configura-
tions on logarithmic space) we get:

Lemma 1.27. para-L ⊆ FPT and XL ⊆ XP. 6�

We remark that FPT is also know as para-P and that X and para versions exist for a variety of
classical complexity classes, see [FG03] for general information about the relation X vs. para
and [EST12] for parameterized space complexity.

21

2. The graph isomorphism problem

Mathematicians usually define objects by the way they interact with other objects, not by
by “what they are made of”. There are multiple ways to define the set of real numbers and
thus the number one can, for instance, be either a Dedekind cut or a Cauchy sequence (or
rather equivalence classes of those). But under all circumstances it is the multiplicative iden-
tity. As a consequence two structures which only differ by the elements in there base sets
are considered equivalent and the formal criterion for this equivalence is the existence of an
isomorphism, i.e. a bijective mapping that respects relations and operations. The isomor-
phism problem asks whether there is an isomorphism between two given structures. Since
graphs are one of the most important class of structures in computing science, the isomor-
phism problem for graphs has a wide area of applications. Furthermore the isomorphism
problem for explicitly given structures (i.e. all elements of relations are listed) is polyno-
mial time reducible to graph isomorphism [Mil79]. Finally, the graph isomorphism problem
plays an important role for complexity, as it is one of a few natural problems that is neither
known to be efficiently decidable (i.e. in P) nor known to be NP-complete. A related problem
is the graph canonization problem. It demands the construction of a canonical form, that
is, a graph isomorphic to a given input graph such that for two isomorphic input graphs
the output is identical. In this second introductory chapter we define graph isomorphisms
and canonical forms as well as the corresponding parameterized problems and look at some
basic algorithms from the viewpoint of parameterized complexity.

2.1. Graph isomorphisms and canonical forms

Definition 2.1 (Isomorphic graphs, isomorphism, automorphism). For two Graphs G1 and
G2, a function φ is an isomorphism from G1 to G2 (G1

∼=φ G2) if it is a bijection φ : V(G1) →
V(G2) such that

∀{u, v} ∈
(

V(G1)

2

)
: {u, v} ∈ E(G1) ⇔ {φ(u), φ(v)} ∈ E(G2) .

Two graphs G1 and G2 are isomorphic (G1
∼= G2) if there is an isomorphism φ such that

G1
∼=φ G2. A function φ is an automorphism of G1 if G1

∼=φ G1 and the automorphism group
of G1 (Aut(G1)) is the group

({φ | G1
∼=φ G1}, ◦) .

For any graph G the set {H ∈ G | G ∼= H} is the isomorphism type of G. •

Colorings are a very handy tool to encode structural information of a graph (e.g. information
about the neighborhood of a vertex). Many graph isomorphism algorithms (see e.g. chapter
4) rely on the fact that such structural information has to be preserved by isomorphisms
between colored graphs. We now define this formally.

22

The graph isomorphism problem Graph isomorphisms and canonical forms

Definition 2.2 (Isomorphisms of colored Graphs). Two vertex and edge colored Graphs (G1, c1)
and (G2, c2) are isomorphic ((G1, c1) ∼=φ (G2, c2)), the isomorphism being φ, if and only if
their underlying graphs are isomorphic and the colors correspond: G1

∼=φ G2 and ∀m ∈
(V(G1) ∪ E(G1)) : c1(m) = c2(φ(m)). The usual case of vertex colored graphs is defined
analogously, as well as automorphisms, the automorphism group Aut(G1, c1) and the col-
ored isomorphism type {H ∈ Gc | (G1, c1) ∼= H} for both cases. •

See figures 2.1 and 2.2 for examples of (non-)isomorphic (colored) graphs.

Figure 2.1. Two isomorphic graphs, but two non-isomorphic colored graphs: The identity
on V(G1) is an isomorphism between G1 and G2, but the coloring c2 does not assign red to a
single vertex, while c1(a) is red.

(G1, c1) :
a b

c d
(G2, c2) :

a b

c

d

Figure 2.2. Two non-isomorphic graphs: In both graphs only a and h have degree 2, but in
H1 both a and h are simplicial (their neighborhood induces a clique), while in H2 only a is
simplicial.

H1 :

b d f

a h

c e g

H2 :

b d f

a h

c e g

Definition 2.3. Let f : G → Γ∗ be a function on graphs. We call f an invariant if for two iso-
morphic graphs G1, G2 ∈ G their values coincide, i.e. f (G1) = f (G2). If the other implication
f (G1) = f (G2) ⇒ G1

∼= G2 also holds, f is a complete invariant. •

We only discuss invariant graph parameters in this work and hence we will not mention
the fact that a parameter is an invariant from now on, but simply assume it. Furthermore
we may use κ(G) for an arbitrary graph G (i.e. not require G ∈ G), because any bijection
f : V(G)→ [|V(G)|] yields the same value κ(G) = κ(([|V(G)|], { f (e) | e ∈ E(G)})).

Example 2.4. The eigenvalue multiplicity is an invariant. The adjacency matrices of two
isomorphic graphs G1

∼=φ G2 in G can be transformed into each other by a permutation
matrix P that corresponds to the isomorphism, i.e.

AG2 = P−1AG1 P with Pi,j =

{
1 φ(j) = i
0 else

and thus

AG1r = λr ⇔ AG1 PP−1r = λr ⇔ P−1AG1 PP1r = P−1λr ⇔ AG2 P−1r = λP−1r

for all r ∈ R|V(G1)|. So the bijection corresponding to P−1 maps eigenspaces of AG1 to those
of AG2 , we know that there spectra coincide and thus em(G1) = em(G2). e.g.

23

Parameterized isomorphism problems The graph isomorphism problem

Definition 2.5. A function { : G → G is canonical form if for any two graphs G1 and G2

{(G1) ∼= G1 and (G1
∼= G2 ⇒ {(G1) = {(G2)) .

Let l be a labeling of a graph G ∈ G such that rng(l) = V(G). Then l is a canonical labeling
of G w.r.t. { if

(V(G), {l(e) | e ∈ E(G)}) = {(G) .

The corresponding canonical labeling relation is the set
cl{ = {(G, l) | l is a canonical labeling of G w.r.t. {} .

We will use cl{(G) to denote the set of all canonical labelings of G,
cl{(G) = {l | (G, l) ∈ cl{} .

All these notions shall also be defined for colored graphs in an analogous manner. •

Whenever we construct a concrete canonical form, we drop the index {. As a canonical la-
beling of a graph G ∈ G is a permutation of V(G), we will interpret a labeling as a coloring
(and denote it with Latin letters) or a permutation (and use Greek letters) depending on the
context.

Lemma 2.6. For any canonical form {, any graph G ∈ cGraphs and any l ∈ cl{(G)

cl{(G) = {lφ | φ ∈ Aut} .

Proof. Let l, l′ be in cl{(G). Since l(E(G)) = l′(E(G)), l−1l′(E(G)) = E(G). Thus φ = l−1l′

is an automorphism and l′ = lφ.

2.2. Parameterized isomorphism problems

In this section we directly define related parameterized problems and briefly discuss there
relations among them if we parameterize by the same parameter.

Definition 2.7. Let κ be a graph parameter. We define G I parameterized
by κ as:

G I(κ = k)
Input : (G1, G2, k), where G1 and G2 are graphs and k ∈N

Parameter : k
Question : G1

∼= G2 and κ(G1) = k ?
As discussed in section 1.1 G I parameterized by κ shall be the following
problem if κ ∈ FP is known:

G I(κ)
Input : A pair of graphs (G1, G2)
Parameter : κ(G1)
Question : G1

∼= G2?
•

We will always speak about the graph isomorphism problem in later chapters, even though
in most cases we actually handle the functional version:

24

The graph isomorphism problem Parameterized isomorphism problems

Definition 2.8. Let κ be a graph parameter. Then f -G I parameterized by
κ shall be the following parameterized function problem:

f -G I(κ = k)
Input : (G1, G2, k), where G1 and G2 are graphs and k ∈N

Parameter : k
Output : If ∃φ : G1

∼=φ G2 and κ(G1) = k: φ, else null.
As discussed in section 1.1 G I parameterized by κ shall be the following
problem if κ ∈ FP is known:

f -G I(κ)
Input : A pair of graphs (G1, G2)
Parameter : κ(G1)
Output : If ∃φ : G1

∼=φ G2: φ, else “not isomorphic”
•

We use null instead of “not isomorphic” or similar in the first case, because we don't actually
know whether there is an isomorphism and we may interpret κ(G1) ≤ k as bound on a
resource, we were allowed to use. For the related problems, we only define the mediate
version explicitly.

Definition 2.9. Let κ be a graph parameter and λ be a function Gc → N. Then C
G I parameterized by λ shall be the parameterized problem:

C G I(λ = k)
Input : ((G1, c1), (G2, c2), k), two colored graphs and k ∈N

Parameter : k
Question : (G1, c1) ∼= (G2, c2) and λ((G1, c1)) = k ?

Whereas the G A parameterized by κ is:
f -G A(κ = k)

Input : (G, k), a graphs G and k ∈N

Parameter : k
Output : A set of generators for Aut(G) if κ(G) = k, else null

•

In the non-parameterized world all problems above are polynomial time equivalent via Tur-
ing reductions (see e.g. [Mat79; Hof82]), i.e. given an algorithm for one of those problems
with runtime bound r : N→N, we can find algorithms for all other problems with runtime
bound p + p ◦ r (for some polynomial p). If we consider all problems above for the same
parameter, this caries over to the parameterized world for many parameters.

From colored graphs to uncolored graphs There are some methods to turn a pair of colored
graphs (G1, c1) and (G2, c2) (|V(G1)| = |V(G2)|) into uncolored graphs G′1 and G′2 such that

(G1, c1) ∼= (G2, c2) ⇔ G′1 ∼= G′2 .

One method attaches a graph Bv to each v ∈ V(G1) ∪ V(G2) such that for two vertices u ∈
V(Gi), v ∈ V(Gj): Bv ∼= Bu ⇔ ci(u) = cj(v). The attached graphs Bv have to be chosen in a
way that guarantees that no induced subgraph of either Gi is isomorphic to Bv (and no other
additional local isomorphic induced subgraphs occur). A typical choice for Bv is therefore a
large (i.e. > |V(G1)| vertices) clique or path together with some graph that encodes the color.

25

Parameterized isomorphism problems The graph isomorphism problem

A second method (e.g. in [BC79]) adds ci(v) loops to each vertex v and subdivides every edge
(including the new loops) by adding a new vertex in the middle. Yet another approach for
encoding relations is described in [Gur97]. We may use it for colors, but it only works for
Turing reductions: check that the sets of used colors in both graphs are the same and replace
the colorings by relations (R(u, v) ⇔ c(u) < c(v)). Then encode pairs in the relation using a
special arc graph and mark old vertices with two new adjacent leaves. Adding cliques whose
size is not bounded by the graph parameter in question or adding an unbounded number
of circles violates the third condition of fpt-reductions. We may, however, use the parameter
itself to construct color encodings.

Example 2.10. To show that C G I(max deg) is fpt-reducible to G
I(max deg) (the first max deg is formally a function on Gc) we may choose the first
method and first check max deg(G1) = max deg(G2). Then we attach a path of length c(v)
to a (max deg(G1) + 2)-clique and this clique to the vertex v and go on for all other vertices
of G1 and G2. Now each new clique can only be mapped to a new clique and each new clique
has exactly two vertices of degree max deg(G1) + 2, one that is connected to the old vertex
and one that is connected to a path that is separated from all other new cliques by the clique
in question. Furthermore the maximal degree is only augmented by at most 1 and thus we
described an fpt-reduction. e.g.

No such method which attaches multiple new connected vertices (and thus new uncovered
edges) to every vertex can work if we parameterize G I by the minimal vertex
cover size vc. On the other hand, G I(vc = k) is fixed-parameter tractable
(see section 4.1.2) and its algorithm (4.3) can be easily modified to check for colors. Thus C-
 G I(vc = k)∈ FPT and therefore C G I(vc = k)
≤fpt-m G I(vc = k). To my knowledge it is unknown whether C
G I(κ = k)≤fpt-m G I(κ = k) holds for all graph parameters
κ. A counterexample κ ∈ FFPT would yield C G I(κ = k) /∈ FPT and
thus P 6= NP.

Question 2.11. Does C G I(κ = k)≤fpt-m G I(κ = k)
hold for every κ ∈ FFPT? ?

Lemma 2.12. f -G I(κ = k)≤fpt-T C G I(λκ = k) with
λκ((G, c)) = κ(G) for all (G, c) ∈ Gc.

Proof sketch. To compute an isomorphism from a graph G1 to a graph G2 (provided one ex-
ists), we assign the same color (say 1) to all vertices of both graphs and check whether a
colored isomorphism exists. If there is none, we are done, else we pick a vertex u ∈ V(G1)
and a vertex v ∈ V(G2) and assign the same new color (smallest unused) to both. We go
on by checking for an isomorphism between both colored graphs. If there are not isomor-
phic, we assign the color 1 to v and choose another vertex in G2 with color 1. Since both
graphs are isomorphic, we finally succeed and find a parter for u. This procedure has to be
repeated until all vertices u ∈ V(G1) are matched. Now the pairs of matching vertices form
an isomorphism between G1 and G2. Finally, we observe that all queries to C G
I(λκ) are performed in a way such that κ(G1) = λκ((G1, c1,i)) for the coloring c1,i
in question and thus κ � fi λκ (f being the function that attaches cj,i to Gj for j ∈ [2]). Hence
this procedure is an fpt Turing reduction.

26

The graph isomorphism problem Parameterized canonization problems

In a similar manner, using a tower of groups (see section 3.1), one obtains the following
lemma.

Lemma 2.13. f -G A(κ = k) ≤fpt-T C G I(κ = k) 6�

Lemma 2.14. Let κ ∈ FFPT be a graph parameter such that there are computable functions f and
g with κ(G) ≤ g({{κ(G[C]) | C is a component of G}}) and κ(G[C]) ≤ f (κ(G)) for all connected
components C of all graphs G ∈ G. Then G I(κ = k) ≤fpt-T f -G A-
(κ = k).

Proof sketch. We assume that the input graphs G1 and G2 for G I(κ = k) are
vertex disjoint and connected, if they are not connected we handle components separately
(backed by the existence of f , see lemma 2.28). If the input contains k as a candidate for
κ(G1), we check k = κ(G1) and k = κ(G2) and reject if this check fails. Now we are able
to construct the union graph G = (V(G1) ∪ V(G2), E(G1) ∪ E(G2)). Furthermore κ(G) =
g({{κ(G1), κ(G1)}}) and thus only depends on κ(G1). Hence we may actually compute k′ =
κ(G) in fpt time and an oracle query to f -G A(κ = k) with instance (G, k′)
will be always answered with a set of generators 〈g1, . . . , gl〉 for Aut(G). We obtain

G1
∼= G2 ⇔ ∃i : gi(V(G1)) = V(G2) ,

because an automorphism cannot “partly” switch components. This completes the reduc-
tion.

Note that we could have started with the colored version of each problem if the parameter for
colored graphs ignores the colors (or at least does not inhibit the operations in the reduction).
We conclude that the relations among the different flavors of the graph isomorphism/auto-
morphism problem from the non-parametrized world remain intact when we deal with a
single parameter, provided that we are able to reduce the colored problem to the uncolored
case.

2.3. Parameterized canonization problems

The problems of computing canonizations and canonical labelings are actually an entire class
of problems. If we apply canonizations in the context of G I we do not care
whether a canonical form has any specific property beside being canonical. This is why we
modeled classes of parameterized function problems and the reductions among them in the
specific way described in definitions 1.8 and 1.14. In this section we only define the directly
parameterized versions explicitly and imply the definition for the mediately parameterized
versions, but we use the mediate versions in lemmas and proofs, as they require a little more
care in some cases. Again all reductions from uncolored to colored problems work analo-
gously if we start with a colored problem whose parameter ignores colors.

Definition 2.15. Let κ ∈ FP be a graph parameter. G C parameterized by
κ (G C(κ)) is the parameterized problem

({{ | { is a canonical form}, κ) .

Further, we define C L parameterized by κ (C L(κ)) as
({cl{ | { is a canonical form}, κ) .

27

Parameterized canonization problems The graph isomorphism problem

Let C L C(κ) be defined as
({ f | f (G) = (l, g1, . . . , gn), Aut(G) = 〈g1, . . . , gn〉, l ∈ cl{(G), { is a canonical form}, κ) ,

i.e. the problem of computing a representation for the coset containing all canonical labelings
of a given graph. By C I(κ) we denote the problem

({ f : G → Γ∗ | f is a complete invariant}, κ) .

Finally G I O(κ) shall be the problem
 f : G2 → {−1, 0, 1}

∣∣∣∣∣∣∣∣ ∀G, H, K ∈ G :

f (G, H) = − f (H, G),
f (G, H) = 0 ⇔ G ∼= H,
f (G, H) = f (H, K) = x ⇒ f (G, K) = x,
G ∼= H ⇒ f (G, K) = f (H, K)

 , κmax

 ,

where κmax(G1, G2) = max{κ(G1), κ(G2)} for (G1, G2) ∈ G2. The definitions of the colored
versions can be given analogously. •

Lemma 2.16. G I(κ = k) ≤fpt-T G C(κ = k) ≤fpt-T C-
 L(κ = k)

Proof. For the first reduction we query G C(κ = k) with each input graphs
Gi, i ∈ [1, 2] and the candidate k for κ. If the query for G1 is answered with null, we also
return null. If not and the query for G2 is answered with null, we return “not isomorphic”,
as κ is an invariant. In any other case we have two canonical forms and return “isomorphic”
if and only if they are equal. The second reduction is obvious, we query with or own instance
and apply the labeling that we got (if we got one).

As a consequence we see that it is sufficient to handle the canonical labeling problem if we
like to find upper bounds for the parameterized complexity of G I. There
are, however, situations were it is interesting to discuss both problems separately, even if
an algorithm for both exists and the best known runtimes do not differ. This is the case
if we like to indicate the transition from a G I algorithm to a C
L algorithm or if the algorithm for G I is simpler and may serve as
an introduction.

We now look at further reductions among the different canonical labeling problems, which
are similar to the reductions for G I.

Example 2.17. We continue example 2.10. Let f be the reduction function we described
there for C G I(max deg)≤fpt-mG I(max deg) (attach-
ing widgets based on colors), we will use it to show C C L(max deg)
≤fpt-m C L(max deg). Observe that for an instance (G, c) the vertices of G
are still present in f (G, c). If we query for f (G, c) and get l as answer, we simply return
a condensed version of l|V(G), i.e. we sort the v ∈ V(G) by l(v) and return the positions
s : V(G) → [|V(G)|]. To see that s is a canonical labeling observe that the transformation
from l to s describes the transformation from {(f (G, c)) to {(f (G, c))[l(V(G))] where { is the
canonical form corresponding to l. e.g.

Once more we cannot give a general scheme for arbitrary parameters and have to pose the
following question.

28

The graph isomorphism problem Basic algorithms

Question 2.18. Does C C L(κ = k) ≤fpt-T C L(κ =
k) hold for every κ ∈ FFPT? ?

The following lemma can be seen as an analogon to lemma 2.13.

Lemma 2.19. C L C(κ = k) ≤fpt-T C C L(κ = k).

Proof sketch. From the lemmas 2.13 and 2.16 we know f -G A(κ = k) ≤fpt-T

C G I(κ = k)≤fpt-T C C L(κ = k) and C-
 L(κ = k) ≤fpt-T C C L(κ = k) is obvious.

Obviously, we have C I(κ)≤fpt-T G C(κ), but the converse
also holds for parameters with C C L(κ = k) ≤fpt-T C L-
(κ = k).

Lemma 2.20 (similar in [Gur97]). C L(κ = k)≤fpt-T C G I-
 O(κ = k) ≤fpt-T C C I(κ = k)

Proof sketch. For the first reduction let f be the isomorphism order function computed by
our oracle for C G I O(κ = k). Iteratively enlarging dom(l),
construct partial canonical labelings l such that (G, l ∪ c0(l)) gets minimal w.r.t. f , where
c0(l) : (V(G) \ dom(l)) → {0}. That means, if v is the next vertex to be added to dom(l),
then

∀u ∈ V(G) \ dom(l) : f ((G, lv ∪ c0(lv)), (G, lu ∪ c0(lu))) ∈ {0, 1} ,

where lv = l ∪ (v, |dom(l)|+ 1).

The second reduction is obvious because of our definition of C G I
O(κ = k) using κmax in definition 2.15.

2.4. Basic algorithms

The graph isomorphism algorithms we will investigate later use simple algorithms for certain
base cases. To avoid later deviation, we will discuss them here briefly. Most of these basic
algorithms rely on colors to encode structural information.

2.4.1. The Weisfeiler-Lehman algorithm

The 2-dimensional Weisfeiler-Lehman algorithm goes back to the 1960s [WL68; Wei76] and
gave also rise to the study of so called cellular algebras. Later it was generalized to an arbi-
trary dimensionality≥ 2. The related one-dimensional naïve vertex refinement (often called
1-dim WL) is the core building block in [BK79] to achieve an linear average time algorithm
for G I. For a detailed description of the Weisfeiler-Lehman algorithm, we
refer to [CFI92].

Informally, the d-dimensional Weisfeiler-Lehman algorithm for d ≥ 2 works as follows: color
all

29

Basic algorithms The graph isomorphism problem

d-tuples of vertices by the (colored) isomorphism type of the graph they induce (observ-
ing the order of vertices in the tuple). Then exchange each vertex (one at a time) of the tuple
by the same vertex and write down the colors (as a tuple) of the resulting tuples. Do this for
all vertices and set the resulting multiset as the new color of the tuple. Repeat this proce-
dure for all d-tuples until no new pair of tuples gets distinguished by a newly assigned color
(partition refinement). Algorithm 2.1 is a formal description of this procedure. Note that we
have to recolor with integers in each step to avoid exponential growth of the color names.
Nevertheless the colors of former rounds and the renaming tables are stored to tell similar
but different colorings apart (think of e.g. c′(v) = c(v) + 1).

Algorithm 2.1. d-dimensional Weisfeiler-Lehman algorithm for d ≥ 2: d-dim WL
Input : Colored graph (G, c) ∈ Gc
Output : Multiset of d-dimensional stable coloring

1 subprocedure rep(v=(v1, . . . , vd), i, w)
2 | u← v; ui ← w; return u
3 end
4 i←0
5 for v=(v1, . . . , vd) ∈ V(G)d

6 | c0(v)← (c(v1), . . . , c(vd),adj(G[{vi | i ∈ [d]}]))
7 end
8 do
9 | i←i + 1

10 | for v=(v1, . . . , vd) ∈ V(G)d

11 | | c′i(v)← (ci−1(v), {{(ci−1(rep(v, 1, w)), . . . , ci−1(rep(v, d, w))) | w ∈ V(G) }})
12 | end
13 | si ← sortLexico(rng(c′i)) i.e. si : [| rng(c′i)|]→ rng(c′i), si(r) <lex si(s) ⇒ r < s
14 | for v= ∈ V(G)d

15 | | ci(v)← s−1
i (c′i(v))

16 | end
17 until ∀ (u, v) ∈ (V(G)d)2 : ci(u) = ci(v) ⇔ ci−1(u) = ci−1(v)
18 return {{(c0(v), . . . , ci(v)) | v ∈ V(G)d}}

Lemma 2.21. The d-dimensional Weisfeiler-Lehman algorithm (2.1) computes an invariant in poly-
nomial time (at most |V(G)|d iterations of the do-until-loop). 6�

Corollary 2.22. Let (G, c) ∈ Gc be a colored graph. Then algorithm 2.2 returns in polynomial time
a coloring f such that the colored isomorphism type of (G, f) is an invariant (if seen as a function of
(G, c)). 6�

Remark 2.23. An algorithm for a parameterized problem that has a runtime bound according
to the definition of FPT can only contain the d-dimensional Weisfeiler-Lehman algorithm if
d does not depend on the parameter. !

30

The graph isomorphism problem Basic algorithms

Algorithm 2.2. Vertex coloring from d-dimensional Weisfeiler-Lehman algorithm for d ≥ 2:
flattened d-dim WL
Input : Colored graph (G, c) ∈ Gc
Output : Vertex coloring of G

1 compute stable coloring ci using d-dim WL
2 for w ∈ V(G)
3 | for j ∈ [d]
4 | | f ′j (v)←{{ci((v1, . . . , vd)) | (v1, . . . , vd) ∈ V(G)d, vj←w}}
5 | end
6 | f ′(v)← (f ′1(v), . . . , f ′i (v))
7 end
8 s← sortLexico(rng(f ′))
9 for w ∈ V(G)

10 | f (w)← (c(w), s−1(f ′(w)))
11 end
12 return f

2.4.2. Linear time algorithms for trees

For some graph classes like trees, the output of the d-dimensional Weisfeiler-Lehman algo-
rithm is even a complete invariant for some fixed d. In the case of tree this even hold s for the
naïve vertex refinement (1-dim WL). There are, however, simpler and faster algorithms in
the case of trees. While the Weisfeiler-Lehman algorithm propagates adjacency information
in all directions, it suffices for trees if we work from the leaves to the center. Algorithm 2.3
iteratively removes leaves and colors the sole neighbor of some leaves based on their colors
in a consistent manner for two graphs. If its input are trees, its output is an isolated edge or
vertex (the former center) colored according to the isomorphism type of the input graph and
thus a kind of “relative complete invariant”. The output keeps this property if the graphs
are not trees, but it can, of course, have any number of vertices. Note that we can generalize
this algorithm for more than two input graphs.

Lemma 2.24 ([AHU74, Theorem 3.2]). A set of tuples S = {(ai,1, . . . , ai,li) | i ∈ [k], ai,j ∈ [m]}
can be sorted by a modified version of radix sort in time

O(m +
k

∑
i=1

li) .

Lemma 2.25 ([AHU74, Theorem 3.3]). Let (G1, c1), (G2, c2) ∈ Gc and let (G′1, c′1) and (G′2, c′2) be
both graphs after the application of algorithm 2.3. Then each component of both (G′i , c′i) has either no
leaves or at most two vertices and

(G1, c1) ∼= (G2, c2) ⇔ (G′1, c′1) ∼= (G′2, c′2) .

Furthermore algorithm 2.3 can be implemented in linear time.

Proof sketch. The key observation for the correctness is to see that the check in line 18 en-
sures the consistence of the recoloring among both graphs. Each color of a vertex v ∈ Li,l−1
corresponds to the isomorphism type of the tree formed of v and its adjacent components

31

Basic algorithms The graph isomorphism problem

Algorithm 2.3. Remove leaves and recolor [AHU74, Example 3.2]: removeLeavesAndRe-
color
Input : Colored graphs (G1, c1) and (G2, c2)
Output : Colored graphs where each component has either no leaves or at most two vertices

1 if (|V(G1)|6=|V(G2)|)
2 | return fixed pair of non-isomorphic colored graphs
3 for i ∈ [2]
4 | compute Li,0 ⊆ V(Gi) by iteratively removing vertices //center for trees
5 | | with degree 1 from Components with at least 3 vertices
6 | compute all Li,l ← {v |minu∈Li,0 d(u, v)=l}
7 | hi ←max {l | Li,l 6= ∅}
8 end
9 if (h1 6= h2)

10 | return fixed pair of non-isomorphic colored graphs
11 for l←h1 down to 1
12 | for i ∈ [2]
13 | | for v ∈ Li,l−1
14 | | | c′1(v)← (c(v), {{c(u) | u ∈ Li,l∩ N(v)}})
15 | | end
16 | | si ← sortLexico(c′i(Li,l−1)) //input as multiset, using lemma 2.24
17 | end
18 | if (s1 6= s2)
19 | | return fixed pair of non-isomorphic colored graphs
20 | for i ∈ [2]
21 | | for v ∈ Li,l−1
22 | | | ci(v)← s−1

i (c′(v)) //si with duplicates removed
23 | | end
24 | | Gi ← Gi \ Li,l
25 | end
26 end
27 return (G1, c1) and (G2, c2)

in Gi[Fi,l], where Fi,l =
⋃

j∈[l,hi]
Li,l. This correspondence only holds for vertices in the same

distance to either “core” Li,0, but for both graphs.

For the runtime, we look again at some fixed level l. Observe that the size of all color multi-
sets combined is exactly |Li,l| and thus each vertex counts at most one time for the combined
length of strings as input to the algorithm from lemma 2.24. The maximal color used for
sorting (the original colors apart) is again |Li,l|. To handle the original colors we could per-
form a global radix sort in each graph with the original colors and the smallest distance to a
leave. This allows to use bogus colors in [|Li,l−1|] for the actual radix sort, but keep the orig-
inal colors for the comparison in line 18. The loop starting in line 13 has to be implemented
carefully for linear time: e.g. traverse Li,l and “push” the colors c(u) (u ∈ Li,l) to a list for
each neighbor v ∈ Li,l−1, instead of “pulling” them from v.

While algorithm 2.3 does not compute a complete invariant if called with one instead of
two input graphs, we have seen in the proof that the colors on each level are in some sense
canonical. We can exploit this property to construct a linear time canonization algorithm for

32

The graph isomorphism problem Basic algorithms

trees in a quite obvious way. To achieve this goal, we add a second phase that works from
the center to the leaves thereby propagating the canonical order of the vertices.

Algorithm 2.4. Canonical labeling of trees: treeCanonLab
Input : Colored tree (T, c)
Output : Canonical labeling of (T, c)

1 //do not remove any vertices
2 (T, c)←removeLeavesAndRecolor((T, c)) //keep the levels Ll = L1,l and h = h1
3 choose bijection φ : L0→ [|L0|] such that ∀ u, v ∈ L0 : φ(u)<φ(v) ⇒ c(u) ≤ c(v)
4 q← |L0|
5 p← 0
6 for l ∈ 1 to h
7 | r← q
8 | for i ∈ [p + 1, q]
9 | | Ni ← N(φ−1(i)) ∩ Ll

10 | | φ′ : Ni → [r + 1, r + |Ni|] such that ∀ u, v ∈ Ni : φ(u)<φ(v) ⇒ c(u) ≤ c(v)
11 | | φ← φ ∪ φ′

12 | | r← r + |Ni|
13 | end
14 | p← q
15 | q← q + |Ll|
16 end
17 return φ

Corollary 2.26. Algorithm 2.4 computes a canonical labeling for trees in linear time.

Proof sketch. We already observed that the colors on each level correspond to the isomor-
phism type of the subtree rooted there and thus any order on equally colored vertices (and
therefore subtrees) on each level produces the same graph if we ignore all levels closer to the
center. Hence we may order the equally colored vertices on level l by the order of there sole
neighbors in level l − 1. Observe that we may exchange two vertices in the final labeling if
and only if the tuple of colors on the path from the center is the same.

The runtime claim can be verified by seeing r,p and q as pointers and observing that we have
to do bucket sorts with |Ll| elements and integers in |[Ll−1]| (assuming that Ll is already
sorted according to c by removeLeavesAndRecolor).

2.4.3. Linear time isomorphism algorithm for colored cycles

The following lemma will be used in section 4.2.

Lemma 2.27 ([KS10]). A graph isomorphism test for colored cycles (G1, c1) and (G2, c2) is doable
in linear time.

Proof. Assume both graphs are cycles of length k. Let si : [k]→ V(Gi), i ∈ [2] be an arbitrary
order on the vertices of each graph, such that {si(j), si(j + 1)} ∈ E(Gi) for j ∈ [k− 1]. If G1
and G2 are isomorphic, the tuples of colors ti = (ci(si(j)))j∈[k] are identical up to reversal and

33

Basic algorithms The graph isomorphism problem

a cyclic shift. Using the Knuth-Morris-Pratt string-matching algorithm [KMP77] with t1t1 (2
concatenated copies of t1) as the search string and t2 and its reversed string tR

2 as patterns,
we conclude that both graphs are isomorphic, if and only if t2 or tR

2 is found in t1t1. This
algorithm runs in time O(2(2|t1|+ |t2|)) = O(k) and dominates the runtime of the creation
of the strings.

2.4.4. Disconnected graphs

Some graph isomorphism algorithms assume that the input graphs are connected (e.g. in
chapter 3). Two common approaches reduce G I to G I for
connected graphs: taking the complement if the graphs are not connected or matching their
components. Taking the complement is not a good idea in the parameterized world, as pa-
rameters like max deg are unbounded with respect to the original graph's parameter. Match-
ing the components works, as long as the parameter of the components is bounded by some
function of parameter of the entire graph.

Algorithm 2.5. Graph isomorphism for disconnected graphs: matchComponents
Input : Graphs G1 and G2 and a function isoTest to call for each component
Output : Isomorphisms from G1 to G2 if one exists

1 φ← ∅
2 for C ∈ {V | V is a connected component of G1 }
3 | for D ∈ {V | V is a not associated connected component of G2 }
4 | | ψ← isoTest(G1[C], G2[D])
5 | | if ψ 6= “not isomorphic”
6 | | | φ← φ ∪ ψ
7 | | | associate(C, D)
8 | | | break
9 | | end

10 | end
11 | if C is not associated to any component
12 | | return “not isomorphic”
13 | end
14 end
15 if ∃ not associated component D of G2
16 | return “not isomorphic”
17 else
18 | return φ
19 end

Lemma 2.28. For any graph parameter κ such that there is a computable function f with κ(G[C]) ≤
f (κ(G)) for all connected components C of all graphs G ∈ G, algorithm 2.5 provides an algorithm
for the fpt Turing reduction

G I(κ) ≤fpt-T C G I(κ).

6�

For canonical labelings the reduction is even easier, as we only have to sort the components
by their size and their canonical form.

34

The graph isomorphism problem Basic algorithms

Lemma 2.29. For any graph parameter κ such that there is a computable function f with κ(G[C]) ≤
f (κ(G)) for all connected components C of all graphs G ∈ G, we have

C L(κ) ≤fpt-T C C L(κ).
6�

35

Part II.

Parameterized problems in FPT

…watch the tree grow, …

36

3. Color multiplicity

Definition 3.1. Let (G, c) be a colored graph. Its color multiplicity cm(G, c) is defined as
cm(G, c) = max

i∈rng(c)
c−1(i) ,

i.e. the size of its biggest color class. •

The corresponding parameterized problems C G I(cm) and C
C L(cm) are the subject of this section and were tackled in the late 1970s
and early eighties. Hence these first results concerning the fixed-parameter tractability of
G I and C L predate the introduction of fixed-parameter
tractability by over a decade. The algorithms yielding the fixed-parameter tractability are of
group-theoretic nature and work by a reduction to the colored graph automorphism prob-
lem, analogously to lemma 2.14. Clearly the color multiplicity is not increased by such a
reduction.

Two papers make up the algorithm for the colored graph automorphism problem: László
Babai's Monte Carlo Algorithms in Graph Isomorphism Testing [Bab79] introduces a prob-
abilistic algorithm that constructs a tower of groups such that one of its level is the automor-
phism group and guesses coset representatives for the groups of the tower. In 1980 Furst,
Hopcroft and Luks [FHL80] gave a deterministic algorithm to construct a set of coset repre-
sentatives for towers of groups given a set of generators. In the rest of this section we will
first discuss towers of groups in general, go into the algorithm in [FHL80] and explain the
specific tower used by [Bab79] and how to construct a canonical labeling with this tower. Fi-
nally we will look at possible use cases of this result, by considering conditions which lead
to bounded color class sizes.

3.1. Towers of groups

By coset we will refer to left cosets throughout this section, i.e. if H is a subgroup of G for
every g ∈ G the set gH = {gh | h ∈ H} is a (left) coset of H in G. Briefly recall Lagrange's
theorem and its proof:

Theorem 3.2 (Lagrange's theorem). For every finite group G and every subgroup H of G
|H| | |G|, particularly: |G| = |G : H| · |H|

Proof sketch. The cosets form a partition {Ci | 1 ≤ i ≤ k} of G. Let Ci = gH be a coset of
H. Clearly |gH| ≤ |H| by the definition of gH. Assume |gH| < |H|, which means there are
h, h′ ∈ H, h′ 6= h such that gh′ = gh. But then h′ = g−1gh′ = g−1gh = h. Thus |Ci| = |H| for
any i. Since ∑i∈[k] |Ci| = |G| we obtain the theorem.

37

The sift-and-close-algorithm Color multiplicity

Lemma 3.3. Let G be a group and H and G′ subgroups of G, then
|H : H ∩ G′| ≤ |G : G′| .

Proof. Assume r and s are in different cosets of H ∩ G′ in H. If r and s would be in the same
coset of G′ in G, then r−1s ∈ G′ and since r, s ∈ H r−1s ∈ G′ ∩ H. This would contradict the
assumption and thus the claim follows.

The last part of proof of Lagrange's theorem now leads us to the notion of towers of groups.
Observe that for a given coset Ci of a subgroup H in G and a ∈ Ci the set a−1Ci equals H
and thus Ci = aH. If we now fix a set R of coset representatives, every element of g can be
written unambiguously as rh where r ∈ R and h ∈ H. But why should we stop here? If K is
a subgroup of H and S a set of coset representatives of K in H than g = rsk where s ∈ S and
k ∈ K. This brings us to the concept of towers:

Definition 3.4 (Tower of groups). For a group G with identity 1 a tuple of groups (G0, . . . , Gk)
is called a tower of groups for G, if

1. G0 = G,
2. Gk = {1} and
3. Gi+1 ≤Gi.

•

We will now state the observation above as a lemma:

Lemma 3.5. Let (G0, . . . , Gk) be a tower of groups and for 1 ≤ i ≤ k let Ri be a set of coset represen-
tatives for Gi in Gi−1. There is a unique representation g = r1 . . . rk (ri ∈ Ri) for every g ∈ G.

Example 3.6. Consider the additive group of the quotient ring Z420. The subgroups
G0 = 〈2〉, G1 = 〈10〉, G2 = 〈30〉, G3 = 〈210〉, G4 = 〈0〉 form a tower of groups for 〈2〉,
where G4 = {0}, G3 = {0, 210}, G2 = {0, 30, 60, 90, 120, . . . , 390, 420}. Choose a minimal
({0, 2, 4, 6, 8} for G1 in G0) set of coset representatives for each |Gi : Gi+1|. 392 can now be
written as 0 + 2 + 0 + 180 + 210. e.g.

Example 3.7 ([FHL80]). Let G be a subgroup of Symn and G0 = G. For 1 ≤ i ≤ n define
Gi = { f ∈ Symn | ∃(ai+1, . . . , an) : f (1, . . . i, . . . , n) = (1, . . . , i, ai+1, . . . , an)} ∩ G .

On each level choose some set of coset representatives Ri, e.g. choose the lexicographically
minimal permutation from each coset. Choosing a representation for g ∈ G now corresponds
to mapping i to its image g(i) for i from n to 1. e.g.

3.2. The sift-and-close-algorithm

3.2.1. sift …

The tower of groups approach may easily lead to algorithms, but there is still a fundamental
question to solve: how to construct a set of coset representatives for each level of the tower?
The algorithm in [FHL80] employs an idea also used in other two-phases algorithms like the

38

Color multiplicity The sift-and-close-algorithm

Knuth-Morris-Pratt algorithm [KMP77]: construct an auxiliary table in the same way you
use it.

One use case of a tower of groups (H0, . . . , Hk) for a subgroup H of G is to test for a given
element of g ∈ G whether it also lies in H and to compute a a coset representation of g. Given
a set Ri of coset representatives for each level of the tower this is easy. Lemma 3.5 guarantees
that if g ∈ H, then there is a unique representation g = r1 . . . rk. To compute r1 we only need
to test which representative is equivalent to g (r−1

1 g ∈ H1). If there is none, we know g /∈ H.
Otherwise r−1

1 g = r2 . . . rk. Now recurse to compute r2 . . . rk.

Note, that testing for r−1
l . . . r−1

1 g ∈ Hl recursively does not yield a polynomial time algo-
rithm, which is the reason why we need the ability to check whether p ∈ Hl in polynomial
time by some other means.

To construct a table of coset representatives in a similar way, we apply the procedure to
elements h = r1 . . . rk of H itself. Since we know h ∈ H, a failure to find a coset representative
equivalent to r−1

l−1 . . . r−1
1 h means that such a representative is missing. Using r−1

l−1 . . . r−1
1 h as

this representative fills our gap. Thereby we define the representation of h as r1 . . . rl1
k−l. We

summarize this procedure in algorithm 3.1 which we will call sift as in [FHL80]. The table
T used in this algorithm is initialized by putting 1 into every of row of T.

Algorithm 3.1. The sift-algorithm [FHL80]
Input : Tower of groups G0, . . . , Gk, partially filled table of coset representatives T, g ∈ G0
Output : Table T′ with at most one additional element

1 for i ∈ [k] do
2 | found← false
3 | for a ∈ Ti do
4 | | if (a−1g ∈ Gi)
5 | | | g← a−1g
6 | | | found← true
7 | | | break
8 | | end
9 | end

10 | if (¬ found)
11 | | append(Ti, g)
12 | | break
13 | end
14 end

Example 3.8. Continuing example 3.6, let us look at the following table, after some sifts. Each
row is labeled with the corresponding index, which means in the end this row will have this
number of entries.
|G0 : G1| 0 168 72
|G1 : G2| 0 350
|G2 : G3| 0 240
|G3 : G4| 0

Again we consider g = 392: For i = 1, 392 is equivalent to 72 : −72 + 392 = 320 = 32 · 10, so
g becomes 320. Now 350 and 320 are equivalent, since their difference is 30 and G2 = 〈30〉,

39

The sift-and-close-algorithm Color multiplicity

so g ← 390(= −30). Finally 390 is inequivalent to both 0 and 240 since neither 390 nor 150
is a multiple of 210. So we add 390 to the third row.

|G0 : G1| 0 168 72
|G1 : G2| 0 350
|G2 : G3| 0 240 390
|G3 : G4| 0

e.g.

3.2.2. …and close

After the discussion of the sift algorithm one question naturally arises: which and how many
group elements do we have to sift to get a complete table? There are two answers to this
question: If we know all the indices Ii = |Gi : Gi+1| or at least the order of G, we need to sift
elements until |Ti| = Ii and thus |G| = ∏i∈[k] |Ti|.

But we are far better off, if we know a set of generators 〈g1, . . . , gm〉 for G. Since any element of
G can be written as a product of generators and every generator has a unique representation
after sifting all the generators, we may write any element of G as a product of coset represen-
tatives in T. This gives us a tuple (r1, . . . , rl) of coset representatives. Let l(r) = i ⇔ r ∈ Ti
be the level where r occurs. Then (r1, . . . , rl) is a representation in the sense of lemma 3.5 if
and only if (l(r1), . . . , l(rl)) is a strictly increasing tuple. Missing levels can be filled with 1

(which is in every level), so l < k is no problem. If the level sequence is not strictly decreas-
ing, there is a minimal l and a maximal i (depending on l) such that l(ri−1) ≥ l(ri) = l (a
conflict on level l). Replacing their product ri−1ri with its unique representation solves the
problem, but for this purpose we need to sift all products rs with r ∈ T, s ∈ T, l(r) ≥ l(s).
Observe that replacing ri−1ri results in a product with one fewer conflict on level l. If we
remove all conflicts on level l from right to left and continue on all levels < l, the product we
obtain is in the form of lemma 3.5. Thus closing the table against the group operation is all
we need to do (algorithm 3.2).

Algorithm 3.2. The close-algorithm [FHL80]
Input : Tower of groups G0, . . . , Gk, table of coset representatives T (generators sifted)
Output : complete table T of coset representatives

1 U← T
2 while (U 6= ∅)
3 | T̃← T
4 | for (r, s) ∈ U2 ∪ U× T̃ ∪ T̃ × U
5 | | sift(T, rs)
6 | end
7 | U← T \ T̃
8 end
9 return T

Example 3.9. For the last time we consider example 3.6. Since G0 = 〈2〉 = 〈122〉 sifting 122
and closing the table is all we need to do. The tables below show T before each iteration of
the while loop in algorithm 3.2.

40

Color multiplicity The sift-and-close-algorithm

|G0 : G1| 0 122
|G1 : G2| 0
|G2 : G3| 0
|G3 : G4| 0

→

|G0 : G1| 0 122 244
|G1 : G2| 0
|G2 : G3| 0
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0
|G2 : G3| 0
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0 190
|G2 : G3| 0
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0 190 380
|G2 : G3| 0
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0 190 380
|G2 : G3| 0 150
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0 190 380
|G2 : G3| 0 150 300
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0 190 380
|G2 : G3| 0 150 300 30 180
|G3 : G4| 0

→

|G0 : G1| 0 122 244 366 68
|G1 : G2| 0 190 380
|G2 : G3| 0 150 300 30 180 330 60
|G3 : G4| 0 210

e.g.

Algorithm 3.3. The sift-and-close-algorithm [FHL80]
Input : Tower of groups G0, . . . , Gk, with G0 = 〈g1, . . . , gl〉
Output : table T of coset representatives

1 T← (T1, . . . , Tk), Ti ← ∅
2 for i ∈ [k]
3 | append(Ti, 1)
4 end
5 for i ∈ [l]
6 | sift(T, gi)
7 end
8 close(T)
9 return T

Theorem 3.10 ([FHL80]). Let (G0, . . . , Gk) be a tower of groups for a group G = 〈g1, . . . , gl〉 and c
be an upper bound for the number of steps needed to apply the group operation, to compute the inverse
of a group element and to test whether an element is in Gi for 1 ≤ i ≤ k. Then algorithm 3.3 computes
a complete set of coset representatives in time O(c · t3) where t = ∑i∈k |Gi−1 : Gi|.

Proof. It is easy to see that the sift procedure itself is correct, i.e. it creates a new entry if and
only if its argument cannot be represented by the current table T. The sequence of as with
positive test result in line 4 of algorithm 3.1 is a proper beginning of a unique representation.
Thus we found a missing representative if and only if we cannot complete this representation
up to level k.

While motivating the algorithm, we already stated that any representation by generators can
be turned into a unique representation using coset representatives by representing the gen-
erators and rewriting pairs with nondecreasing levels from right to left. We replace each rs
(with l(s) ≤ l(r)) by the sequence a1, . . . , ak of as of the sift procedure (algorithm 3.1 line 4),
actually omitting a1, . . . , al(s)−1. We can do this since for r, s ∈ Gl(s)−1 ⇒ rs ∈ Gl(s)−1 and

41

Application to G I(cm) Color multiplicity

thus ai = 1 (i ∈ [l(s)− 1]). After this step the rightmost occurrence of a level l(s) represen-
tative is at the position of r and we will eventually get a unique representation according to
lemma 3.5. During the runtime analysis we will observe that all products of pairs of entries
in the final table T have been sifted.

The final size of T is t, justified by lemma 3.5 and the order of G. To analyze the runtime,
observe that in the close-phase (see algorithm 3.2), every element of the final Table T is at
most once in the set U (each generator in line 1, every other product in line 7). So for every
pair of elements (r, s) of the final T, either r is earlier in U than s or s earlier than r or both at
the same time, so (r, s) is considered in exactly one iteration of the while loop and contained
in exactly one set of line 4. Thus sift is called t2 times. The sift procedure processes each
element of the current T at most once, performing one inversion and one test of membership
as well as one group operation, so its runtime is in O(3ct), which results in a total runtime
of O(ct3).

3.3. Application to G I(cm)

During this section we will look at Babai's work [Bab79] and discuss why the tower of groups
used there is suitable to solve graph isomorphism for graphs of bounded color class size
in polynomial time. This is to some extent anachronistic, but the conditions for applying
Babai's probabilistic algorithm are nearly identical to those of the deterministic algorithm
in [FHL80]. From now on (G, c) is a colored graph with rng(c) = [m], Ci = c−1(i) and
k = cm(G, c).

3.3.1. Stabilizing the sets of equally colored edges

One way of characterizing automorphisms of a graph G is defining them as the set-wise
stabilizers of the edgeset E(G) regarding its action on (V(G)

2), i.e. φ is an automorphism of G if
and only if φ(E(G)) = E(G) where we interpret φ as a function from (V(G)

2) to (V(G)
2) such that

φ({{u1, v1}, . . . , {uk, vk}}) = {{φ(u1), φ(v1)}, . . . , {φ(uk), φ(vk)}} .

Any vertex coloring c : V(G) → [m] defines an edge coloring c′ : E(G) → ([m]
2) and because

colored graph isomorphisms and automorphisms have to preserve c, they have to adhere to
c′, too. Using this we can again express automorphisms in another way: φ is an automor-
phism of G if and only if it stabilizes all edge sets of maximal subgraphs consisting of equally
colored edges (φ(Ei,j) = Ei,j, where Ei,j = {e ∈ E(G) | |e ∩ Ci| = |e ∩ Cj| ≥ 1}).

Given these facts, we only miss one observation to build Babai's tower. Since we are interested
in a tower for the automorphism group, we could easily get a set of coset representatives
using the tower of example 3.7 and a set of generators of the automorphism group. But a set
of generators is what we like to compute in the first place, so this approach seems circular.
But a set of coset representatives for the tower G0, . . . , Gl also includes coset representatives
for all towers Gi, . . . , Gl for i ∈ [l − 1]. This enables us to put Aut(G, c) in the middle of a
tower right above a tower like in example 3.7 (i.e. iteratively fixing vertices). Above Aut(G, c),
we place a tower that “filters” all permutations by enforcing them to respect one additional
set of equally colored edges Ei,j in each level. But we do not even need to start with all

42

Color multiplicity Application to G I(cm)

permutations, only those which stabilize all vertex color classes. Finding a set of generators
for this set is easy: take 2 permutations for each color class Ci: a single cycle of length (|Ci|)
and one transposition. Let us aggregate these thoughts into an example:

Example 3.11 (nearly the tower of [Bab79]). Let G0 =
⊗

i∈[k] Sym(Ci) (seen as a subgroup of
Sym(V(G))), for (i, j) ∈ [m]2:

Gm(i−1)+j = Gm(i−1)+j−1 ∩ {φ ∈ Sym(V(G)) | φ′(Ei,j) = Ei,j} and for i ∈ [m] :

Gm2+i = Gm2+i−1 ∩ {φ ∈ Sym(V(G)) | ∀v ∈ Ci : φ(v) = v} .

e.g.

Note that this construction, as well as the final construction of [Bab79], contains useless steps
(for undirected graphs), as Ei,j and Ej,i are treated separately. This eases the calculation of
indices, but any real implementation for undirected graphs should skip the groups that are
no proper subgroups (see figure 3.1, e.g. groups G7 and G8 are equal to G6 and therefore left
out).

Figure 3.1. A graph and a corresponding tower of groups (construction of example 3.11)

G1

G2

G3

G5

G6

G9 = Aut(G)

G10, . . . , G12

To apply algorithm 3.3 as a FPT-algorithm, we need to construct a tower with small indices,
because their sum dominates the runtime. Since there are only at most k vertices in each
color class, there are no more than (k!)2 permutation on each Ci ∪ Cj which respect the col-
ors. Furthermore, for any permutation φ in Gi−1(i ∈ [m2]), the coset of Gi in Gi−1 into which
φ falls, is solely determined by its behavior on Ci ∪ Cj and thus |Gi−1 : Gi| ≤ (k!)2. Obvi-
ously |Gi−1 : Gi| ≤ k! for i ∈ [m2 + 1, m2 + m], because there are at most k! ways of setwise
stabilizing a set of at most k elements. If our only goal is to get a FPT-algorithm, we are done.
However |G0| = |

⊗
i∈[k] Sym(Ci)| ≤ (k!)m, so our upper bound leaves room for improve-

ment. In [Bab79] Babai therefore inserted groups between each pair Gi−1, Gi which perform
some kind of “lookahead”:

Definition 3.12 (tower of [Bab79]). Let H0 = G0, H2i = Gi for i ∈ [m2] and H2m2+i = Gm2+i
for i ∈ [m] (each Gi as in example 3.11). Now define for (i, j) ∈ [m]2:

H2(m(i−1)+j)−1 = {φ ∈ H2(m(i−1)+j)−2 | ∃ψ ∈ H2(m(i−1)+j)∀v ∈ V(G) \ Ci : φ(v) = ψ(v)}
•

Lemma 3.13. Let H1, . . . , H2m2+m be the tower of definition 3.12 and k = maxi∈[k] |Ci|:
|H2(m(i−1)+j)−2 : H2(m(i−1)+j−1)| ≤ k! and |H2(m(i−1)+j)−1 : H2(m(i−1)+j)| ≤ k!

43

Application to G I(cm) Color multiplicity

Proof. Lemma 3.3 allows us to restrict our attention to the groups Q = Sym(Ci)⊗ Sym(Cj)
(seen as a subgroup of Sym(Ci ∪ Cj)), S = {φ ∈ Q | φ(Ei,j) = Ei,j} and R = {φ ∈ Q | ∃ψ ∈
S : φ|Cj

= ψ|Cj
}. Let ψ, φ ∈ Q and φ|Cj

= φ|Cj
. Then ψ−1φ ∈ R and thus |Q : R| ≤ k! because

| Sym(Cj)| ≤ k!. Take an arbitrary φ of a coset D of S in R. By the definition of R there is a
ψ ∈ S : φ|Cj

= φ|Cj
. We can write D as D = φψ−1S and (φψ−1)

∣∣
Cj

= 1Sym(Cj)
, so there are at

most | Sym(Ci)|many cosets of S in R, which yields the second part of the lemma.

3.3.2. Algorithm, its correctness and runtime

Before stating the algorithm we only need to clarify how the basic operations in the sift pro-
cedure are performed. Computing the group operation (composition) and inverting a per-
mutation is easy. This leaves us with the test for membership in algorithm 3.1, line 4. There
are 3 kinds of this test: for any (i, j) ∈ [m]2 simply check whether a given φ ∈ H2(m(i−1)+j)−1

stabilizes Ei,j and is thus in H2(m(i−1)+j) (time complexity: O(k2)). For ψ ∈ H2(m(i−1)+j)−2 we
do the lookahead, by using a precomputed table of allowed restrictions to Cj. The complex-
ity of this a lookup depends on the machine model: it is polynomial in k on a random access
machine by e.g. using the factorial number system or base k encoding (k log k bits for each
restriction) to compute the number of a register. On a Turing machine the time complexity
would be O(k!). Checking whether a permutation fixes a color class pointwise is trivial and
we conclude that the c from theorem 3.10 is c = O(k2).

44

Color multiplicity Application to C L(cm)

Algorithm 3.4. Graph isomorphism for graphs of bounded color class sizes.
Input : Colored Graphs (G1, c1) and (G2, c2) with color classes Ci(1 ≤ i ≤ m)
Output : Are (G1, c1) and (G2, c2) isomorphic?

1 if (G1 is not connected)
2 | G1← G1
3 | G2← G2
4 (G, c)← disjoint union of (G1, c1) and (G2, c2)
5 R← set of generators for

⊗
i∈[k] Sym(Ci)

6 precompute the lookup tables for odd i in [m2]
7 T← (T1, . . . , T2m2+m), Ti ← ∅
8 for i ∈ [2m2 + m]
9 | append(Ti, 1)

10 end
11 for g ∈ R
12 | sift(T, g)
13 end
14 close(T)
15 for i ∈ [2m2 + 1, 2m2 + m]
16 | for p ∈ Ti
17 | | if (p switches components)
18 | | | return “isomorphic”
19 | | end
20 | end
21 end
22 return “not isomorphic”

Theorem 3.14. Algorithm 3.4 correctly decides whether 2 colored graphs (G1, c1) and (G2, c2) with
color class sizes at most k are isomorphic in time O((k!)3k2|V(G1)|6) and hence C G
I(cm) ∈ FPT.

Proof. Group H2m2+2 really is the automorphism group of (G, c) (line 4), because it is the
intersection of stabilizers of the sets of equally colored edges. Since every element of a group
can be uniquely represented by coset representatives (lemma 3.5) a complete table of coset
representatives is a set of generators. So the loop starting in line 15 checks for every generator
of a set of generators of the automorphism group whether it switches the component and
thus whether any automorphism does this. From here correctness follows from the reduction
of G I to G A.

Precomputing a lookup-table for the lookahead groups takes time O(|V(G)|2(k!)2). The
sift-and-close algorithm with an upper bound on the basic operations in the sift-procedure
of O(k2) and a table size of at most O(|V(G)|2k!) takes times O((k!)3k2|V(G)|6). This dom-
inates all other part of the algorithm including the loop starting in line 15. This loop iterates
over at most O(nk!) elements and each iteration takes time O(|V(G)|).

45

Application to C L(cm) Color multiplicity

3.4. Application to C L(cm)

In [Bab79] Babai asked for canonical labeling procedure based on his approach. This demand
was soon fulfilled by [KL81]. As this preprint is not easily available today and the following
articles (especially [BL83]) only describe more involved approaches, we refer to a talk by
Luks [Luk10, 11–26]. Again (G, c) shall a colored graph with rng(c) = [m], Ci = c−1(i) and
k = cm(G, c) throughout this section.

The central idea of algorithm 3.5 is to compute a lexicographically minimal adjacency string
whose entries are sorted according to the pairs of colors of the incident vertices. This special
sort order enables us to find this minimal string iteratively by first treating only the edges
whose vertices both have the color 1, then additionally considering those with vertex colors
{1, 2} and so on. The tower of groups in algorithm 3.4 contains all the information we need
for this undertaking, because all the coset representative in the table created from the tower
precisely describe the possible actions on the edge sets with certain colors that stabilize the
color classes.

Algorithm 3.5. Canonical labeling for graphs of bounded color class sizes.
Input : Colored Graph (G, c) ∈ Gc with color classes Ci(1 ≤ i ≤ m)
Output : A canonical labeling of (G, c)

1 sort (rename) all u, v ∈ V(G) such that c(u) < c(v) ⇒ u < v
2 T← as in algorithm 3.4
3 t←1

4 for i ∈ [m2]
5 | choose r ∈ T2i−1, s ∈ T2i with minimal adj(trs(V(G)), trs(Ei(G)))
| | where E′i(G)←⋃

h∈[i] Exh,yh(G) such that h←(xh − 1)m + yh
| | and Exh,yh(G)←{{u, v} ∈ E(G) | c(u)←xh, c(v)←yh}

6 | t← trs
7 end
8 return t

Theorem 3.15. Algorithm 3.5 computes a canonical labeling for a colored graph (G, c) ∈ Gc with
cm(G, c) = k in time O((k!)3k2|V(G)|6) and therefore C C L(cm) ∈
FPT.

Proof. The runtime directly follows from theorem 3.14 as the sift-and-close-algorithm clearly
dominates the additional loops. To see, why the computed labeling t is canonical, we analyze
the algorithm for two isomorphic colored input graphs (G1, c1) and (G2, c2) in Gc. By the
definition of Gc, we may set V = V(G1) = V(G2) = [|V(G1)|] and use it as the vertex set
of both graphs. Let φ be the isomorphism between both graphs after sorting the vertices of
each graph by their color. After sorting, the pairs of colors (x, y) corresponding to the ith
level of each table T are equal for both graphs. For each graph Gj set tj,0 = 1, let tj,i be the
value of t after the ith iteration of the for-loop starting in line 4 and set Ej,x,y = Ex, y(Gj) for
all pairs of colors (x, y) and E′j,i = E′i(Gj) using the definition in the algorithm. Further let xi

and yi be the colors such that i = (xi − 1)m + yi. The choice of two entries r and s in the ith
round corresponds to the choice of a single coset representative rj,i in the simplified tower
of example 3.11 and thus we will not discuss groups on odd levels explicitly. We will now

46

Color multiplicity Consequences

prove the following fact by induction on i:
adj(t1,i(V), t1,i(E′1,i)) = adj(t2,i(V), t2,i(E′2,i))

For i = 0 both graphs in the claim become edgeless and since the vertices are already sorted
according to colors in both graphs, their adjacency matrices are equal.

Assume i > 0 and thus the claim holds for all h < i. The coset membership on levels 2i− 1
and 2i of each tower of groups is solely determined by the action on Ej,xi,yi (for j ∈ [2]).
Especially, each rj,i is a member of the group Gj,2i−2 in each tower and thus stabilizes each
E′j,i−1. Hence we have tj,i(E′j,i−1) = tj,i−1(E′j,i−1) and thus

adj(t1,i(V), t1,i(E′1,i−1)) = adj(t2,i(V), t2,i(E′2,i−1)) .

This means that the algorithm had to choose each rj,i such that
adj(r1,i(V), r1,i(E1,xi,yi)) = adj(r2,i(V), r2,i(E2,xi,yi)) ,

because its choice is not disturbed by earlier differences and t2,iφ has unique representation
in the table for G1 and vice versa for t1,iφ

−1. Combining the last two equalities yields the
desired claim and completes our proof.

3.5. Consequences

For an example of an application for this theorem, see section 6.1, where we discuss the path
distance width.

Corollary 3.16. Let C : G → {C ⊆ [n][m] | m, n ∈ N, m ≤ n} a polynomial time computable
function (in |V(G)|+ |E(G)|) that assigns to every graph G a set of colorings C(G) such that for
any graph H ∈ G and any isomorphism φ : G → H there is a bijection b : C(G) → C(H) such
that for all c ∈ C(G) φ is an isomorphism from (G, c) to (H, b(c)). Further let κ be a graph param-
eter that bounds mmcol(C(G)) = minc∈C(G) maxi∈rng(c) |c−1(i)|. Then C L is
fixed-parameter tractable w.r.t. κ.

Proof. Since C is computable in polynomial time, C(G) has always polynomial size.
Compute C′(G) = {c ∈ C(G) | maxi∈rng(c) |c−1(i)| = mmcol(C(G))}. For all c ∈ C′(G)

compute a canonical labeling for (G, c) according to algorithm 3.5 and choose a labeling
l among these labelings that minimizes adj(l(V(G)), l(E(G))). This can be done in time
O(|C′(G)| f (κ(G))|V(G)|6) (for some f). It is easy to see that this labeling is canonical, as it
is canonical for one of the colored graphs and the bijection b ensures that the set of canonized
colored graphs is an invariant.

Note that we only need to compute C′ and thus C doesn't even need to be computable in
polynomial time as long as C′ is.

Example 3.17. Let (G, c) ∈ Gc be a colored graph. For a fixed e ∈N and any v = (v1, . . . , ve) ∈
V(G)e define cv(w) = (c(w), i) where i = max{j | j = 0 ∨ vj = w}. For a fixed d run the
d-dimensional Weisfeiler-Lehman algorithm with input (G, cv) and flatten the colors to a
vertex coloring fv (algorithm 2.2). Now define

wlcmd,e(G, c) = min
v∈V(G)e

cm(G, fv) .

47

Consequences Color multiplicity

e.g.

Corollary 3.18. For any d, e ∈ N C C L(wlcmd,e) is fixed-parameter
tractable.

Proof. By individualizing every e-tuple (and not only every set of e elements) we ensure that
the set of colorings does not depend on any choice of order. For any d, e there are only |V(G)|e
colorings, which can be computed in polynomial time for a fixed d. Finally, we apply corol-
lary 3.16. This can be done since the colored isomorphsim type of the flattened d-dimensional
Weisfeiler-Lehman algorithm is an invariant (corollary 2.22) and thus yields the required bi-
jection of colorings (corollary 3.16).

48

4. Modification sets

G I and many NP-complete graph problems are solvable in polynomial time
for certain restricted graph classes C. However, there is not always an inherent parameter
to generalize such a result and turn it into a FPT-algorithm. For such problems and graph
classes it might be interesting to consider sequences of modifications which turn an arbitrary
graph G into a graph G′ ∈ C. By a series of modifications, we mean a tuple (m1, . . . , mk), mi ∈
(V(G)

2)∪V(G), i.e. a tuple of operations of the form “delete vertex v”, “add edge e” or “delete
edge e”. If we start with G0 = G and define for

i ∈ [k] : Gi =

{
Gi−1 −mi mi ∈ E(Gi) ∪V(Gi)

Gi−1 + mi mi ∈ E(Gi)
,

we obtain G′ = Gk, where all the modifications have been carried out in the specified order.
Provided that all modifications are defined, e.g. we do not remove an edge after one of its
vertices has been removed, the order of modifications is irrelevant. Furthermore additions
and deletions of the same edge cancel each other and thus the effect of a series of modifica-
tions can be subsumed by a set of modifications:

Definition 4.1 (modification sets, modification numbers). Let C be a class of graphs and G
an arbitrary graph. A set M is a C modification set for G if there is a modification sequence
m = (m1, . . . , m|M|) from G to a graph G′ ∈ C such that M = {mi | i ∈ [|M|]}. We call such
an M a C vertex deletion set if M ⊆ V(G), a C edge deletion set if M ⊆ E(G) and a C edge
addition set if M ⊆ E(G). The C modification number of G (C-mn(G)) is the smallest k, such
that there is a C modification set for G of size k. Analogously, we define the C vertex deletion
number of G, the C edge deletion number of G and the the C edge addition number of G. •

Such a definition naturally raises the question, how to test whether there is a modification
set of some size k. Thus, we consider the following parameterized problem:

C M S
Input : (G, k), where G is a graph and k ∈N

Parameter : k
Question : Is there a C modification set of G of size at most k?

Again, the similar problems C V D S, C E D S and C E A-
 S can be defined in the same manner.

49

Finite set of forbidden induced subgraphs Modification sets

4.1. Finite set of forbidden induced subgraphs

[Cai96] presents a FPT-algorithm for C M S and the related problems subject
to the condition that there is a finite set F of graphs such that

C = {graphs G | ∀F ∈ F ∀V′ ⊆ V(G) : G[V′] 6∼= F} .

We call F the set of forbidden induced subgraphs of C and C the class of F -free graphs
(C = F -free).

Algorithm 4.1. C modification set, for C = F -free [Cai96]: modSet
Input : Graph G and k ∈N

Output : A C modification set of G of size at most k or “none”
1 if G ∈ C
2 | return ∅
3 end
4 F←minForbSubgraph(G)
5 for m ∈ V(F) ∪ E(F) ∪ E(F)
6 | if (m ∈ E(F))
7 | | G′ ← G + m
8 | else
9 | | G′ ← G − m

10 | end
11 | if (modSet(G′, k− 1) 6= “none”)
12 | | return ({m} 4modSet(G′, k− 1))
13 | end
14 end
15 return “none”

Cai's algorithm (algorithm 4.1) requires the construction of a minimal forbidden induced
subgraph (the call to minForbSubgraph). For the moment we state that this can be done in
timeO(|V(G)|d+1), d = maxF∈F |V(F)| and look at an algorithm which achieves this bound
(also from [Cai96]) after the following theorem.

Theorem 4.2 ([Cai96]). Algorithm 4.1 finds a F -free modification set (if one exists) of a given graph
G of size at most k in time O(d2kt), d = maxF∈F |V(F)|, where t is an upper runtime bound on the
runtime to compute a minimal forbidden induced subgraph of a graph H with |V(H)| ≤ |V(G)|.

Proof. Any set returned by algorithm 4.1 is a modification set of size at most k, which can be
shown inductively. Note that the symmetric difference in line 12 only cancels out additions
and deletions of the same edge and therefore never increases the returned set.

For the other direction assume M is a modification set of size at most k. Then for any forbid-
den induced subgraph F of G there is an m ∈ M which is a vertex, an edge or an edge of the
complement of F (otherwise F would still be present in the modified G). Since algorithm 4.1
considers every way to modify one forbidden subgraph, it will eventually find M, if it does
not return another modification set of size at most k.

All recursive calls to algorithm 4.1 (modSet) use k− 1 as the second parameter and because
|V(F) ∪ E(F) ∪ E(F)| ≤ d2 holds, the entire call tree contains no more than d2k calls to mod-
Set. Each invocation of modSet only constructs a single minimal forbidden subgraph, which

50

Modification sets Finite set of forbidden induced subgraphs

dominates the runtime. All other operations can be implemented in constant time, thus the
claimed runtime follows.

Similar results follow for C V D S (runtime onlyO(dkt)), C E D S
and C E A S. Theorem 4.2 with F = {K2} (K2 = ([2], {[2]})) also completes the
proof for lemma 1.11 (V C ∈ FPT).

4.1.1. Find a minimal forbidden induced subgraph

As promised, we now consider the algorithm to find a minimal forbidden subgraph (algo-
rithm 4.2). Note that this algorithm does not require the set of forbidden induced subgraphs
F to be finite as long as testing for G ∈ F -free can be done efficiently, so it can be used for e.g.
chordal graphs and forests, too. The algorithm is built on the observation that if the removal
of a vertex v does not make G F -free, then G− v contains a forbidden induced subgraph that
is not bigger than the smallest forbidden induced subgraph of G.

Algorithm 4.2. Minimal forbidden induced subgraph [Cai96]: minForbSubgraph
Input : Graph G and k ∈N

Output : A minimal forbidden induced subgraph F of G
1 if G ∈ C
2 | return “none”
3 end
4 F← G
5 for v ∈ V(G)
6 | if (F− v /∈ C)
7 | | F← F− v
8 | end
9 end

10 return F

Lemma 4.3 ([Cai96]). For any class C = F -free, algorithm 4.2 finds a minimal forbidden subgraph
of a graph G /∈ C in time O(|V(G)|t), where t is an upper runtime bound for the test H ∈ F -free
over all graphs H : |V(H)| ≤ |V(G)|. If F is finite the runtime is bounded by O(|V(G)|d+1),
where d = maxF∈F |V(F)|.

Proof. Let Fres be the graph returned by algorithm 4.2. We will at first show that Fres /∈ C. If
the condition in line 6 is never fulfilled, then G = Fres and G /∈ C is tested at the beginning.
In any other case at least one vertex v was removed from F and we consider the last time this
happened. Let F′ be the F before the removal of v, so Fres = F′ − v. Then v wouldn't have
been removed if F′ − v = Fres would have been in C and thus Fres /∈ C.

To show that Fres is minimal, assume that it is not. This means there is a vertex v ∈ V(Fres),
such that Fres − v /∈ C. Let F′ be the F at the beginning of the iteration of the for-loop when
v was considered. We know that F′ − v ∈ C, otherwise v would have been removed. But
Fres− v is an induced subgraph of F′− v and any induced subgraph of Fres− v is an induced
subgraph of F′ − v, too. Thus Fres − v ∈ C, which contradicts the assumption.

51

Finite set of forbidden induced subgraphs Modification sets

Everything except the for-loop (which iterates V(G) times) and the membership test takes
constant time, so the total runtime is inO(|V(G)|t). If F is finite, any test G ∈ C is doable in
time t = O(|V(G)|d), d = maxF∈F |V(F)|. Simply run d nested loops that iterate over V(G)
and for each H ∈ F , |V(H)| = c test whether the graph induced by any c-tuple of vertices
equals H (isomorphism that respects order of vertices). We do not need a real isomorphism
test at his level since we implicitly iterate over all automorphisms of d-elementary subgraphs
of G as well, by considering every d-tuple.

4.1.2. Application to G I

During this section we study an algorithm for G I parameterized by the
F -free vertex deletion number as presented by Kratsch and Schweitzer in [KS10]. Notwith-
standing this, we will consider a slightly modified version of this algorithm, that deals with
modification sets instead of vertex deletion sets. This is somewhat more general and results
for the subtypes of modification sets (including vertex deletion sets) follow easily.

One observation in the previous proof (lemma 4.3) already yields the core building block of
algorithm 4.3: for every (minimal) forbidden induced subgraph F and every modification
set M of a graph G:

|V(F) ∩V(M)| ≥ 1 or |E(F) ∩ E(M)| ≥ 1 or |E(F) ∩ E(M)| ≥ 1 ,

where V(M) = M ∩V(G), E(M) = M ∩ E(G), E(M) = M ∩ E(G) .

These definitions depend on G and so we will always use them in a context where G is clear.

Luckily, if φ is an isomorphism from G1 to G2 and M is a Cmodification set of G1, then φ maps
M to a modification set M′ of G2 such that φ(V(M)) = V(M′), ∀e ∈ E(M) : φ(e) ∈ E(M′)
and ∀e ∈ E(M) : φ(e) ∈ E(M′). Thus, if F is a forbidden induced subgraph of G2, then for
every m ∈ V(M) : φ(m) ∈ V(F) ∪ E(F) ∪ E(F). Now, an algorithm for G I
can fix a pair (m1, m2) in M× (V(F) ∪ E(F) ∪ E(F)), apply the pair to both graphs, recurse
until the graph is F -free and use a G I algorithm for F -free graphs. Finally
it builds up the isomorphism during the recursive ascent.

However, if m1 and m2 are vertices, an isomorphism ψ from G1 − m1 to G2 − m2 may map
neighbors of m1 to nonneighbors of m2. This is solved in [KS10] by a common technique: they
encode (non-)adjacency as color. Because of the recursiveness of the algorithm, we need to
handle colors as well and pass colored graphs to the G I algorithm forF -free
graphs. So we need to encode old colors along with the adjacency information and define
for any coloring c : V(G)→ [l] and any v ∈ V(G):

(c− v) : dom(c) \ {v} → rng(c), (c− v)(u) =

{
(c(u), 1) {u, v} ∈ E(G)

(c(u), 0) {u, v} /∈ E(G)
.

Again this definition depends on G. For the case where m1 and m2 are edges or edges of the
complement, we only need to remember, where we changed the adjacency. Thus we define

(c± e) : dom(c)→ rng(c), (c± e)(u) =

{
(c(u), 1) u ∈ e
(c(u), 0) u /∈ e

.

These thoughts lead to algorithm 4.3 and the following theorem about it:

52

Modification sets Finite set of forbidden induced subgraphs

Algorithm 4.3. Graph isomorphism for graphs with bounded F -free modification sets
[KS10]: graphIsoModSet
Input : Colored graphs (G1, c1) and (G2, c2) and k ∈N

Output : Isomorphism φ from G1 to G2 or null
1 if (G1 ∈ C ∧ G2 ∈ C)
2 | return colIsoClass(G1, G2)
3 if (G1 ∈ C ∨ G2 ∈ C)
4 | return null
5 if (k=0)
6 | return null
7 M←modSet(G1, k)
8 if (M = “none”)
9 | return null

10 end
11 F←minForbSubgraph(G2)
12 for (v1, v2) ∈ V(M) × V(F)
13 | if (c1(v1)=c2(v2))
14 | | φ← graphIsoModSet((G1 − v1, c1 − v1), (G2 − v2, c2 − v2), k− 1)
15 | | if (φ 6= null)
16 | | | return φ ∪ {(v1, v2)}
17 end
18 for (e1, e2) ∈ (E(M) × E(F)) ∪ (E(M) × E(F))
19 | if (c1(e1)=c2(e2))
20 | | φ← graphIsoModSet((G1 ± e1, c1± e1), (G2 ± e2, c2± e2), k− 1)
21 | | if (φ 6= null)
22 | | | return φ
23 end
24 return null

Theorem 4.4 ([KS10]). Let F be a finite set of graphs and colIsoClass an O(|V(G)|c)-time algo-
rithm that computes an isomorphism forF -free graphs, if one exists and returns null otherwise. Then
algorithm 4.3 correctly computes for two colored graphs (G1, c1) and (G2, c2) and k ∈ N whether
(G1, c1) and (G2, c2) are isomorphic and have a F -free modification set of size at most k in time
O(k!d2k|V(G)|d+1), where d = max({|V(F)| | F ∈ F} ∪ {c})). Hence G I
parameterized by the F -free modification number is fixed-parameter tractable. If the graphs are iso-
morphic the algorithm returns an isomorphism.

Proof. The proof works by induction on the argument k. If k = 0 and either G1 /∈ F -free or
G2 /∈ F -free, then algorithm 4.3 returns null in line 4 or 6. If both are F -free the correctness
follows from that of colIsoClass and the runtime is O(|V(G)|c).

For k > 0 line 9 returns null if and only if the modification number of G1 is greater than k
(theorem 4.2) and a modification set can be computed in time O(d2k|V(G)|d+1). This domi-
nates the computation of the minimal forbidden induced subgraph F (lemma 4.3).

Both loops after line 11 combined iterate over all m ∈ M and thus for one such m and and
every isomorphism ψ, ψ(m) is in either V(F), E(F) or E(F) if G1 and G2 are isomorphic.
Thus there is an isomorphism if and only if there is an isomorphism that fixes one of the

53

Feedback vertex set Modification sets

pairs considered in one of the for-loops and so returning null otherwise is correct. Observe
that |V(F)|+ |E(F)|+ |E(F)| ≤ d2 and thus both loops together have at most kd2 iterations.
As discussed earlier, recoloring correctly encodes the adjacency information for a vertex and
individualizing one edge (of the complement) per graph ensures that an isomorphism maps
one edge to the other. Because of this and the inductive hypothesis each returned φ (or
φ ∪ {(v1, v2)} resp.) is an isomorphism from (G1, c1) to (G2, c2). The inductive hypothesis
also yields a runtime bound for every pass of each for-loop: O((k− 1)!d4(k−1)|V(G)|d+1). As
this clearly dominates O(d2k|V(G)|d+1) the overall runtime follows.

4.1.3. Classes with forbidden subgraphs

As well as for forbidden induced subgraphs we might consider a class with forbidden sub-
graphs, regardless whether they are induced or not. It is easy to observe that a finite set F of
forbidden subgraphs implies a finite set F ′ of forbidden induced subgraphs: if F ∈ F than
G does not contain F as a subgraph if and only if it does not contain any induced subgraph
F′, such that |V(F′)| = |V(F)| and F is a subgraph of F′. Thus we define F ′ = {F′ | E(F′) ⊇
E(F), V(F′) = V(F)} and conclude: the class of graphs that do not contain any F ∈ F as a
subgraph is the class F ′-free.

There are, however, some reliefs if a class C of graphs is defined by forbidden subgraphs. It
is clear that C edge addition sets are pointless, because a subset of a set is a subset of any
superset. Furthermore C edge deletion sets M can be transformed into C vertex deletion
sets of size at most 2|M|: M′ = {v ∈ e | e ∈ M}. Thus a bound on the C edge addition
number, C edge deletion number or C modification number implies a bound on the C vertex
deletion number, which is thus the only parameter we have to deal with (if we want to show
tractability).

4.2. Feedback vertex set

Following theorem 4.4 one might ask, whether such a result can be generalized to cover graph
classes whose set of forbidden (induced) subgraphs is infinite. Since graph isomorphism for
bipartite graphs is GI-complete and bipartite graphs are those without odd cycles as sub-
graphs, no general FPT-result is possible unless G I ∈ P. Nevertheless it is
possible to study individual classes, which is what Kratsch and Schweitzer did in [KS10] for
forests.

As outlined in section 4.1.3 we only need to consider vertex deletion sets for forests. Those
sets are generally called feedback vertex sets and their minimal size in a graph G the feedback
vertex number of G (fvs(G)). This name comes from (directed) dependency graphs, where a
vertex on a (directed) cycle depends on its own (previous) state.

Let us now list the ingredients needed to construct an algorithm like algorithm 4.3 for graphs
with bounded feedback vertex number:

1. a small cycle (size bounded by fvs(G))
2. an efficient way to find such a small cycle
3. a FPT-algorithm to construct a feedback vertex set of size k, if one exists

54

Modification sets Feedback vertex set

Finding small cycles if they exist, is the easiest part: e.g. do a BFS for every vertex u and find
an edge {v, w} not in the BFS-tree such that d(u, v) + d(u, w) + 1 is minimized. The com-
plexity of computing a feedback vertex set has been studied extensively: it belongs to Karp's
classical NP-complete problems [Kar72] and also has been considered early by Downey and
Fellows [DF95c] as an example for the usefulness of the notion of fixed-parameter tractability.
We define the parameterized function problem as:

f -F V S
Input : (G, k), G is a graph, k ∈N

Parameter : k
Output : A feedback vertex set of size at most k, if one exists, else “none”.

4.2.1. Find a feedback vertex set, …

The most recent FPT-algorithm is due to [CFLLV08] and yields a runtime of O(5kk|V(G)|2)
where k is the supposed feedback vertex number. We will only sketch the proofs of this
result, as this somewhat deviates from our focus. The key idea is to compute a feedback
vertex set M of a Graph G for the special case where G is partitioned into two induced forests:
V(G) = V1 ∪V2, such that G[V1] and G[V2] are forests. Furthermore we require M ⊆ V1 and
thus any vertex in v ∈ V1, that has two neighbors in the same component of V2 must be in M,
as v is part of a cycle C such that V(C) \ {v} ⊆ V2. Deleting (or moving) leaves in G[V1] with
at most one neighbor in V2, the algorithm from lemma 4.5 only has to branch on vertices of
V1 which connect components of G[V2].

This algorithm is then applied in the iterative compression procedure due to [RSV04]. Iter-
ative compression tries to find a vertex set S = Sl (a feedback vertex set in our case) of size
at most k in G, by considering an increasing sequence G1, . . . , Gl = G of induced subgraphs
of G and iteratively computing the set Si+1 of size at most k for Gi+1 by shrinking the set
Si ∪ (V(Gi+1) \ V(Gi)). |V(Gi+1) \ V(Gi)| needs to be bounded by some c (often and here
too: c = 1). Going from Si ∪ (V(Gi+1) \V(Gi)) to Si+1 requires the exchange of at most k + c
by k vertices. The algorithm from lemma 4.5 is applied to compute for each R ⊆ Si a replace-
ment of size |R− 1|. We will now discuss some details by proving the following lemma and
theorem.

Lemma 4.5 ([CFLLV08]). Let G be a graph, k ∈N and V1, V2 ⊆ V(G) such that V1 ∪V2 = ∅ and
G[V1] and G[V2] are forests and G[V2] has l components. InO(2k+l|V(G)2|) we can decide whether
G has a feedback vertex set M ⊆ V1 of size at most k and, if there is one, compute it.

Proof sketch. The proof goes by induction on k,l and |V1|. If k = 0 we test whether G is a
forest, if l = 0 or |V1| = 0 we know G = G[V1] (or G = G[V2] resp.) is a forest.

Assume k > 0, l > 0, |V1| > 0. If there are no vertices in V1 that have two neighbors in V2, we
pick an arbitrary leaf v of G[V1]. If it has at most one neighbor in G we may remove it from
G. Otherwise all of its neighbors but at most one lie in one component of G[V2] and we may
move it to V2, since it is either a leaf of G or has a neighbor v′ ∈ V1 that also lies on all of its
cycles. In either case we may recurse with an instance which has smaller |V1| and thus use
the inductive hypothesis.

55

Feedback vertex set Modification sets

If there is a vertex v in V1 that has two neighbors in the same component of V2 it has to
included in any feedback vertex set and we recurse with G − v. In any other case there is
a vertex v ∈ V1 that connects at least two components of G[V2]. This vertex is either part
of a feedback vertex set of size at most k or not. If it is, we obtain a feedback vertex set by
computing one for G − v and k − 1, if it is not we may move it to V2 thereby reducing the
number of components by at least one. We try the first option and if it fails, go for the second.
This brings to recursive calls where either k or l is reduced by at least 1. Since computing the
components of G[V2] is the most expensive part, which may take |V(G)2| steps and the only
case where two recursive calls are needed reduces k or l, the runtime follows inductively.

Note that this approach also works for graphs with multi-edges and loops. Vertices with
loops are in any feedback vertex set and a vertex with a multi-edge to another vertex can be
seen as having two times the same neighbor and thus two neighbors in one component.

Theorem 4.6 ([CFLLV08]). f -F V S is solvable in time O(5kk|V(G)|2) (for input
(G, k)) and thus fixed-parameter tractable.

Proof sketch. We will sketch the proof via iterative compression for a series of graphs
G1, . . . , G|V(G)| such that V(Gi+1) \ V(Gi) = {vi}, while [CFLLV08] uses a 2-approximation
of fvs(G) to construct a G1 with |V(G1)| ≥ |V(G)| − k and thus have only k iterative com-
pression steps. In our setting, obviously fvs(Gi) ≤ k for i ≤ k. For i + 1 > k, let Si be the
feedback vertex set of Gi and let Ri+1 = (Si ∪ {vi+1}) \ Si+1 be set of vertices that will be re-
moved from the feedback vertex set in the compression step and Ki+1 = (Si ∪ {vi+1})∩ Si+1
the set of those we keep. As we try to construct a feedback vertex set without Ri+1, G[Ri+1]
has to be a forest. The same holds for G[N′i+1], where N′i+1 = V(Gi+1) \ (Si ∪ {vi+1}) is the
set of candidates for new vertices in Si+1. Now Si+1 is a feedback vertex set of Gi+1 if and
only if Si+1 \ Ki+1 is feedback vertex set for G[V(Gi+1) \ Ki+1] = G[N′i+1 ∪ Ri+1]. Thus using
the algorithm from lemma 4.5 with input (N′i+1, Ri+1, k− |Ki+1|) computes the missing part
of our next feedback vertex set in timeO(22|Ri+1|n2). Since the input is completely defined by
the choice of Ri+1, we need to test this for every possible Ri+1. By the binomial theorem this
yieldsO((4+ 1)kn2) calls for each step i→ i+ 1 and thus an overall runtime ofO(5k|V(G)|3)
for the entire algorithm or O(5kk|V(G)|2) if the construction using the 2-approximation is
applied.

4.2.2. … ensure that the graphs have a short cycle …

Short cycles are the most demanding ingredient on our list. Luckily there is a theorem
by Raman, Saurabh and Subramanian [RSS06] that guarantees short cycles in graphs with
bounded feedback vertex number. However this result has one caveat: it only holds for
graphs with minimum degree 3.

Theorem 4.7 ([RSS06]). Let G be a Graph with feedback vertex set of size at most k and minimum
degree at least 3. Either the girth of G is at most 6 or V(G) ≤ 2k2 (and the girth is at most 2+ 4 log k).

Proof. We assume |V(G)| > 2k2, so there is a feedback vertex set M of size k in G.
Then G′ = G \M is a forest. The key idea is to find a set {{a1, a2}, {b1, b2}} ⊆ E(G′)∪ (V(G′)

1),
{a1, a2} ∩ {b1, b2} = ∅ such that there are x 6= y : {x, y} = N(a) ∩ N(B) ∩ M (where

56

Modification sets Feedback vertex set

N({u, v}) = N(u) ∪ N(v)). Then (a1, x, b1, b2, y, a2, a1) or a subsequence of it is a cycle in G.
We prove the existence of such sets by the pigeonhole principle and the fact that a forest may
not contain too many vertices with degree ≥ 3. Any vertex of degree ≤ 1 in G′ must have
two neighbors in M, because the minimum degree in G is 3. The same holds for an edge in G′

such that both of its vertices have degree 2, unless they share a common neighbor (and thus
form a cycle with it). Let L be the set of leaves of G′, T = {v ∈ V(G′) | degG′(v) = 2} and
U = V(G′) \ (L ∪ T). Now |U| < |L| and thus |V(G′)| < |T|+ 2|L|. Observe that G′[T] is
a disjoint union of paths. Thus we may construct a maximal matching R of G′[T] that leaves
only endpoints of paths of even length unmatched. We do this by rooting each component
of G′[T] and ensure that each unmatched vertex has its children in V(G) \ T. Then there is a
injection from the unmatched vertices S to L∪U and thus 2|R| ≥ |T| − |S| ≥ |T| − (2|L|) and
2|L∪ R| ≥ |T|. We now replace |T| in the inequality above and get 2|L∪ R|+ 2|L| > |V(G′)|,
which leads to

|L ∪ R| > (|V(G)| − k)
4

≥ k2 − k/2
2

>

(
k
2

)
.

So two elements {a1, a2}, {b1, b2} ∈ L∪ R share a pair of vertices in {x, y} ∈ M, which yields
the desired constellation. If |V(G)| ≤ 2k2, the girth directly follows from an upper bound for
the girth of 2 log |V(G)| for graphs G with minimum degree 3 [EP62]. Since k ≥ 2 for simple
graphs with minimum degree three, this bound also includes the case where the girth is at
most 6.

Note, that a bound on the girth of 2k2 would also be sufficient for the purpose of fixed-
parameter tractability. Furthermore observe that this result also holds for graphs with multi-
edges and loops, since those are cycles of length two and one, respectively.

Willing to use the theorem above, we are forced to turn arbitrary input graphs into graphs
with minimum degree 3. This can be done by reducing the graphs: progressively removing
leaves and replacing vertices with degree 2 by and edge that connects their neighbors. In
order to get rid of all vertices with degree 2, we may need to introduce multi-edges and
loops. Both can be interpreted as weights (i.e. colors) on edges and vertices. A weighted
graph Gw is thus a vertex and edge colored graph (G, w) with rng(w) ⊆ [0, (V(G)

2)]. A cycle or
path in a weighted graph may have the form . . . , v, w, v, . . . or . . . , v, v . . . , if w(e) ≥= 2 (or
w(v) ≥ 1 resp.), the degree is defined as deg(v) = 2w(v) + ∑u∈N(v) w({u, v}) and removing
a vertex means Gw − v = (G− v, w|dom(w)\{v}). Note that a simple graph G corresponds to
the weighted graph ((V(G), (V(G)

2)), w), where w(m) = 1 ⇔ m ∈ E(G). We denote the class
of weighted graphs asW = {Gw | G ∈ G}.

We have to reduce graphs in a way, that is compatible with isomorphism, i.e. a pair of iso-
morphic graphs shall remain isomorphic. But looking on algorithm 4.3, we eventually want
to fix pairs of vertices, which has to be done in reduced graphs as only those are guaranteed
to contain short cycles. This leads to a problem if a fixed vertex in the reduced graph cor-
responds to many vertices in the original graph and we are left with too many choices. So
what we actually want is a reduction function R :W →W , such that V(R(G)) ⊆ V(G) and
for every φ : V(G1)→ V(G2):

G1
∼=φ G2 ⇒ R(G1) ∼=φ|V(R(G1))

R(G2) .

Kratsch and Schweitzer solve this in a way, that does not impose an order of reduction steps
and is yet well defined:

57

Feedback vertex set Modification sets

Definition 4.8 ([KS10]). Let Gw be a weighted graph. The reduction function RS with respect
to a set of vertices S is defined such that RS(Gw) is the result after the exhaustive application
of the following rules:

1. remove a vertex v with deg(v) ≤ 1
2. remove a vertex contained in S
3. contract a vertex v with degree deg(v) = 2: Let {u, x} be the set of its neighbors (u 6=

v 6= x). If u 6= x, increment w({u, x}), else increment w(u). Then remove v.
4. remove a vertex from a connected component with at most one cycle

Further we define R on unweighted graphs by the correspondence above and R = R∅. •

Note that the set S will be used to remove vertices that where fixed in a previous step and
will not be considered, when we like to find the next pair of vertices to fix. The important
addition by [KS10] is step 4. Without this step, e.g. a cycle Cn would reduce to a single vertex
with a loop, but we were free to chose which vertex remains.

Figure 4.1. Exhaustive application of rules in definition 4.8: The reduction function R is
well-defined and thus we know which vertices (here white) of G remain in R(G).

G : −→ R(G) :

Lemma 4.9 ([KS10]). RS of definition 4.8 is well-defined and thus for every pair of graphs G1 and
G2 and every φ : V(G1)→ V(G2):

G1
∼=φ G2 ⇒ R(G1) ∼=φ|V(R(G1))

R(G2) .

Proof. The proof goes by the minimal criminal method: let #(Gw, S) be the number of (v, i)
such that v may be removed from Gw using rule i (after other reductions steps). Clearly RS
is well-defined if #(Gw, S) = 0. Now choose a pair (Gw, S) with minimal #(Gw, S) such that
there exists two sequences of graphs Gw = G0, G1, . . . , Gl, and Gw = G′0, G′1, . . . , G′l′ obtained
by exhaustive application of the rules of definition 4.8. By the choice of Gw and S, RS(G′1)
and RS(G1) are well-defined, thus it suffices to show that they are equal. Let v be the vertex
considered during the step Gw → G1 and let v′ likewise correspond to Gw → G′1. If none of
the vertices was contracted, the other vertex is still present, thus v can be removed from G′1
and v′ from G1. Assume that v has been contracted during the step Gw → G1. Now there
three options for v′:

1. v′ has been removed from Gw: Then the degree of v has not been increased from Gw to
G′1, so the same rule as in Gw → G1 can still be applied. The degree of v′ is also still the
same in G1 and it can be removed.

2. v′ has been contracted during the step Gw → G′1 and is not adjacent to v: Then both
vertices retain their respective neighbors in the other's graph, so both contractions are
still possible.

3. v′ has been contracted, but is adjacent to v: If v still has at least one neighbor u 6= v in
G′1, its degree has not increased and it may still be contracted. The same holds for v′ in

58

Modification sets Feedback vertex set

G1. Otherwise v is a vertex with a single loop in G′1 and v′ is a vertex with a single loop
in G1, as a neighbor u : v′ 6= u 6= v of one of them in Gw would become the neighbor of
the other in G1 and G′1 respectively. In this case they may be removed by rule 4.

The same argument with the same cases works for v′ as well and thus G1 and G′1 may be
reduced to the same graph, which yields RS(G′1) = RS(G1).

Clearly, every graph G with at most one cycle per component reduces to the weighted empty
graph ((∅, ∅), ∅). The converse is also true:

Lemma 4.10 ([KS10]). Let G be a graph such that R(G) is the empty graph. Then every component
of G contains at most one cycle.

Proof. Assume G has a component with at least two cycles. Without rules 2 and 4, no vertex
on a cycle may be removed in a way, that decreases the degree of its neighbors. Take one
cycle v1, . . . , vl in any component with two cycles. Then there is either a vertex disjoint path
from this cycle to itself (w.l.o.g. v1, . . . , vj with 2 6= j 6= l) or a path to another vertex disjoint
cycle (w.l.o.g. starting in v1). Neither of the paths is affected by rule 1, so v1 will always have
degree ≥ 3 and thus cannot be removed.

4.2.3. … and use them to fix a pair of vertices.

Algorithm 4.4. Graph isomorphism for graphs with bounded feedback vertex number
[KS10]: graphIsoFVS
Input : Graphs (G1) and (G2), injective partial function ψ : V(G1)→ V(G2) and k ∈N

Output : Isomorphism φ from G1 to G2 with φ|dom(ψ) = ψ or null

1 G′1← Rdom(ψ)(G1)

2 G′2← Rrng(ψ)(G2)

3 if G′1 is empty ∧ G′2 is empty
4 | return isoOneCyclePerComp(G1, G2, ψ)
5 if G′1 is empty ∨ G′2 is empty
6 | return null
7 if k = 0
8 | return null
9 M← FVS(G′1)

10 C← shortCycle(G′2)
11 for (v1, v2) ∈ M × V(C)
12 | φ← graphIsoFVS(G1, G2, ψ ∪ {(v1, v2)}, k− 1)
13 | if φ 6= null
14 | | return φ
15 end
16 return null

Now that we know, that we find short cycles in a reduced graph, we are able to state algo-
rithm 4.4. This algorithm differs conceptually from algorithm 4.3 in two ways: we do not
remove the fixed pairs of vertices and recolor, but save them as a partial isomorphism. The

59

Feedback vertex set Modification sets

Algorithm 4.5. Graph isomorphism for graphs with one cycle per component [KS10]:
isoOneCyclePerComp
Input : (Colored) graphs (G1, c1) and (G2, c2) with at most one cycle in each component,

injective partial function ψ : V(G1)→ V(G2)
Output : Isomorphism φ from G1 to G2 with φ|dom(ψ) = ψ or null

1 if c1 = c2 = ∅
2 | c1← (V(G1)→ {1}); c2← (V(G2)→ {1})
3 if ψ 6= ∅
4 | (v1, v2)← arbitrary pair from ψ
5 | if (c(v1)=c(v2))
6 | | return isoOneCyclePerComp((G1− v1, c1− v1), (G2− v2, c2− v2), ψ\ {(v1, v2)})
7 | else
8 | | return null
9 ((G1, c1), (G2, c2))← removeLeavesAndRecolor((G1, c1), (G2, c2))

10 return matchComponents((G1, c1), (G2, c2))

other difference is that in the base case (R(G1) and R(G2) are empty) the graphs are not al-
ways elements of the class under consideration (i.e. forests). This means we have to yield
an isomorphism test for colored graphs with at most one cycle in each component (after re-
moval of the fixed pairs), which is what algorithm 4.5 does. Let us now prove its correctness
and runtime:

Lemma 4.11 ([KS10]). Given two colored graphs (G1, c1) and (G2, c2) and an injective partial func-
tion ψ : V(G1)→ V(G2) such that G1 \dom(ψ) and G2 \ rng(ψ) contain at most one cycle in each
component, algorithm 4.5 computes an isomorphism φ from (G1, c1) to (G2, c2) with φ|dom(ψ) = ψ,
if and only if one exists, in time O(|V(G1)|2).

Proof. The adjacency information of all the vertices in dom(ψ) and rng(ψ) respectively is cor-
rectly encoded into colors, as discussed in section 4.1.2. Each step takes timeO(|V(Gi)|) and
since ψ is injective, there are at most |V(Gi)| steps. The correctness of the
removeLeavesAndRecolor-method (algorithm 2.3) was proved in lemma 2.25 as well as its
runtime: O(|V(G1) + E(G1)|). Finally matchComponents (algorithm 2.5) takes time
O(|V(G1)|2) and tests correctly whether there is a matching of isomorphic components be-
tween both graphs (2.28), since each component-wise isomorphism test is performable in
linear time (for colored cycles, see lemma 2.27).

We conclude this section with the discussion of runtime and correctness of algorithm 4.4:

Theorem 4.12 ([KS10]). Let G1 and G2 be graphs, ψ an injective partial function V(G1) from
V(G2) and k ∈ N. Algorithm 4.4 decides in time O(|V(G1)|2), whether fvs(Rdom(ψ)(G1)) ≤ k,
fvs(Rrng(ψ)(G2)) ≤ k and G1

∼=φ G2 such that φ|dom(ψ) = ψ and if so computes an isomorphism φ.
G I parameterized by the feedback vertex number is thus fixed-parameter tractable.

Proof. First observe that the reduction as defined in definition 4.8 ensures that a feedback
vertex set of size l in Gi, i ∈ [2] can be turned into a feedback vertex set of the same size in
G′i : if a vertex is removed, the resulting graph has feedback vertex set of size l − 1 by the
definition of feedback vertex sets and if a vertex is contracted, it has degree 2, so both of its

60

Modification sets Feedback vertex set

neighbors are on all of its cycles, too. Also observe that a reduced graph is a forest, if and
only if it is empty.

Correctness: We now proceed and prove the correctness by induction on the argument k.
For k = 0, G′1 = Rdom(ψ)(G1) and G′2 = Rdom(ψ)(G2) have to be forests and thus empty, oth-
erwise the algorithm does correctly reject them until line 8. If they are empty, the algorithm
goes to line 4 and calls isoOneCyclePerComp (algorithm 4.5), which correctly computes the
result by lemma 4.11.

Assume k > 0. If exactly one of G′1 and G′2 is empty the algorithm correctly rejects them as
in the case k = 0, the same holds for the case where both are empty, so assume that none
of them is empty. In the same way as discussed for algorithm 4.3, for any isomorphism
φ′ from G′1 to G′2 and a feedback vertex set M of G′1 and any cycle C of G′2 the image of
M intersects V(C): φ′(M) ∩ V(C) 6= ∅. Thus for every such isomorphism φ′ there is a
pair (v1, v2) ∈ M × V(C) : φ(v1) = v2. Lemma 4.9 guarantees us that this also holds for
isomorphisms φ from G1 to G2, since their restrictions to V(G′1) are isomorphisms from G′1
to G′2. So testing for each pair (v1, v2) yields an isomorphism if and only if one exits (subject
to fvs(G′1) ≤ k). Finally we need to argue that recursing with parameter k− 1 is correct. This
is also easy to see by lemma 4.9: Assume we call our algorithm with ψ′ = ψ ∪ {(v1, v2)}
instead of ψ. The order of reduction steps is irrelevant, so we may remove v1 and v2 last. Let
G′′i be the graph G′i if ψ′ is used. Now G′i − vi = G′′i and since v1 i in a feedback vertex set of
size at most k in G′1, we know that fvs(G′′1) ≤ k− 1. The same holds for G′2 and v2, provided
that G1 and G2 are isomorphic and we picked a partial isomorphism φ′′ up to now. Finally it
is easy to see, that we will not return a function φ, that is not an isomorphism, as the actual
construction of φ is only performed in the base case and we return it “as-is”.

Runtime: The isomorphism test in the base case is doable in timeO(|V(G)|2) (lemma 4.11).
Theorem 4.6 gives us a runtime of O(5k|V(G)|) for the computation of a feedback vertex
set, which dominates the time for finding a shortest cycle. The girth of V(G′2) is at most 2 +
4 log(k) (theorem 4.7) and the size of the feedback vertex set M is bounded by k, so M×V(C)
has size at most 2k + 4k log(k). Since this size is clearly greater than 5 for k ≥ 1, we assume
that each recursive call has runtime O((2(k − 1) + 4(k − 1) log(k − 1))k−1), which yields
runtime O((2k + 4k log(k))k) for the loop and dominates all other parts. Called with ψ = ∅
the algorithm yields fixed-parameter tractability of the G I parameterized by
the feedback vertex number (technically, we have to assure fvs(G1) ≤ k separately, because
fvs(G′1) ≤ k 6⇒ fvs(G1) ≤ k).

61

5. Modular decompositions

5.1. Cographs

Many graph algorithms are designed for connected graphs. This is no restriction since there
are at least two simple ways of extending a graph algorithm for connected components to
the entire graph: use the complement (which is connected) or test at most all pairs of com-
ponents (one from each graph) until you found a matching. If on the other hand the graph
is connected, but the complement is not, this yields a simple recursive algorithm for graph
isomorphism, provided that isomorphism testing for the induced subgraphs which are con-
nected and have a connected complement is easy. This idea is summarized in algorithm 5.1.
Its name already implies the class to which this algorithm is dedicated: cographs.

Definition 5.1. A graph G is a cograph if and only if |V(G)| = 1 or G or G is a disjoint union
of at least 2 cographs. •

In other words, a graph is a cograph if line 9 is never executed in any of the recursive calls of
algorithm 5.1. Another form to characterize cographs is to exclude the P4, the path of length
3, as an induced subgraph.

Lemma 5.2 ([Sum73]). A graph is a cograph if and only if it does not contain an induced subgraph
which is isomorphic to the P4.

Proof. The complement of a P4 is again a P4 and so all vertices of the induced subgraph belong
to the same connected component, so a graph which contains a P4 as an induced subgraph
is not a cograph.

If on the other hand a graph G is not a cograph it contains an induced subgraph G′ such that
G′ and G′ are connected. G′ has a spanning tree T. If the length of the longest path in T is
at most 1, |V(G′)| ≤ 2 and thus G′ is a cograph. If the longest path has length 2, then T is
a star and its central vertex is isolated in G′. Both cases contradict the assumption and thus
the longest path in T is at least 3 and thus G′ and G contain a P4 as an induced subgraph.

Corollary 5.3. C M S is fixed-parameter tractable.

Proof. The class of cographs is identical to {P4}-free and we can apply theorem 4.2.

Observe that the naïve algorithm runs in polynomial time for cographs: Each recursive call
handles a disjoint subset of V(G)×V(G′), which is strictly contained in the set of the parental
call and there are |V(G)|2 leaves in the call tree. Since a directed tree with outgoing degrees of
at least 2 for every internal vertex and |V(G)|2 leaves has O(|V(G)|2) vertices and detecting
all components can be done in linear time, the overall runtime is polynomial.

62

Modular decompositions Modules and the uniqueness of the modular decomposition

Algorithm 5.1. Naïve isomorphism test for cographs: naïveIsoCoGr
Input : Graphs G1 and G2
Output : Are G1 and G2 isomorphic?

1 if (|V(G1)|6=|V(G2)|)
2 | return “not isomorphic”
3 if (|V(G1)|=|V(G2)|=1)
4 | return “isomorphic” V(G1)× V(G2)
5 if (G1 is connected)
6 | G1← G1
7 | G2← G2
8 if (G1 is connected)
9 | return (sophisticated algorithm(G1, G2))

10 φ← ∅
11 for C ∈ {V | V is a connected component of G1 }
12 | for D ∈ {V | V is a not associated connected component of G2 }
13 | | ψ← naïveIsoCoGr(G1, G2)
14 | | if ψ 6= “not isomorphic”
15 | | | φ← φ ∪ ψ
16 | | | associate(C, D)
17 | | | break
18 | | end
19 | end
20 | if C is not associated to any component
21 | | return “not isomorphic”
22 | end
23 end
24 if ∃ not associated component D of G2
25 | return “not isomorphic”
26 else
27 | return φ
28 end

However using the so called cotree a linear time algorithm can check two cographs for iso-
morphism, see [CPS85]. We will not discuss cotrees separately, since the cotree is the modular
decomposition tree of a cograph.

Corollary 5.4. G I parameterized by the cograph modification number is fixed-
parameter tractable.

Proof. G I is inP for cographs, C M S is fixed-parameter
tractable and thus the claim directly follows from theorem 4.4.

As a final note on cographs we remark that not all problems are easy to solve if restricted to
cographs: for instance subgraph isomorphism remains NP-complete [Dam91].

63

Modules and the uniqueness of the modular decomposition Modular decompositions

5.2. Modules and the uniqueness of the modular
decomposition

Modules and the modular decomposition where devised multiple times with a variety of
names. One of the earliest occurrences dates back to 1967 when Tibor Gallai [Gal67] intro-
duced modules as “geschlossene Punktmengen” (closed vertex sets) and defined a unique
decomposition via quasi-maximal modules. The “join” by Gert Sabidussi (introduced in
1961, [Sab61]) generalized the lexicographic product of graphs and was accompanied by no-
tion of representation that used modules (practically the inverse of a join), but was not a
unique representation. The term modular decomposition itself is used in the way below at
least since [Spi83]. A good overview on algorithmic aspects of modular decompositions is
given by [HP10].

Definition 5.5 (module, quasi-maximal, strong). Let G be a graph. We say a vertex v ∈ V(G)
can distinguish a pair of vertices {u, w} ⊆ V(G) if {u, v} in E(G) and {w, v} /∈ E(G). A set
of vertices M ⊆ V(G) is called a module of G if no vertex outside of M can distinguish any
pair of vertices in M, i.e. if for all u ∈ V(G) \M and all v, w ∈ M

either {{u, v}, {u, w}} ⊆ E(G) or {{u, v}, {u, w}} ∩ E(G) = ∅ .

We will call a module M quasi-maximal if M 6= V(G) and for all modules M′ 6= V(G):
M 6⊂ M′. The term strong module refers to a module M such that for all modules M′ either
M ⊆ M′, M′ ⊆ M or M ∩M′ = ∅. •

The notion of modules generalizes the concept of connected components. Since decompos-
ing a graph G in a canonical way is easy if either G or G are not connected (we take the set
of components (of the complement)), we will focus on graphs were both G and G are con-
nected. To build up some intuition about modules, we start with a simple lemma showing
that induced paths also play an important role for modules.

Lemma 5.6. Let G be a graph and P = ({vi | i ∈ [l]}, {{vi, vi+1} | i ∈ [l − 1]}) with l ≥ 4 be an
induced path of G, i.e. P = G[V(P)]. Then V(P) is a subset of a module M of G if M contains two
vertices vi and vj, 1 ≤ i < j ≤ l.

Proof. Let {vi, vj} ⊆ M for some module M of G. For 2 ≤ i < j ≤ l, the vertex vi−1 distin-
guishes {vi, vj} and likewise vj+1 for 1 ≤ i < j ≤ l− 1. Hence vi−1 ∈ M and vj+1 ∈ M respec-
tively. If we iteratively replace j by j + 1 and i by i− 1, we see that {vi | i ∈ [i] ∪ [j, l]} ⊆ M.
But unless j = i+ 2, vi+1 distinguishes {vi, vj} and we iteratively apply this again. If j = i+ 2,
we assume w.l.o.g. that vi−1 exists (because l ≥ 4) and hence vi+1 distinguishes {vi−1, vi}.
Hence M = V(P).

While partitioning V(G) into modules is not sufficient to obtain a unique decomposition,
using quasi-maximal modules yields a unique decomposition, provided that G and G are
connected. We will prove this now by a series of lemmas.

Lemma 5.7 ([Gal67, (2.7)]). Let M1 and M2 be modules of G. If M1 ∩M2 6= ∅, then M1 ∪M2 and
M1 ∩M2 are also modules. If the sets Mi \M3−i, i ∈ [2] are both not empty, then they are modules,
too.

64

Modular decompositions Modules and the uniqueness of the modular decomposition

Proof. Assume there is a vertex v ∈ V(G) \ (M1 ∩M2) that distinguishes {u, v}. Than v is
not in both M1 and M2, but u and w are, thus either M1 or M2 would not be a module. The
same holds for a vertex v ∈ V(G) \ (M1 ∪M2) that distinguishes {u, w} (u ∈ M1, w ∈ M2):
since there is some x ∈ M1 ∩M2, v would distinguish either {x, u} or {x, w} and therefore
contradict the assumption.

For the second part assume v /∈ M1 \M2 distinguishes some {u, w} ⊆ M1 \M2. We know
v ∈ M1 ∩ M2, otherwise M1 would not be a module. Now assume w.l.o.g. {u, v} ∈ E(G).
Since there is an x ∈ M2 \M1 and M2 is a module, we know {u, x} ∈ E(G). But since M1 and
M2 are a modules, we conclude {x, w} ∈ E(G) and {w, v} ∈ E(G), so v does not distinguish
{u, w}. In the same way we conclude that M2 \M1 is a module.

Lemma 5.8 ([Gal67, (2.8)]). Let M1 and M2 be modules of a graph G such that G and G are connected
and M1 6= V(G) 6= M2, then M1 ∪M2 6= V(G).

Proof. If either module is contained in the other one, the claim directly follows, so we assume
M1 \M2 and M2 \M1 are not empty. Now M2 and M1 \M2 are disjoint modules by lemma
5.7, so {u, v} ∈ E(G′) for each pair (u, v) ∈ (M1 \M2)×M2, for either G′ = G or G′ = G. If
V(G) = M1 ∪M2, then either in G or in G there is no path from vertices in M1 to vertices in
M1 \M2. Thus not both graphs can be connected, which yields the desired contradiction.

Lemma 5.9 ([Gal67, (2.9)]). If M is a quasi-maximal module of a graph G such that G and G are
connected and |V(G)| ≥ 2, then M is strong.

Proof. Assume there is another module N such that M and N overlap, i.e. M ∩ N 6= ∅,
N \ M 6= ∅ and N \ M 6= ∅. By lemma 5.7, we know that N \ M and M ∪ (N \ M) =
M ∪ N are modules and lemma 5.8 guarantees us that M ∪ N (V(G) and thus M was not
quasi-maximal.

Theorem 5.10 ([Gal67, (2.10)]). For any graph G such that G and G are connected and |V(G)| ≥ 2
and any vertex v ∈ V(G) there is a exactly one quasi-maximal module Mv that contains v. Therefore
there is a unique partition of V(G) into quasi-maximal modules.

Proof. If v ∈ M for some module M, either M is quasi-maximal (let M′ = M in this case)
or contained in some quasi-maximal module M′. Thus v is contained in at least one strong
Module M′ 6= V(G) (by lemma 5.9). Let S be the family of strong modules M 6= V(G) which
contain v. Since M ∪ N ⊇ {x} for all M, N ∈ S, either M ⊆ N or N ⊆ M by the definition
of modules. Thus ⊆ is a linear order on S and we can take its unique maximum Mv, which
must be the only quasi-maximal module containing v, since any such module must be in S
and a subset of Mv.

Note that the last proof differs from [Gal67], since we do not discuss comparability graphs
here and the proof there is closely related to them.

Definition 5.11. For any graph G we define the quasi-maximal modular partition of G as

• {V(G)}, if |V(G)| ≤ 1,
• the set of components of G, if G is not connected,
• the set of components of G, if G is not connected,
• the set of quasi-maximal modules of G in any other case.

65

Modules and the uniqueness of the modular decomposition Modular decompositions

If D is the quasi-maximal modular partition of G, the quotient graph of G shall be the graph
quot(G) = (D, ED), where

{M1, M2} ∈ ED ⇔ ∃v1 ∈ M1, v2 ∈ M2 : {v1, v2} ∈ E(G) .

We call G a prime graph (or prime as an attribute) if G and its complement are connected and
its quasi-maximal modular partition D consists only of modules {v}, v ∈ V(G). •

Corollary 5.12. The quasi-maximal modular partition of a graph is uniquely defined.

Theorem 5.10 and its proof directly lead to a simple polynomial time algorithm for the com-
putation of the quasi-maximal modular partition (algorithm 5.2): Observe that we can turn
any candidate set S ⊆ V(G) into a module by recursively adding vertices v to S that distin-
guish any {u, w} ⊆ S. This procedure is called closeUnderDistinguishers in algorithm 5.2
and clearly runs in linear time. By theorem 5.10 there is exactly one quasi-maximal module
Mv for each vertex v and since every module M 6= V(G) is a subset of a quasi-maximal mod-
ule, it is a subset of Mv. So for any candidate set S ⊆ Mv its closure under distinguishers S′ is
still a subset of Mv, but if v ∈ S and S * Mv, then S′ = V(G) otherwise we would have found
a second quasi-maximal module containing v. This brings us to the add-and-close approach
of algorithm 5.2 (for-loop starting in line 11) and the following lemma:

Algorithm 5.2. Naïve computation of the quasi-maximal modular partition
Input : Graph G
Output : The quasi-maximal modular partition of G

1 if (|V(G)|=1)
2 | return {V(G)}
3 if (G or G is not connected)
4 | return the components of G (or its complement resp.)
5 P← ∅
6 for (v ∈ V(G))
7 | if (marked(v))
8 | | continue
9 | M← {v}

10 | marked(v) = true
11 | for (u ∈ V(G))
12 | | if (marked(u))
13 | | | continue
14 | | M′ ← M ∪ {u}
15 | | closeUnderDistinguishers(M′)
16 | | if (M′ 6= V(G))
17 | | | for w ∈ (M′\ M) marked(w) = true end
18 | | | M = M′

19 | end
20 | P← P ∪ {M}
21 end
22 return P

Lemma 5.13. Algorithm 5.2 computes a quasi-maximal modular partition of a graph G in time
O(|V(G)|4).

66

Modular decompositions Application to G I

Proof. The correctness was mostly discussed above. Observe that each vertex is marked only
once and thus we do not add modules to P multiple times, so no membership test has to be
performed in line 20 if we implement P as a list.

Computing the components and the components of the complement can be done in linear
time. The outer loop is dominated by the inner loop, which in turn is dominated by the
closure operation. Both loop over all vertices and the close operation is performed in time
O(|V(G)|+ |E(G)|) = O(|V(G)|2), which provides the claimed runtime.

As prime graphs and quotient graphs will play a fundamental role in the next section, we
now state and prove and important lemma about the relationship between graphs and their
quotient graphs:

Lemma 5.14 ([CHM81]). If G is a connected graph whose complement is also connected, then quot(G)
is prime.

Proof. Assume quot(G) is not a prime graph. Let {M1, . . . , Mk} 6= V(quot(G)) be a module
of quot(G) such that Mi 6= Mj for i 6= j and k ≥ 2. Thus M1, . . . , Mk are quasi-maximal
modules of G and their union M′ =

⋃{M1, . . . , Mk} is a proper subset of V(G) by lemma
5.8. Take any vertex v ∈ V(G) \ M′ and assume v distinguishes {u, w} ⊆ M′. Clearly u ∈
Mi, w ∈ Mj for i 6= j, since all Mi are modules. Let Mv be the quasi-maximal module which
contains v. Now Mv distinguishes {Mi, Mj} and we reach our awaited contradiction.

5.3. The modular decomposition tree and its computation

Definition 5.15 (modular decomposition tree). For a graph G we define its modular decom-
position tree MD as the inclusion minimal rooted tree T = (V, E, r), such that r = V(G),
r ∈ V and for all M ∈ V

DM ⊆ V and ∀N ∈ DM : {M, N} ∈ E,

where DM is the quasi-maximal modular partition of G[M]. If G is a cograph, we call MD(G)
its cotree. •

Theorem 5.16. The modular decomposition tree can be computed in polynomial time.

Proof. Let G be a graph. Its modular decomposition tree has |V(G)| leaves and no inner
vertices of degree smaller than three, so MD(G) has at most 2|V(G)| vertices. To compute
the children (and to test if there are any) of any vertex in MD(G) a call to algorithm 5.2 is
sufficient. So an O(|V(G)|6)-time algorithm is easily achievable.

While this result is sufficient for the purposes of this work, the algorithm sketched here is
extremely inefficient. In fact, linear time algorithms are known since the 1990s (see again
[HP10] for a good overview), but even a discussion of the simple algorithm in [TCHP08]
would deviate us from graph isomorphism. Nevertheless, we state the result.

Theorem 5.17 (e.g. [TCHP08]). The modular decomposition tree can be computed in linear time.

67

Application to G I Modular decompositions

5.4. Application to G I

We are now ready to assemble the parts in this section and turn to the application of modular
decompositions to the graph isomorphism problem. To achieve this we return to the naïve
isomorphism algorithm for cographs (algorithm 5.1). Instead of the partition into compo-
nents (of the complement) we use the quasi-maximal modular partition. But now we have
to solve an additional problem. The components of a graph are independent, because they
are all connected in the same way. But the quasi-maximal modules form the quotient graph,
whose adjacency information has to be respected by a graph isomorphism algorithm. Let
us assume that we have an C G I algorithm for a certain graph class
C which contains all prime graphs that occur in the modular decompositions of the input
graphs G1 and G2. Then we are able to solve G I for the entire graphs, if
we can compute colors that represent the isomorphism type of each quasi-maximal module,
color the vertices of the quotient graph with them and use the algorithm for the fixed re-
stricted class C. Luckily, these colors do not have be canonical, which brings us to algorithm
5.3 and following theorem about it.

Theorem 5.18. Let C be a class of graphs for which f -C G I is in computable
in time r(|V(H1)|) for H1, H2 ∈ C and G1 and G2 be graphs such that all graphs associated to
prime vertices of the modular decomposition of G1 and G2 are in C. Then algorithm 5.3 computes an
isomorphism from G1 to G2, if and only if they are isomorphic, in time O(r(|V(H1)|)|V(G1)|4).

Proof. The runtime analysis is the same as for the naïve cograph isomorphism algorithm (5.1),
with the exception that we do not compute components, but the quotient graph (which is also
possible in linear time by theorem 5.17) and there is an additional factor for the isomorphism
test in line 26.

The correctness proof goes by induction on the height of the call tree. Since the only function
(and thus isomorphism) is returned for two graphs with just a single vertex, the base case
(height 0) is correct.

Assume that the height is at least 1. Then the nested loops test every pair of modules (and
thus pairs of vertices in the quotient graph) (M1, M2) ∈ V(Q1) × V(Q2) for isomorphism
and colors M1 and M2 with the same color, if G[M1] and G[M2] are isomorphic. If Q1 and
Q2 are either both cliques or independent sets of vertices of the same size, the only thing we
have to do is to count the numbers of occurrences of each color and check if they match. If
exactly one of them is a clique or if the sizes are different, no isomorphism is possible. In any
other case we use the algorithm for colored graphs in C. An isomorphism ψ is returned if
and only the graphs induced by the modules are isomorphic. If no isomorphism is returned,
G1 and G2 are not isomorphic, because the modular decomposition tree is an invariant (up
to isomorphism), so assume ψ is returned. By the nature of modules this defines an isomor-
phism on the entire graph: Let Mi, Ni ∈ V(Qi), i ∈ [2]. Further assume ψ(M1) = M2 and
ψ(N1) = N2. Since ψ is an isomorphism {M1, N1} ∈ E(Q1) if and only if {M2, N2} ∈ E(Q2).
Furthermore for mi ∈ Mi and ni ∈ Ni: {mi, ni} ∈ E(Gi) if and only if {Mi, Ni} ∈ E(Qi) by
the nature of modules. Thus the image of m1 under an isomorphism φ from G1 to G2 does
only depend on an isomorphism from G1[M1] to G2[M2] and such an isomorphism φM1,M2
was precomputed within the nested loops.

Observe that algorithm 5.3 is completely agnostic about the algorithm coloredIsoClass used

68

Modular decompositions Application to G I

Algorithm 5.3. Graph isomorphism via modular decomposition: modDecIso
Input : Graphs G1 and G2
Output : Isomorphism φ : G1

∼=φ G2 or “not isomorphic”
1 if (|V(G1)|6=|V(G2)|)
2 | return “not isomorphic”
3 if (|V(G1)|=|V(G2)|=1)
4 | return V(G1) × V(G2)
5 maxUsedColor← 0
6 Q1← quot(G1)
7 Q2← quot(G2)
8 if ((|V(Q1)|6=|V(Q2)|) ∨ exactly one of Q1 and Q2 is prime)
9 | return “not isomorphic”

10 for M1 ∈ V(Q1)
11 | c1(M1)←maxUsedColor + 1
12 | for M2 ∈ V(Q2)
13 | | φM1,M2←modDecIso(G1[M1], G2[M2])
14 | | if (φM1,M2 6= “not isomorphic”)
15 | | | if (∃ c : c2(M2)=c)
16 | | | | c1(M1)← c2(M2)
17 | | | | break
18 | | | else
19 | | | | c2(M2)← c1(M1)
20 | | | | maxUsedColor← c1(M1)
21 | end
22 end
23 if (¬ (|c1|=|c2|=|V(Q1)|))
24 | return “not isomorphic”
25 if (Q1 is prime)
26 | ψ← coloredIsoClass((Q1, c1), (Q2, c2))
27 else
28 | ψ← trivialColorComparison((Q1, c1), (Q2, c2))
29 if (ψ = “not isomorphic”)
30 | return “not isomorphic”
31 φ← ⋃

(M1,M2)∈ψ φM1,M2
32 return φ

in line 26 to compute an isomorphism for colored graphs of some fixed class C. Thus this
algorithm also works for classes C = {G ∈ G | κ(G) ≤ k} defined by bounded parameters.
This gives us the possibility to combine modular decompositions and arbitrary graph pa-
rameters (especially those which punish certain dense graphs for which G I
is actually easy). We conduct this combination by considering the parameter of the prime
graphs of the modular decomposition instead of the whole graph:

Definition 5.19 (prime parameter). Let κ be any graph parameter G →N and G an arbitrary
graph. The prime parameter of G corresponding to κ (denoted ′κ) is defined as

′κ(G) = max{min{κ(P), κ(P)} | V(P) ∈ V(MD(G)) ∧ P is prime} .

If G is a cograph, we define ′κ(G) = 0. •

69

Application to C L Modular decompositions

Corollary 5.20 (of theorem 5.18). G I parameterized by ′κ is fpt Turing reducible
to G I parameterized by κ.

Remark 5.21. [Cou96] defines a parameter called modular width. If we call the number of
vertices of a graph its order, then our name for the modular width is prime order, i.e. the
maximum order of any prime graph appearing in the modular decomposition of a graph. !

Remark 5.22. Algorithm 5.3 also constitutes an unparametrized polynomial time Turing re-
duction from G I to P G I. But for this purpose there is
an even simpler many-one reduction. Let G be a graph with |V(G)| > 3. Replace all edges in
a G with a P4 and all non-edges with a P5 and call the result Ĝ. Clearly only the old vertices
have degree |V(G)| − 1 and any two vertices lie on an induced P4 or P5. If two vertices of an
induced Pk (k ≥ 4) belong to a module M of Ĝ, then V(Pk) ⊆ M. Thus the constructed graph
is prime and ∀u, v ∈ V(G) : dĜ(u, v) = 4 ⇔ {u, v} ∈ E(G). !

We defer a detailed analysis of the relations between different (prime) parameters to section
8.2 and only provide an example for now.

Example 5.23. Let
Gn,m = ([mn], {{i, j} | ∃l : {i, j} ⊆ [ln + 1, (l + 2)n− 1]})

be the graph obtained by replacing each vertex in a path Pm (m ≥ 4) with a clique Kn and
connecting all vertices of adjacent cliques (see figure 5.1). Then the root R of MD(Gn,m) is
isomorphic to the Pm and thus fvs(R) = 0. Furthermore all other vertices of MD(Gn,m) are
either parallel or serial and thus the prime feedback vertex number of Gn,m is 0 (′fvs(Gn,m) =
0). On the other hand fvs(Gn,m) ≥ m(n− 2)− 1, since not a single triangle in any copy of the
Kn may remain to turn Gn,m into a forest. In the same way we get:

treewidth tw(Gn,m = 2n ′tw(Gn,m) = 1
maximum degree max deg(Gn,m) = 3n− 1 ′max deg(Gn,m) = 2

e.g.

Figure 5.1. The graph Gn,m of example 5.23 with n = 3 and m = 4

5.5. Application to C L

During the analysis of algorithm 5.3 we mentioned that the coloring of modules that encodes
their isomorphism type does not need to be canonical. Well, that was only half of the truth as
algorithm 5.3 can be further simplified if we reduce to C C L instead
of C G I. Furthermore, if we have canonical labelings of the prime
graphs, we can also recursively compute canonical labelings for all subtrees of the modular
decomposition tree. This is what algorithm 5.4 does.

70

Modular decompositions Application to C L

Algorithm 5.4. Canonical labeling via modular decomposition: modDecCL
Input : Graphs G
Output : Canonical labeling of G

1 if (|V(G)|=1)
2 | return V(G) × {1}
3 Q← quot(G)
4 for M ∈ V(Q)
5 | lM←modDecCL(G[M])
6 | c′(M)←(lM(M), lM(E(G[M])))
7 end
8 s← sortLexico(rng(c′)) // input as a set
9 for M ∈ V(Q)

10 | c(M)← s−1(c′(M))
11 end
12 if (Q is prime)
13 | l′ ← coloredCLClass((Q, c)) //canonical labeling for prime graphs
14 else
15 | l′ : V(Q)→ [|V(Q)|] such that c(M) < c(N) ⇒ l′(M) < l′(N)
16 m← 0
17 for i ∈ [|V(Q)|]
18 | M← l′−1(i)
19 | lM ← lM + m
20 | l← l ∪ lM
21 | m← m + |M|
22 end
23 return l

Theorem 5.24. Algorithm 5.4 computes a canonical labeling for an input graph G in time
O(r(G)|V(G)|3) where r(G) is the maximal runtime for coloredCLClass over all prime graphs
appearing in MD(G). Hence C L parameterized by ′κ is fpt Turing reducible to
C L parameterized by κ.

Proof. The correctness is easily to see. The first for-loop computes canonical labelings and
canonical forms of all modules of the quasi-maximal modular decomposition of the input
graph G and hence we have local canonical labelings and a canonical colors of each mod-
ule based on the canonical forms. Sorting and the second for-loop turns these colors into
integers. These are used to compute a “global” canonical order l′, i.e. one of the modules.
This is done by either the call to coloredCLClass in line 13 for prime graphs Q or a simple
sort if Q is complete or edgeless. In either case, if another labeling l̂ corresponds to the same
canonical form { as l′, then for two modules M 6= N of G with l′(M) = l̂(N) we know that
G[M] = G[N] and there is an automorphism φ of Q such that φ(M) = N. This ensures that
the canonical form for G corresponding to the labeling constructed in the last for-loop does
not depend on the choice of l′ ∈ cl{(Q, c). The correctness of this last for-loop itself is ob-
vious as it just computes a union of constantly shifted labelings, respecting the “local” and
“global” canonical orders.

The runtime analysis is again similar to that of algorithm 5.3, but this time we only have
|V(G)| leaves in our call tree, which is equivalent to the modular decomposition tree of G.

71

Application to C L Modular decompositions

V(G)2 clearly bounds all operations, except the call to coloredCLClass and the recursive
calls.

Iterative algorithm: In most interesting scenarios for this algorithm the prime graphs are
smaller than the modules and thus the same holds for their canonical forms. Hence it may be
beneficial to sort canonical forms of prime graphs in this case. We can rewrite algorithm 5.4 in
a way similar to the linear time canonical labeling isomorphism for trees (algorithms 2.3 and
2.4). The result is algorithm 5.5. Its calls to coloredCLClass corresponds to the computation
of the multisets representing the isomorphism type of a subtree in the for-loop starting in line
13 of algorithm 2.3. Observe that the sort here runs over all modules on one level to compute
consistent colors for all subtrees of MD(G) whose root has the same distance to V(G) in
MD(G). This also shows that our runtime analysis above was everything but rigorous, but
as all algorithms in this chapter should be seen as reductions or schemes and a tight upper
bound depends on the parameter, we will not give a more precise analysis.

Algorithm 5.5. Canonical labeling via modular decomposition (iterative)
Input : Graph G
Output : canonical labeling of G

1 T←MD(G)
2 L0←{V(G)}
3 compute all Ll ← {M ∈ V(T) | dT(V(G), M)=l}
4 h← height(T)
5 for M ∈ (V(G)

1)
6 | c(M)←1
7 end
8 for l←h down to 1
9 | for M ∈ Ll−1

10 | | Q← quot(G[M])
11 | | if (Q is prime)
12 | | | φM ← coloredCLClass(Q, c|Ll∩N(M))

13 | | else
14 | | | φM : V(Q)→ [|V(Q))|] such that c(N) < c(O) ⇒ φM(N) < φM(O)
15 | | c′(M)← (φM(M), φM(E(G[M])))
16 | end
17 | s← sortLexico(c′(Ll−1)) //input as multiset
18 | for M ∈ Ll−1
19 | | c(M)← s−1(c′(M)) //s with duplicates removed
20 | end
21 end
22 compute a global canonical labeling as in algorithm 2.4
23 combine the global canonical labeling with each local φM as in the for-loop

starting in line 17 of algorithm 5.4

72

6. Distance widths

Motivated by the study of treewidth, in [YBFT99] Yamazaki, Bodlaender, de Fluiter and Thi-
likos introduced similar parameters that take distances into account and thereby reduce the
number of decompositions to consider. Doing this, they were able to prove that G I-
 is fixed-parameter tractable if parameterized by the so called rooted path distance
with or the rooted tree distance width. This chapter is devoted to these results as well as
some generalizations. We start by giving basic definitions.

Definition 6.1 ([YBFT99]). Let G be a graph. The path distance decomposition with respect
to a root set R of G is the tuple of distance levels N = (N0, . . . , Nl), such that R = N0 and
{Ni | i ∈ [0, l]} is a partition of V(G) by the minimal distance to R, i.e.

Ni = {v ∈ V(G) | min
u∈R

d(u, v) = i} .

We use |N| to denote the number of levels l + 1. The width of N is the maximal size of
any level Ni (including R). The path distance width of G (pdw(G)) is the minimal width
of a path distance decomposition over all root sets R ⊆ V(G). The minimal width over all
root sets R with size |R| = 1 will be called rooted path distance width of G (rpdw(G)). We
set rpdw(G) = |V(G)|, if there is no rooted path distance decomposition, i.e. if G is not
connected.

A tree distance decomposition of a G is a strong tree decomposition (B, T, r) (see definition
1.6) such that if M is the path distance decomposition of T with root set {r} and N the path
distance decomposition of G with root bag Br then

∀i ∈ [0, |N| − 1] : Ni =
⋃

t∈Mi

Bj .

The width of a tree distance decomposition shall be its width as a strong tree decomposition.
The (rooted) tree distance width (r)tdw(G) is defined analogously to (r)pdw(G). •

We remark that [YBFT99] and [Ota12] only define the widths parameters for connected graphs,
which leaves multiple options for the definition in the disconnected case. Our definition re-
quires the existence of a single decomposition, which is consistent with treewidth and strong
treewidth. Another natural option would be the maximum over all components. If we only
consider the fixed-parameter tractability of G I, the difference between both
definitions is irrelevant, but it may influence the degree of the polynomial in |V(G)|.

6.1. Rooted path distance width

Corollary 6.2 (of corollary 3.16). C L parameterized by the rooted path distance
width is fixed-parameter tractable.

73

Rooted path distance width Distance widths

Proof. Coloring vertices according to their distance to a single vertex v can be done in linear
time and there are only |V(G)| rooted path distance decompositions of a connected graph G.
Thus we need to apply algorithm 3.5 at most |V(G)| times with color classes of size at most
k to compute a canonical labeling for a connected input graph G with rpdw(G) = k.

However, using the algorithm for bounded color classes is fairly inefficient. We will thus
discuss the algorithm from [YBFT99], which is also a good preparation for the other results.
Algorithm 6.1 is an isomorphism testing algorithm, but we will construct an analogous can-
onization algorithm later on.

6.1.1. Isomorphism test

Algorithm 6.1. Graph isomorphism for graphs of bounded rooted path distance width
[YBFT99]
Input : Connected graphs G1,G2
Output : Are G1 and G2 isomorphic?

1 if (|V(G1)|6=|V(G2)|)
2 | return “not isomorphic”
3 N←null
4 for v ∈ V(G1)
5 | N′ ← pathDistanceDec(G1, {v})
6 | if (width(N′) < width(N) ∨ N = null)
7 | | N← N′

8 end
9 for v ∈ V(G2)

10 | M← pathDistanceDec(G2, {v})
11 | if (width(N) 6= width(M) ∨ |N| 6= |M|)
12 | | continue
13 | I|N|−1← {φ | G1[N|N|−1]

∼=φ G2[M|N|−1]}
14 | for i←|N| − 2 down to 0
15 | | Ii ← {φ | ∃ ψ ∈ Ii+1 : G1[Ni∪ Ni+1] ∼=φ∪ψ G2[Mi∪ Mi+1]}
16 | end
17 | if (|I0| 6= 0)
18 | | return “isomorphic”
19 end
20 return “not isomorphic”

The following lemma is important to understand that linear time meansO(pdw(G)|V(G)|).

Lemma 6.3 ([Ota12]). For any graph G: max deg(G) ≤ 3 pdw(G)− 1.

Proof. Assume the is a v ∈ V(G) with deg(v) ≥ 3k for some k ∈ N. Let P = (N0, . . . , Nl) a
path distance decomposition and v ∈ Ni and thus N(v) ⊆ Ni−1 ∪ Ni ∪ Ni+1 (let N−1 = ∅).
Now at least one Nj, j ∈ [i − 1, i + 1] has size k + 1, because |N(v) ∪ {v}| = 3k + 1. This
means pdw(G) ≥ k + 1, which yields the claim.

74

Distance widths Rooted path distance width

Theorem 6.4 ([YBFT99]). Algorithm 6.1 computes whether two connected input graphs G1 and G2
are isomorphic in time O((k + 1)!2|V(G1)|2), where k = rpdw(G1).

Proof. To prove the correctness, we observe that φ is an isomorphism from G1 to G2 if and
only if there exist rooted path distance decompositions N = (N0, . . . , Nl) of G1 and M =
(M0, . . . , Ml) of G2 such that

∀i ∈ [0, l] : G1[Ni] ∼=φ|Ni
G2[Mi] and G1[Ni ∪ Ni+1] ∼=φ|Ni∪Ni+1

G2[Mi ∪Mi+1] .

This corresponds to the characterization of isomorphism as stabilizers of the sets of equally
colored edges as given in section 3.3.1. Clearly, we may color two isomorphic graphs iden-
tically by distances to one vertex of a pair of fixed vertices if we consider all such pairs.
This is what the loops of algorithm 6.1 do. Each set Ii contains the set of isomorphisms
φ : G1[Ni] ∼=φ G2[Mi] that are extendible, that is there is a ψ:

G[Ni ∪ · · · ∪ Nl] ∼=φ∪ψ G[Mi ∪ · · · ∪Ml] ,

which can easily be proved inductively. Thus we can rewrite I0 as
I0 = {φ|N0

| G1
∼=φ G2} ,

which is empty if and only if there is an isomorphism from G1 to G2.

By lemma 6.3 the first loop runs in timeO(k|V(G1)|2) and the computation of the rooted path
distance decomposition in every iteration of the second outer loop takes time O(k|V(G)|).
Inspecting all k! bijections from Ni to Mi for compatibility as isomorphisms with a set Ii+1,
which has at most k! members, is doable in O((k!2)k2) = O((k + 1)!2) time. Doing this at
most |V(G)| times (maximal number of distance levels) clearly dominates any other part of
the second outer for-loop, which in turn runs in O((k + 1)!2|V(G1)|2) time and dominates
the first loop.

Computing an isomorphism As opposed to most other parts of this work algorithm 6.1
only decides G I without computing an isomorphism. This can be done with
a single loop in O(|V(G1)|(rpdw(G1) + 1)!) time: simply choose φ0 ∈ I0 and φi+1 ∈ Ii+1
that is compatible with φi (G1[Ni ∪ Ni+1] ∼=φi∪φi+1 G2[Mi ∪ Mi+1]). Since all edges are in
or between some Mi and Mi+1 (and Ni resp.) the choice of φi+1 does not need to consider
any φj, j < i as their compatibility is already implied by the choice of φi. We conclude that
φ =

⋃
i∈[0,|N|−1] φi is an isomorphism from G1 to G2.

6.1.2. Canonical labelings

The idea behind algorithm 6.1 can be used to compute a canonical labeling of a graph G.
Instead of constructing extendible partial isomorphisms, we now construct extendible par-
tial canonical labelings. Because we will consider other kinds of root sets later and we have
already seen the global structure (for-loop over possible root sets) of an isomorphism algo-
rithm, we only canonize a single path distance decomposition in algorithm 6.2. Because a
path distance decomposition N of a graph G is a coloring defined by its root set, we may see
a canonical form of the pair (G, N) as a canonical form of the colored graph (G, cN), where
c−1(i) = Ni for all i ∈ [0, |N| − 1].

75

Rooted path distance width Distance widths

Algorithm 6.2. Canonical labeling of path distance decompositions
Input : Graph G ∈ G with path distance decomposition N
Output : Canonical labeling of (G, N)

1 rename all v ∈ V(G) such that u ∈ Ni, v ∈ Nj ∧ i < j ⇒ u < v
2 N|N|←∅
3 I|N|←∅
4 for i←|N| − 1 down to 0
5 | ai ←min {adjStr(G, Ni, ψ, Ni+1, ψ′) | ψ ∈ Sym(Ni), ψ′ ∈ Ii+1}
6 | Ii ← {φ ∈ Sym(Ni) | ∃ φ′ ∈ Ii+1 : adjStr(G, Ni, φ, Ni+1, φ′) = ai }
7 end
8 Choose arbitrary φ0 ∈ I0
9 for i←1 to |N − 1|

10 | choose φi ∈ Ii such that adjStr(G, Ni−1, φi−1, Ni, φi) = ai−1
11 end
12 return

⋃
i∈[0,|N|−1] φi

13 subprocedure adjStr(G, A, φ, B, φ′)
14 | c(v)← phi′(N(v) ∩ B)
15 | {v1, . . . , vl} ← A sorted according to φ
16 | return (c(v1), . . . , c(vl), e1,2, . . . , el−1,l), where ei,j = IE(G)({vi, vj})
17 end

Theorem 6.5. Algorithm 6.2 computes a canonical labeling for an input pair (G, N), a graph G
together with a path distance decomposition N of G, in time O((k + 1)!2|V(G)|), where k is the
width of N.

Proof. We use all names from the algorithm. The correctness will be shown using backward
induction, i.e. we show for all i ∈ [0, |N| − 1] that

⋃
j∈[i,|N|−1]

φj is canonical for

G

 ⋃
j∈[i,|N|−1]

Nj

 , (Ni, . . . , N|N|−1)

 = (G′i , N′i) .

If i = |N| − 1, we only have to choose those φ ∈ Sym(Ni) that minimize the special adjacency
string computed by adjStr. Since the last two arguments are ∅, this return value of adjStr
is simply the adjacency matrix and thus using the minimum is clearly canonical. Hence Ii is
the canonical labeling coset and we do not care which of its elements is chosen in the second
for-loop.

For i < |N| − 1 we may now inductively assume that Ii+1 is the canonical labeling coset
containing the extendible canonical labelings for Ni+1. We know that

⋃
j∈[i+1,|N|−1] φj labels

canonically for any choice of φi+1 ∈ Ii+1 by the inductive hypothesis. Hence we are free to
choose a φi+1 that fulfills an additional minimization requirement. Now let φi and φi+1 be
chosen as in the second for-loop, i.e. ai gets minimal for (φi, φi+1). Observe that the possi-
ble colorings in line 14 have to be the same for two isomorphic graph-decomposition pairs
as Ii+1 is a canonical labeling coset. Thus vertex orders in Ni (corresponds to A in the sub-
procedure) bijectively correspond for two isomorphic graphs and only the adjacency matrix
decides about the minimum string, which is thus an invariant. By putting all first compo-
nents of minimal (φi, φi+1) pairs in Ii, we again ensure that we have free choice on the next

76

Distance widths Connected and clustered path distance width

level, since Ii is the canonical labeling coset.

The runtime analysis is nearly identical to that of algorithm 6.1, except that there are of course
no nested for-loops. The runtime for an isomorphism check and the computation of a adja-
cency string is both O(k2) and | Sym(Ni)× Sym(Ni+1)| is still k!2.

Corollary 6.6. A canonical labeling for a graph G can be computed in time O((k + 1)!2|V(G)|2),
where k = rpdw(G).

6.2. Connected and clustered path distance width

6.2.1. Connected path distance width

In [Ota12] Otachi was able to extend theorem 6.4 to the entire class of connected root sets
and furthermore all the classes of root sets with at most c components, where c is an absolute
constant, i.e. not considered a parameter in the sense of parameterized complexity. In this
section we will outline these ideas with a strong focus on the enumeration procedure in
[Ota12].

Definition 6.7 ([Ota12]). The c-connected path distance width of a graph G, c-cpdw(G), is
the least width of a path distance decomposition with root set R, where G[R] has at most c
components. If there is no such decomposition (G has more than c components), then we
set c-cpdw(G) = |V(G)|. We simply write connected path distance width (cpdw) for the
1-cpdw. •

Once we can enumerate all path distance decompositions of width at most k whose root set
has at most c components, we are able to apply a slightly modified version of algorithm 6.1 to
solve G I for graphs with bounded c-cpdw. Note that a potential parameter
k has to be part of the input, as deciding, whether a graph G has c-cpdw ≤ k is NP-hard
([Ota12, Theorem 3.2]) and thus we cannot compute c-cpdw(G) for any c. The enumeration
algorithm (algorithm 6.3) recursively adds vertices with a path to at least one member of an
initial root set R by considering the neighborhood. Actually, we do not need to enumerate
all path distance decompositions in question, as we could return whenever we found one in
line 5 and reduce k to the size of the minimal root set already returned during the for-loop.
However, this would considerably complicate the analysis of the algorithm, so we refrain
from these optimizations.

Theorem 6.8 ([Ota12, Theorem 3.6]). For any graph G and R ⊆ V(G) algorithm 6.3 computes the
set

P = {path dist. dec. N | width(N) ≤ k, ∀v ∈ N0∃ path v, . . . , u in G[N0] : u ∈ R}

in time O(|V(G)| (2k)!
k!).

Proof. First observe that a set R with |R|+ |N(R)| > 2k cannot be a subset of a root set R′ of
a path distance decomposition whose width is at most k, because each vertex in N(R) ∪ R is
in either R′ or N(R′). Furthermore if there is a path v1, . . . , vl in G, then vi+1 ∈ N(vi) for all
i ∈ [l − 1]. Thus the for-loop and its recursive call test all simple paths whose first vertex is
its only vertex in R and whose addition to R does not violate the size bound.

77

Connected and clustered path distance width Distance widths

Algorithm 6.3. Enumerate path distance decompositions by adding neighboring vertices
[Ota12]: enumPDD
Input : Graph G, initial root set R and k ∈N

Output : Set of all path distance decompositions N of width at most k whose root set N0
contains only vertices with a path (in G[N0]) to at least one vertex in R

1 if |R| > k ∨ |R|+ |N(R)\ R| > 2k
2 | return ∅
3 N← pathDistanceDec(G, R)
4 if (width(N) ≤ k)
5 | P← {N}
6 else
7 | P← ∅
8 for v ∈ (N(R) \ R)
9 | P← P ∪ enumPDD(G, R ∪ {v}, k)

10 end
11 return P

We prove the runtime by observing, that the for-loop is passed at most 2k− |R| times, since
this is the maximal number of vertices we can add. Furthermore |R| increases by 1 in each
recursive level (of which there are thus at most k). We conclude that there are no more than
O(∏2k−1

i=k i) = O((2k−1)!
k!) recursive calls. Note that the union in line 9 takes only constant

time, if we allow duplicates and use a linked list. Since computing a path distance decom-
position takes only linear, i.e. O(k|V(G)|) time (lemma 6.3), the overall runtime follows by
multiplication of these runtimes.

Given this enumeration algorithm, all we need to do is choosing the correct initial sets. If
the root set of a path distance decomposition of width at most k has at most c components,
then all vertices in the root set can be reached from one of c vertices. If we started algorithm
6.3 with the set of these c vertices, it would thus include the aforementioned path distance
decomposition in its output set. Thus running algorithm 6.3 for all sets R ⊆ V(G), |R| = c
yields all path distance decomposition of size at most k with at most c components. Because
path distance decompositions directly correspond to colorings, we conclude in the same way
as above:

Corollary 6.9 (of corollary 3.16). G I parameterized by the c-connected path dis-
tance width is fixed-parameter tractable.

Again, using towers of groups is inefficient here and we slightly modify algorithm 6.1 to
obtain a similar result.

Theorem 6.10 ([Ota12]). Algorithm 6.4 decides whether G1 and G2 are isomorphic and both have
c-connected path distance width at most k in time O((2k)!(k + 1)!|V(G1)|c+1).

Proof. The correctness can be easily proved in the same manner as 6.4. The second outer
for-loop clearly dominates the runtime. It is passed |V(G1)|c times and contains O((2k−1)!

k!)
iterations of the inner for-loop (see the proof of theorem 6.8), as well as the computation of
all c-connected path distance decompositions of width at most k (in time O(|V(G1)| (2k)!

k!)).

78

Distance widths Connected and clustered path distance width

Algorithm 6.4. Graph isomorphism for graphs of bounded c-connected path distance width
[Ota12]
Input : Graphs G1,G2 and k ∈N

Output : Are G1 and G2 isomorphic and c-cpdw(G1) ≤ k?
1 if (|V(G1)|6=|V(G2)|)
2 | return false
3 N←∅
4 for R ∈ (V(G1)

c)
5 | if (enumPDD(G1, R, k) 6= ∅)
6 | | N← some element of enumPDD(G1, R, k)
7 | | break
8 end
9 if (N = ∅)

10 | return false
11 for R ∈ (V(G2)

c)
12 | for M ∈ enumPDD(G2, R, k)
13 | | if (width(N) 6= width(M) ∨ |N| 6= |M|)
14 | | | continue
15 | | I|N|−1← {φ | G1[N|N|−1]

∼=φ G2[M|N|−1]}
16 | | for i←|N| − 2 down to 0
17 | | | Ii ← {φ | ∃ ψ ∈ Ii+1 : G1[Ni∪ Ni+1] ∼=φ∪ψ G2[Mi∪ Mi+1]}
18 | | end
19 | | if (|I0| 6= 0)
20 | | | return true
21 | end
22 end
23 return false

We know from the proof of theorem 6.4 that testing two path distance decompositions for
isomorphisms takes time O(k!2k2|V(G1)|). Their product is

O
(

k!2k2|V(G1)| ·
(2k− 1)!

k!

)
= O((2k!)(k + 1)!|V(G1)|)

and clearly dominates the other parts of the second outer for-loop, so we proved the claim.

Corollary 6.11. If a graph G has c-connected path distance width at most k, a canonical labeling of
G can be computed in time O((2k)!(k + 1)!|V(G)|c+1).

6.2.2. Clustered path distance width

The restriction of the root sets to connected subgraphs can be slightly generalized. Because
of lemma 6.3, we know that the maximal degree in a graph with path distance width k is
3k − 1. Thus any connected root set is the subset of the set of all vertices with distance at
most k to a single vertex v and the latter set has size smaller than 2(3k− 1)k, i.e. it is bounded
by a function on k. Generalizing this observation to root sets with c components is easy.

79

Rooted tree distance width Distance widths

Definition 6.12. Let N be a path distance decomposition of a graph G. The c-cluster width of
N is the minimal k such that the width of N is at most k and the root set N0 may be partitioned
into c (possibly empty) sets C1, . . . , Cc such that for all i ∈ [c] the graph G[Ci] has diameter at
most k. If such a partition is not possible, the c-cluster width of N is |V(G)|. The c-clustered
path distance width of G, c-clpdw(G), is the minimal c-cluster width over all path distance
decompositions N. •

There is a tiny technical difference between this approach and the connected path distance
width. Instead of excluding certain path distance decompositions, we make them “more
expensive” if they require bigger root clusters.

We are now able to replace the procedure enumPDD in algorithm 6.4 by algorithm 6.5 and
state an analogous theorem.

Algorithm 6.5. Enumerate path distance decompositions with bounded c-cluster width
Input : Graph G, initial root set R and k ∈N

Output : Set of all path distance decompositions N of |R|-cluster width at most k
1 for v ∈ R
2 | Rv ← {u ∈ V(G) | d(u, v) ≤ k}
3 end
4 R′ ← ⋃

v∈R Rv
5 P←∅
6 for N0 ∈ ℘(R′)
7 | N← pathDistanceDec(G, N0)
8 | if (width(N) ≤ k)
9 | | P← P ∪ {N}

10 end
11 return P

Theorem 6.13. Algorithm 6.4 with enumPDD replaced by algorithm 6.5 decides whether input
graphs G1 and G2 are isomorphic and both have c-clustered path distance width at most k in time
O(22(3k−1)k

(k + 1)!2|V(G1)|c+1).

We pay a high prize for this generalization in regard to the dependence on the parameter,
but the degree with respect to V(G1) is not increased. We will take up this issue again in
remark 8.6.

6.3. Rooted tree distance width

While a path distance decomposition is essentially a coloring and thus designing algorithms
with runtime according to the definition of FPT means finding ways to enumerate the root
sets, tree distance decompositions cannot be seen as colorings, because there may be multiple
possible mappings between the children of two bags. Luckily, the algorithms for rooted
path distance width in [YBFT99] were already designed with regard to rooted tree distance
decompositions. Many aspects carry over in slightly more complicated manner. For instance
the maximum degree of a graph with bounded tree distance width is no longer bounded, but

80

Distance widths Rooted tree distance width

the average degree (and the number of edges) still is. Note that we only consider connected
graphs in this section.

Lemma 6.14. Let G be a graph with tree distance width at most k. Then |E(G)| < 2k|V(G)|.

Proof. The proof works by induction on |V(T)| where (B, T, r) is a tree distance decomposi-
tion of G. In a single bag Bi are at most k vertices and thus fewer than k|Bi| edges. In a tree
distance decomposition with at least two bags, one bag Bi corresponds to a leaf in the tree.
The inductive hypothesis yields fewer than 2k(|V(G)| − |Bi|) edges in G[V(G) \ Bi]. Com-
bined with no more than k|Bi| edges in G[Bi] and k|Bi| edges between Bi and its adjacent bag,
there are less than 2k|V(G)| edges in G.

We remark that the proof of the fact that the average degree is bounded by 2 tw(G) is similar
(especially easy, if we use the characterization as partial k-trees (see chapter 9)).

A path distance decomposition is completely defined by its root set, whereas we are left
with a choice whether to branch or not to branch in some situations during the construction
of a tree distance decomposition with a given root set, particularly we can always choose a
path as our tree, so any path distance decomposition directly corresponds to a tree distance
decomposition. If, however, we choose to branch wherever possible, each root bag defines
exactly one tree distance decomposition (up to isomorphism of the underlying tree).

Lemma 6.15. For a connected graph G and a root bag R ⊆ V(G) there is a unique (up to isomor-
phism) tree distance decomposition (B, T, r) with Br = R, called the minimal tree distance decom-
position with root bag R, such that for all t ∈ V(T) the graph G

[⋃
u∈V(Tt) Bu

]
is connected, where

Tt is the partial tree rooted in t, i.e. T[S ∪ {t}], where S is the set of vertices not reachable from r in
T − t. Furthermore all tree distance decompositions (B′, T′, r′) of G with B′r′ = R have at least the
same width as (B, T, r).

Proof. Uniqueness can be shown by induction on |V(G)| and is of course fulfilled for |V(G)| ≤
1. For |V(G)| > 1 assume there is another minimal tree distance decomposition (B′, T′, r′) of
G with B′r′ = R. Let C be a component of G[V(G) \ R]. Then C =

⋃
u∈V(Tt) Bu =

⋃
u′∈V(T′

t′)
Bu′

for some children t, t′ of r, r′ in T or T′ respectively. Otherwise either an edge in G would
not be represented in the bags (if the component is not entirely contained in those unions
of bags) or at least one of the decompositions would not be minimal (if one union of bags
contains two or more components). But since there is only one way of representing G[C]
as a minimal tree distance decomposition (by the inductive hypothesis) and C was chosen
arbitrarily, (B, T, r) and (B′, T′, r′) are isomorphic (B and B′ can be seen as colorings of T and
T′ respectively).

Finally we show that the width is minimal by comparing (B, T, r) with an arbitrary tree dis-
tance decompositions (B′, T′, r′) of G with B′r′ = R. It is not hard to see that once Gt =

G
[⋃

u∈V(T′t)
Bj

]
is not connected for some t ∈ V(T′) and no other vertex u in T′t has this

property, we can replace T′t with minimal path distance decompositions rooted in C ∩ Bt for
each component C of Gt. This does not increase the width and if we do this iteratively from
the leaves to the root, (B′, T′, r′) becomes minimal and thus equal to (B, T, r).

The proof of lemma 6.15 already indicates that the minimal tree distance decomposition
for a given root bag R can be computed from the leaves of the decomposition to the root,

81

Rooted tree distance width Distance widths

i.e. in decreasing order of distance. A naïve approach would lead to the computation of
components of

⋃
j≥i Ni for each distance i, where N is a path distance decomposition with

N0 = R. However, if we somehow remember which vertices are connected to vertices in the
same component in a greater distance to the root bag, we can achieve linear time. Algorithm
6.6 from [YBFT99] solves this problem by introducing arbitrary phony edges that allow us to
restrict our attention to two consecutive distance levels.

Algorithm 6.6. Minimal tree distance decomposition for a given root bag [YBFT99]:
minTreeDistDec
Input : Connected graph G, and R ⊆ V(G)
Output : Minimal tree distance decomposition (B, T, r) with Br = R

1 N←pathDistanceDec(G, R)
2 N|N|←∅
3 T←(∅, ∅)
4 for i← |N| − 1 down to 0
5 | for C ∈ {V | V is a connected component of G[Ni∪ Ni+1]}
6 | | t←max V(T) + 1
7 | | Bt ← C ∩ Ni
8 | | make G[Bt] connected by adding phony edges e ⊆ Bt
9 | | V(T)← V(T) ∪ {t}

10 | | E(T)← E(T) ∪ {{t, u} | Bu ⊆ C ∩ Ni+1}
11 | end
12 end
13 return (B, T, max V(T))

Lemma 6.16 ([YBFT99]). For a connected graph G and a set R ⊆ V(G) algorithm 6.6 computes the
minimal tree decomposition with root bag R in time O(|E(G)|).

Proof sketch. We prove the correctness by induction on the number of distance levels |N| for
the path distance decomposition N of G with N0 = R. Since G is connected, the algorithm
outputs a tree T with V(T) = {1} and B such that B1 = V(G) if R = V(G). So we assume
|N| ≥ 2 from now on. Let C be a component of G′ = G[V(G) \ R]. The phony edges added
in line 8 cannot cross components of G′ as the newly constructed bag is part of a component
by its definition. This relies on older phony edges, but may easily be proved inductively.
Thus all bags contained as subsets in C are computed in the same way during the outer for
loop for i = |N| − 1 down to i = 1, as it would have been the case if we computed a tree
distance decomposition of G′[C] with root set C ∩ NG(R) instead and thus G′[C] is correctly
decomposed by the inductive hypothesis. Since G is connected, every component of G′ has
a neighbor in R and thus the bags in the first level of a minimal tree distance decomposition
are all of the form C ∩ NG(R), where C is a component of G′. Thus the entire construction is
correct.

To prove the runtime, we observe that each distance level of the path distance decomposition
N is considered twice during the algorithm and each edge lies between at most two such
levels. So each edge is treated at most twice. To make the graph connected, we only need
to introduce at most |Ni| − 1 phony edges for each distance level Ni and thus no more than
|V(G)| edges at all. Since G is connected, it has still onlyO(E(G)) edges after the addition of
all phony edges. We insert phony edges by e.g. creating a star or using breadth first search

82

Distance widths Rooted tree distance width

to get a set of proper endpoints. Because all operation within the inner for-loop have linear
runtime with respect to G[Ni ∪ Ni+1], the overall runtime follows.

6.3.1. Isomorphism test

Now we have all tools we need to assemble algorithm 6.7 for graphs of bounded rooted tree
distance width in a similar way as algorithm 6.1 for bounded rpdw. As there is no a priori
bijection between bags of two tree decompositions (even if the underlying trees are isomor-
phic), we need a subprocedure that matches child bags. Lemma 6.15 helps us to achieve this:
each child bag corresponds to a connected component and thus the subprocedure can be
designed like algorithm 2.5.

Theorem 6.17 ([YBFT99]). Algorithm 6.7 solves G I parameterized by the rooted
tree distance width in time O((k + 1)!2|V(G1)|3) for two connected input graphs G1 and G2, where
k = rpdw(G1). Therefore G I parameterized by the rooted tree distance width is
fixed-parameter tractable.

Proof. Correctness: The structure of the two outermost for-loops is similar to algorithm 6.1
and the correctness of this approach can be proved analogously to theorem 6.4. We use the
same names as in the algorithm and analyze one iteration of the second of the outermost
for-loops. Let t be in Nh and u ∈ Mh. Now we prove the following statement for arbitrary
t, u by backward induction on h (i.e. along the loop starting in line 18):

It,u =

{
φ|Bt

∣∣∣∣ G1[
⋃

p∈V(Tt)

Bp] ∼=φ G2[
⋃

q∈V(Uu)

Cq] ∧

∃χ : ((Tt, t) ∼=χ (Uu, u) ∧ ∀p ∈ V(Tt) : φ(Bp) = Cχ(p))

}
.

This is trivial for the leaf bags of the tree decomposition, so we assume h < |N| − 1. If
(Tt, t) 6∼= (Uu, u) then either the number of the children of t and u differ or any mapping
between the children maps a child p of t onto a child q of u such that (Tp, p) 6∼= (Uq, q) and
thus Ip,q = ∅ by the inductive hypothesis. But then the condition of line 35 is always violated
by at least one pair (p, q), so It,u will also be empty, since the subprocedure matchChildren
rejects all candidates φ.

Hence we now change our assumption to (Tt, t) ∼=χ (Uu, u). Let φ be an isomorphism from
G1[

⋃
p∈V(Tt) Bp] to G2[

⋃
q∈V(Uu) Cq] that maps bags according to χ. Now χ defines a matching

between the children of t and u and if p is a child of t the set Ip,χ(p) contains φ|Bp
by the

inductive hypothesis. Thus the subprocedure matchChildren accepts φ|Bt
and it is included

in It,u.

Finally, we assume φ′ ∈ It,u for some fixed φ′. Then it was accepted by matchChildren,
which implies that there is a matching χ′ between the children of t and u and corresponding
partial isomorphisms on level h + 1. We use the inductive hypothesis to extend χ′ to an
isomorphism χ from (Tt, t) to (Uu, u) and φ′ to an isomorphisms φ from G1[

⋃
p∈V(Tt) Bp] to

G2[
⋃

q∈V(Uu) Cq]. This finalizes our induction and we use the proved claim for Ir,s to conclude
that the algorithm is correct.

83

Rooted tree distance width Distance widths

Algorithm 6.7. Graph isomorphism for graphs of bounded rooted tree distance width
[YBFT99]
Input : Connected graphs G1,G2
Output : Are G1 and G2 isomorphic?

1 if (|V(G1)|6=|V(G2)|)
2 | return “not isomorphic”
3 (B, T, r)←(null , null , null)
4 for v ∈ V(G1)
5 | (B′, T′, r′)←minTreeDistDec(G1, {v})
6 | if (width((B′, T′, r′)) < width((B, T, r)) ∨ T = null)
7 | | (B, T, r)← (B′, T′, r′)
8 end
9 N← pathDistanceDec(T, {r})

10 for v ∈ V(G2)
11 | (C, U, s)←minTreeDistDec(G2, {v})
12 | if (width((B, T, r)) 6= width((C, U, s)) ∨ T 6∼= U)
13 | | continue
14 | M← pathDistanceDec(U, {s})
15 | for (t, u) ∈ N|N|−1 × M|N|−1
16 | | It,u ← {φ | G1[Bt] ∼=φ G2[Cu]}
17 | end
18 | for h←|N| − 2 down to 0
19 | | for (t, u) ∈ Nh × Mh
20 | | | if (|NT(t)∩ Nh+1| 6= |NU(u)∩ Mh+1|)
21 | | | | It,u ← ∅
22 | | | | continue
23 | | | for bijections φ : Bt → Cu
24 | | | | It,u ← It,u ∪matchChildren(G1, G2, (B, T, r), (C, U, s), M, N, h, t, u, φ)
25 | | | end
26 | | end
27 | end
28 | if (|Ir,s| 6= 0)
29 | | return “isomorphic”
30 end
31 return “not isomorphic”

32 subprocedure matchChildren(G1, G2, (B, T, r), (C, U, s), M, N, h, t, u, φ)
33 | for p ∈ NT(t)∩ Nh+1
34 | | for unmatched q ∈ NU(u)∩ Mh+1
35 | | | if (∃ ψ ∈ Ip,q : G1[Bt∪ Bp] ∼=φ∪ψ G2[Cu∪ Cq])
36 | | | | match←match ∪ {(p, q)}
37 | | end
38 | end
39 | if (|match|=|NT(t)∩ Nh+1|2)
40 | | return {φ}
41 | else
42 | | return ∅
43 end

84

Distance widths Rooted tree distance width

Runtime: The test of the condition in line 35 takes time O((k!)4k2) (k! tests, whether the
union of functions is an isomorphism on graphs with at most 2k vertices) and is performed
at most |NT(t) ∩ Nh+1|2 times. Each pair of bags in the distance levels Nh+1 and Mh+1 re-
spectively will be considered k! times as children to be possibly matched during the for-loop
starting in line 19: once for each bijection between their parents (line 23). Thus each iteration
(for level h) of the loop starting in line 18 takes timeO(k!2k2|Nh+1|2) and the entire loop runs
in O(k!2k2|V(G1)|2). Since there is again one rooted tree distance decomposition for each
vertex of G2, we have proved the claimed runtime.

6.3.2. Canonical Labelings

Similar to section 6.1.2, we will subsequently outline how to find a canonical labeling for a
pair of a graph G and (a root bag of) a minimal tree distance decomposition of it. Technically,
we will interpret the membership in the root bag as a color that has to be preserved. What
makes the canonization of such pairs harder than the canonization of path distance decom-
positions, is the number of different orders of child bags and that there is no upper bound
on the number of children of a bag. This is also the reason why we only encode the root bag
as color, as opposed to each level for the path distance decompositions.

Luckily for us, [DTW12] shows that C L(tdw = k) is in XL (see definition
1.26) by providing a logspace canonical labeling algorithm for graphs of bounded tree dis-
tance width using a modification of Lindell's isomorphism order [Lin92]. But this recursive
algorithm has a call tree with height Θ(log |V(G)|) and inner vertices of degree up to tdw(G)!
and hence no runtime bounded by a polynomial in |V(G)| with degree not depending on
tdw(G). Nevertheless the isomorphism order computed within this algorithm enables us to
sort the children of a bag and to turn the top-down logspace algorithm from [DTW12] into a
bottom-up algorithm. We will only be able to use it for bounded rpdw, as the enumeration
of all root bags of size k is possible in XL, but not in FPT.

Let (G, (B, T, r)) be a pair of a graph G and a minimal tree distance decomposition (B, T, r)
of G and assume that the width of (B, T, r) is k. Assume there is a canonical form { for
graph-decomposition pairs, whose decomposition tree has height less than the height of T.
Further let c1, . . . , cl be the children of r in T. Assume we have a set Si for each ci, i ∈ [l] that
contains the canonical labelings φ of G([

⋃
t∈Tci

Bt], Bci) w.r.t. {, where Tci is the subtree of T
rooted in ci as in lemma 6.15.

We now fix a labeling χ|Br
: Br → [|Br|] of Br and describe how to construct a labeling χ of

(G, Br). To achieve this, we first define a sort order E on the children of r (using the ideas
from [DTW12]).

Definition 6.18. We use the names and notation from the above paragraphs. Let c1, . . . , cl be
the order of the children of r after we sorted them according to E, then i < j if:

1. ni < nj, where ni is the set Br ∩ N(Bci) seen as a bit field (ni ∈ {0, 1}|Br|) whose entries
are sorted according to χ|Br

or ni = nj and
2. ai < aj, where ai is the minimal adjacency matrix of G[Bci ∪ (Br ∩ N(Bci))] (sorted by

χ|Br
and φ) over all φ ∈ Si or ai = aj and

3. the canonical form {(G[
⋃

t∈V(Tci)
Bt], Bci) has a lexicographically smaller adjacency ma-

trix then the canonical form corresponding to Tcj .

85

Rooted tree distance width Distance widths

(Read this as if a left parenthesis is placed after every “or”.) •

Using this, we now define a continuation of the given restriction and furthermore a canonical
form over all restrictions.

Definition 6.19. Arbitrarily choose some φi ∈ Si for i ∈ [l]. Then χ shall be defined w.r.t. χ|Br
as (+ denotes a constant shift)

χ = χ|Br
∪

⋃
i∈[l]

(φi + si−1), where si =

{
|Br| i = 0
|
⋃{Bt | t ∈ V(Tci)| i ∈ [l]

.

Let χmin be a labeling χ constructed in this way such that the adjacency matrix of the graph
(χ(V(G)), χ(E(G))) gets minimal. We now assume that the canonical form { mentioned
above was recursively constructed such that

{(G, Br) = ((χmin(V(G)), χmin(E(G))), χmin(Br)) .

•

Lemma 6.20. { is a canonical form for pairs (G, Br), where G is a graph and Br ⊆ V(G).

Proof. Let (B, T, r) be the unique minimal tree distance decomposition of G with root set Br
(up to trees isomorphic to T). We prove the lemma by induction on the height of T. If T has
height 0 then r has no children in T and Br = V(G). Thus χmin minimizes adj(G) over all
φ ∈ Sym(V(G)), which makes {(G, Br) canonical.

Now assume that the height of T is greater than 0 and thus { canonical for (Gi, Tci , r), where
c1, . . . , cl are the children of r in T and Gi = G[

⋃
t∈V(Tci)

Bt]. Let (H, Cr) be an isomorphic pair,
i.e. there is a φ such that G ∼=ψ H and ψ(Br) = Cr. Furthermore, let (C, T, r) the correspond-
ing minimal tree distance decomposition (note that we reuse T and r). Let χ|Br

and χ′|Cr
be

labelings of Br and Cr respectively, such that χ|Br
= χ′|Cr

◦ ψ|Br
. Assume that the children

c1, . . . , cl of r are sorted according toE for (G, Br)with labeling χ|Br
and d1, . . . , dl are the chil-

dren of r sorted according toE for (H, Cr)with labeling χ′|Cr
and define Hi = H[

⋃
t∈V(Tdi

) Ct].
We will now show that the following propositions hold:

ψ(Br ∩ N(Bci)) = Cr ∩ N(Cdi) (one)
G[V(Gi) ∪ (Br ∩ N(ci))] ∼=φ H[V(Hi) ∪ (Cr ∩ N(di))]

such that φ|Br∩N(Bci)
= ψ|Br∩N(Bci)

and φ(Bci) = φ(Cdi) (two)

Tci
∼= Tdi (three)

The first proposition directly follows from the first condition in the definition of E and the
connection between χ|Br

and χ′|Cr
. Since we assumed (G, Br) and (H, Cr) to be isomorphic

and we have mapped the neighborhood of Bci in the root bag to the one of Cdi , using the
first proposition and condition two of E sorts isomorphism types of G[Bci ∪ (Br ∩ N(ci))]
(and similar for H) consistently with the third condition (membership in Si ensures this),
proposition two follows. Proposition three also follows easily from condition three of E.

Now assume χ′ is defined for (H, Cr) analogously to χ (using the indices of d1, . . . , dl). Look-
ing at the definition of χ′, it is now easy to see that we may alter the isomorphism ψ such
that ψ(Bci) = Cdi (using φ from proposition two), subsequently alter the bag function C such

86

Distance widths Rooted tree distance width

that ψ(Bci) = Cci and finally redefine χ′ using the indices of c1, . . . , cl, all without changing
the result of the application of χ′ to (H, Cr). By the inductive hypothesis and the condition
χ|Br

= χ′|Cr
◦ ψ|Br

, the labelings χ and χ′ (old and new) produce the same canonical form if
applied to (G, Br) and (H, Cr), respectively. So ψ describes a one-to-one mapping of canoni-
cal forms and their lexicographic minima therefore coincide, making { a canonical form.

The canonical form { directly translates into an algorithm. The only thing we have to do
to achieve FPT-time is to replace the sets Si by some subset of them, but since we only use
restrictions of their elements for the sort order and only a single element for the construction
of a labeling, this can be done easily. Algorithm 6.8 is the result of these thoughts and we
will prove the following theorem about it.

Theorem 6.21. The algorithm 6.8 computes a canonical labeling w.r.t. { from definition 6.19 for a pair
(G, R) in timeO((k + 1)!2|V(G)|3) where k is the width of the minimal tree distance decomposition
of a graph G with root set R. Hence C L(rpdw) is fixed-parameter tractable.

Proof. If we ignore the change from the canonical labeling cosets Si (see beginning of the
section) to the sets It, the function canon together with the for-loop starting in line 7 directly
implements the definition of {, provided it did so for all subtrees. For the leaves of T (as
defined in line 1) only the adjacency matrix is computed by canon and thus the entire loop
computes the canon for leaf bags. So it remains to show that we can use the sets It instead
of canonical labeling cosets. Since the for-loop starting in line 7 iterates over all possible
labelings of a single bag, we ensure that all possible restrictions of canonical labelings are
available, when the bag in question is considered again as a child bag of its parent. We
underpin this by the observation that we could construct the canonical labeling coset by
recursively combining each φ ∈ It with combination of members in I′u over all children u of
t (keep in mind that I′u depends on φ).

The runtime of most parts is annotated in the comments of algorithm 6.8. We single out the
sort calls in line 5. Because each bag is child bag exactly once and the canon of a a graph in-
duced by the bags of a subtree has length at most |V(G)|2, we need O(k|V(G)|3) operations
to sort (using radix sort) in line 5 over all iterations of the two outermost for-loops. The run-
time of the other operations can be easily bounded from above by multiplying the annotated
runtimes.

A canonical labeling for a graph G can be computed by choosing the labeling minimizing
{(G, {v}) over v ∈ V(G).

The previous proof clearly underpins that the costly part of algorithm 6.8 is its usage of large
adjacency matrices. So it seems natural to seek for an application of the principles used in
algorithm 2.3, i.e. not using a real “global” canon, but a mapping of isomorphic subtrees to
integers that is only valid on each distance level w.r.t. the root bag. Given a minimal tree
distance decomposition (B, T, r), the idea behind algorithm 6.9 is to keep all parts of the
order and the canon that do not recursively depend on { and to compute a minimal color of
a vertex t ∈ V(T) over all possible labelings of Bt instead of the canon corresponding to the
subtree Tt. We now prove the following theorem about it.

Theorem 6.22. The algorithm 6.9 computes a canonical labeling for a pair (G, R) in time
O((k + 1)!2|V(G)|) where k is the width of the minimal tree distance decomposition of a graph G
with root set R.

87

Rooted tree distance width Distance widths

Algorithm 6.8. Canonical labeling for minimal tree distance decompositions
Input : Connected graph G and R ⊆ V(G)
Output : Canonical labeling of (G, R)

1 (B, T, r)←minTreeDistDec(G, R)
2 N← pathDistanceDec(T, {r})
3 for i←|N| − 1 down to 0
4 | for t ∈ Ni //O(|V(G)|) iterations (both outer loops combined)
5 | | presort u ∈ NT(t) ∩ Ni+1 according to {(u)
6 | | {(t)← null
7 | | for bijective φ ∈ [|Bt|]Bt //O(k!) iterations
8 | | | (ψ, a)← canon(i, t, φ)
9 | | | if (a < {(t) ∨ {(t) = null)

10 | | | | {(t)← a
11 | | | | It ← {ψ}
12 | | | else if (a = {(t))
13 | | | | It ← It ∪ {ψ}
14 | | end
15 | end
16 end
17 return some element from Ir

18 subprocedure canon(i, t, φ) //O(k!k2|V(Gt)|2)
19 | for u ∈ NT(t) ∩ Ni+1 //O(c) iterations, c = |NT(t) ∩ Ni+1|
20 | | nu ← string according to the first condition of E //O(k2)
21 | | au ←min {adj(H) | ∃φ′ H=(φ′(V′), φ′(E(G[V′]))), V′=Bu∪ (Bt∩ NG(Bu)),
| | ∃ψ ∈ Iu : φ′=φ ∪ (ψ|Bu

+ |φ|)} //O(k!k2)

22 | | I′u ← {ψ ∈ Iu | adj(H) = au, (adj(H) computed as above)} //O(k!k2)
23 | end
| //O(ck2) (lemma 2.24):

24 | sort u ∈ NT(t) ∩ Ni+1 according to (nu, |Iu|, au, |I′u|, {(u)) (using the list from line 5)
25 | s← |φ|
26 | for u ∈ NT(t) ∩ Ni+1 //O(|V(Gt)|) operations
27 | | ψu ← arbitrary element from I′u
28 | | φ← φ ∪ (ψu + s)
29 | | s← s + |ψu|
30 | end
31 | Gt ← G[

⋃
u∈V(Tt) Bu]

32 | a← adj(φ(V(Gt), φ(E(Gt)) //O(|V(Gt)|2)
33 | return (φ, a)
34 end

Proof. We use the names and notation from algorithm 6.9. The correctness proof is basically
a combination of the proofs for theorems 6.21 and 6.5 (canonical labeling for path distance
decompositions), lemma 2.25 and corollary 2.26 (linear time canonical labeling for trees).
Whenever two vertices t1 and t2 in the same level Ni have the same inv(t1) = inv(t2) in line
12, their bags are isomorphic and any child bags connect to subsets of the respective bags
that are invariant under isomorphism. If the jth child bag of t1 has neighbors V′ ⊆ Bt1 in

88

Distance widths Rooted tree distance width

Algorithm 6.9. Canonical labeling for minimal tree distance decompositions
Input : Connected graph G and R ⊆ V(G)
Output : Canonical labeling of (G, R)

1 (B, T, r)←minTreeDistDec(G, R); N← pathDistanceDec(T, {r})
2 for i←|N| − 1 down to 0
3 | for t ∈ Ni //O(|V(G)|) iterations (both outer loops combined)
4 | | inv(t)← null
5 | | for bijective φ ∈ [|Bt|]Bt //O(k!) iterations
6 | | | a← invar(i, t, φ)
7 | | | if (a < inv(t) ∨ inv(t) = null)
8 | | | | inv(t)← a
9 | | | | It ← {φ}

10 | | | else if (a = inv(t))
11 | | | | It ← It ∪ {φ}
12 | | end
13 | end
14 | s← sortLexico(inv(Ni)) (also sorting Ni) //O(k2(|Ni|+ |Ni+1|)) (lemma 2.24)
15 | for t ∈ Ni (in sort order)
16 | | isot(t)← s−1(inv(t))
17 | | add t to presort list Lt′ (t′ is parent of t in the rooted tree (T, r))
18 | end
19 end
20 return canlab(0, r, 0, φ) where φ ∈ Ir
21 subprocedure invar(i, t, φ) //O(k!k2|V(Gt)|)
22 | for u ∈ NT(t) ∩ Ni+1 //O(c) iterations, c = |NT(t) ∩ Ni+1|
23 | | nu ← string according to the first condition of E //O(k2)
24 | | au ←min {adj(H) | ∃φ′ H=(φ′(V′), φ′(E(G[V′]))), V′=Bu∪ (Bt∩ NG(Bu)),
| | ∃ψ ∈ Iu : φ′=φ ∪ (ψ + |φ|)} //O(k!k2)

25 | | I′u ← {ψ ∈ Iu | adj(H) = au, (adj(H) computed as above)} //O(k!k2)
26 | end
27 | sort u ∈ NT(t) ∩ Ni+1 according to (nu, au,isot(u)) using Lt (see line 17)
28 | u1, . . . , ul ← NT(t) ∩ Ni+1 (as sorted above)
29 | a← (adj(φ(Bt), φ(E(G[Bt]))), (nu,1, au,1,isot(u1)), . . . , (nu,l, au,l,isot(ul)))
30 | return (φ, a)
31 end
32 subprocedure canlab(i, t, p, φ)
33 | invar(i, t, φ) without the last three lines
34 | φ← φ + p //constant shift
35 | p← p + |φ|
36 | for u ∈ NT(t) ∩ Ni+1
37 | | ψ← arbitrary element from I′u
38 | | ψ← canlab(i + 1, u, p, ψ)
39 | | p← p + |ψ|
40 | | φ← φ ∪ ψ
41 | end
42 | return φ
43 end

89

c-connected d-separating tree distance width Distance widths

t1's bag then the jth child bag of t2 has neighbors π(V′) ⊆ Bt2 where π is the isomorphism
between the bags. Furthermore, if inv(t1) = inv(t2), then the interaction au (line 24) between
each jth child bag and Bt1/Bt2 is identical as well the isomorphism type isot(u). From here
on we argue as in lemma 2.25 (regarding the recoloring, i.e. isot) and theorem 6.5 regarding
extendible canonical labelings.

Again, the runtime is mostly annotated in the algorithm. Observe that the call to sortLexico
in the main algorithm has only overhead k2 compared to algorithm 2.3 and that the sorting
step in the subprocedure invar only has to sort elements with size bounded by k2, because
we start with a presorted list each time and use a stable sort procedure for the other two
positions afterwards.

Corollary 6.23. For two graphs G1 and G2 with rooted tree distance width k and |V(G1)| = |V(G2)|,
we can compute a canonical labeling (thus decide G I) of each graph in time
O((k + 1)!2|V(G1)|2).

We close this section with a question, asking whether this finding and the result of [DTW12]
can be further generalized to meet both of the requirements logspace and weak interdepen-
dence between parameter and size simultaneously.

Question 6.24. Is C L(rpdw) in para-L? ?

6.4. c-connected d-separating tree distance width

In the same way as the rooted path distance width can be generalized to the c-connected path
distance width, we would like to generalize the rooted tree distance width. There is, however,
a difference that prevents this plan. While a level in a path distance decomposition has only
two neighboring levels, a bag in a tree distance decomposition may have any number of child
bags. Thus the crucial termination condition in line 1 of algorithm 6.3, which ensures that
the first two levels combined have size smaller than 2k, is not valid for arbitrary connected
root bags. But we can easily state a similar root bag enumeration algorithm, if we require
the root bag to have only d child bags for a fixed integer d. Then every appearance of 2k in
the proof of theorem 6.10 just has to be replaced by (d + 1)k, where k is the candidate for
the connected path distance width, or a similar parameter for tree distance decompositions,
respectively. Noticing that the only appearance of d is as a factor before k, we may even let d
depend on k, that is, choose a function d : N→N instead of a fixed integer.

We are now close to the definition of such a parameter, but the condition “has at most d(k)
children in its minimal tree distance decomposition” is a bit cumbersome. Luckily, we have
the nice characterization of minimal tree distance decompositions from lemma 6.15. (B, T, r)
is a minimal tree distance decomposition if for all t ∈ V(T) the graph G[

⋃
j∈V(Tt) Bj] is con-

nected. Hence the number of children of a vertex t ∈ V(T) is exactly the number of compo-
nents in the graph G[

⋃
j∈V(Tt)\{t} Bj]. If t is the root r then this graph is nothing but G \ Br,

which gives us a shorter characterization for our desired criterion.

Definition 6.25. Let d be any function d : N → N, c ∈ N and let G be a graph. The
c-connected d-separating tree distance width of G ((c, d)-cstdw(G)) is the minimal k such
that there is a tree distance decomposition (B, T, r) of width k such that G[Br] has at most c
components and G \ Br has at most d(k) components or |Br| ≤ c. •

90

Distance widths c-connected d-separating tree distance width

The last alternative condition allows our new parameter to cover the rooted tree distance
width.

Theorem 6.26. Let d be any computable function d : N → N and let c ∈ N. Then G
I((c, d)-cstdw = k) and C L((c, d)-cstdw = k) are fixed-parameter
tractable.

Proof. Since d is a computable function, d(k) is computable in a computable time (e.g. use a
counter) which only depends on k. Hence we simply compute d(k) for an input pair (G, k)
(for C L) and use this value instead of k in line 1 of algorithm 6.3. Of course
we also change all computations of a path distance decomposition to minimal tree distance
decompositions. Instead of calling the algorithm with neighborhoods of maximal sizes 2k− 1
to k, the maximal size of the neighborhood of R goes from (d(k) + 1)k − 1 to d(k)k during
a descent in the recursive call tree. Hence the overall runtime of the modified algorithm 6.3
isO((d(k)k+k)!

(d(k)k)! |V(G)|), because a minimal tree distance decomposition is also computable in
O(k|V(G)|) (lemmas 6.16 and 6.14). As usual an isomorphism or canonical labeling algo-
rithm iterates over the enumerated decompositions and our proof is completed.

91

7. Tree-depth

We already discussed a variety of tree-like structures and graph parameters accompanied
by them. In this chapter we will treat yet another parameter related to trees, the tree-depth.
The tree-depth may be defined in many ways: e.g. via so called ordered colorings/vertex
rankings [KMS95; Bod+98], via centered colorings [NO06] and so called tree-depth decom-
positions [BDK12; NO06].

Bouland, Dawar and Kopczyński [BDK12] construct a canonization algorithm for tree-depth
decompositions using an extension of Lindell's isomorphism order for trees [Lin92] and ap-
ply this to graphs of bounded tree-depths. This approach only works because tree-depth
decompositions are computable in FPT-time w.r.t the tree-depth and because there are (in
some sense) not to many of them for a given input graph. These constraints determine the
structure of this chapter. At first, we give some definitions of tree-depth and show their
equivalence, then we explore the fixed-parameter tractability of the T-D D-
 problem via a forbidden subgraph characterization of graphs with bounded tree-depth
and finally, we turn our attention to the number of choices during the construction of a tree-
depth decomposition and a C L algorithm using the isomorphism order
mentioned above.

7.1. Some equivalent definitions

Definition 7.1. Let G be a graph and let F = (V(F), E(F), (r1, . . . , rl)) be a rooted forest with
components C1, . . . , Cl of (V(F), E(F)), V(F) = V(G) and ri ∈ Ci for all i ∈ [l]. Further
let subt(F, t) be the tree (S ∪ {t}, F[S ∪ {t}]), where t ∈ Ci and S is the set of vertices not
reachable from ri in F[Ci]− t. The closure of F is the graph

clos(F) = (V(F), {{t, u} ∈ V(F) | ∃i∃simple path ri, . . . , t, . . . , u in F}) .

We call F a tree-depth decomposition of G if for all t ∈ V(F) the graph G[V(subt(F, t))] is
connected and

E(G) ⊆ E(clos(F)) .

The height of F is the the maximal length of a simple root-leaf path over all Ci. The tree-depth
of G (td(G)) is the minimal height over all tree-depth decompositions of G plus 1. •

The connected-subtrees-criterion will be helpful, but it is not necessary for the definition of
tree-depth.

Lemma 7.2. Let G be a graph and F = (V(F), E(F), (r1, . . . , rl)) be a rooted forest with height k− 1
and V(G) = V(F) such that

E(G) ⊆ E(clos(F)) .

Then td(G) ≤ k.

92

Tree-depth Computation of tree-depth and decompositions

Proof. Analogously to lemma 6.15 (minimal tree distance decompositions), we may alter an
arbitrary rooted forest whose closure is a supergraph of G such that it becomes a tree-depth
decomposition. If for some t ∈ V(F) the graph G[V(subt(F, t))] is not connected, we choose
the lowest such t, i.e. such that G[V(subt(F, t′))] is connected for all t′ ∈ V(subt(F, t). Since
the subtree for any child t′ of t is connected in G, one such child is not incident to t in G,
otherwise G[V(subt(F, t))] would be connected, too. So we simply make all non-incident
children t′ of t children of the parent of t (this parent exists, because each component has its
own root). If it is iteratively applied in decreasing distance to the root of each component, this
procedure eliminates all violations of the condition requiring connected subtrees, without
increasing the height of each rooted tree.

We look at yet another possible definition of tree-depth, that does not show a relation to trees
at the first glance. But the subsequent proof shows that the “recursion tree” of this inductive
definition directly corresponds to a tree-depth decomposition.

Lemma 7.3 ([NO06]). Let G be a graph with connected components C1, . . . , Cl then

td(G) =


1 |V(G)| = 1
1 + minv∈V(G) td(G− v) l = 1∧ |V(G)| > 1
maxi∈[l] td(G[Ci]) l > 1

.

Proof. We will prove this by induction on td(G) for an arbitrary graph G. If td(G) = 1 then
there is a tree-depth decomposition of G that has height 0 and thus each of its components is
a single vertex. Hence each of its components has tree-depth 1 and the proposition is fulfilled
either for the first or the third case.

Assume that td(G) > 1 and that G is disconnected. Then a tree-depth decomposition of
height td(G) − 1 of G is a tree-depth decomposition for all of its components C1, . . . , Cl, if
properly restricted. So td(G[Ci]) ≤ td(G) for all i ∈ [l]. If, on the other hand, td(G[Ci]) <
td(G) for all i ∈ [l], then we could replace the decomposition of all components by one with
height less than td(G) − 1 and thus at for at least one component Ci we have td(G[Ci]) =
td(G).

If G is connected this argument works nearly analogous over all possible roots r ∈ V(G) of a
tree-depth decomposition F. If we remove the root r, G− r has components C1, . . . , Cl and we
already know that td(G − r) = maxi∈[l] td(G[Ci]). Each component corresponds to a child
of r and thus we can use a tree-depth decomposition of minimal height for each component
and height of F is maxi∈[l] td(G[Ci]) = td(G− r). If we now choose r such that td(G− r) is
minimal, we get td(G) = td(G− r) + 1.

7.2. Computation of tree-depth and decompositions

Despite the very simple notion of tree-depth there is unfortunately no known simple algo-
rithm to compute it in FPT-time. There are, however, two linear time algorithms to test for
td(G) = k for a fixed k. The approach from [Bod+98] works by using graph minors and the
Robertson–Seymour theorem [RS04]. In contrast to this, the algorithm from [NO12] is con-
structive, but requires Courcelle's theorem [Cou90], which states that properties definable
in first-order logic can be tested in linear time on graphs of bounded treewidth (actually for

93

Computation of tree-depth and decompositions Tree-depth

arbitrary structures, not only graphs). Luckily, such a formula is constructed in [NO12, Ex-
ercise 6.6]. Instead of this formula, we will use a result from [DGT12], which ensures that
the graphs of tree-depth k can be characterized by a set of forbidden subgraphs with at most
22k−1 vertices. This easily translates into a first order formula and has a fundamental further
application discussed in the next section.

This section is structured in reverse order of the preceding paragraph, i.e. we will first look
at the forbidden subgraph characterization, then discuss Courcelle's theorem and why we
can even use it (tw(G) ≤ td(G)) and conclude with the theorem from [NO12].

7.2.1. Characterization via forbidden subgraphs

Figure 7.1. A path of length 14 and a tree-depth decomposition of it: vertices are colored
with their depth in the tree-depth decomposition.

3 2 3 1 3 2 3 0 3 2 3 1 3 2 3

3 3 3 3 3 3 3 3

2 2 2 2

1 1

0

Lemma 7.4 ([NO06, Equation 6.2]). Let G be a graph having a path Pn of length n − 1 as its
subgraph. Then td(G) ≥ log(n)− 1.

Proof. If n ∈ [4] then the proposition holds even without the final−1, so assume n is minimal
such that it does not hold. Then td(G) ≥ td(G[C]), where C is the component of G that
contains the Pn, so we can assume that G is connected. Using the second case of lemma 7.3
we see that whichever vertex v we remove from G, at least one component of G− v contains
a Pn′ such that n′ ≥ bn

2 c. If n does not have the form 2l + 1 for some l ∈ N then log(n) =

log(n′) + 1 and as td(G) ≥ td(Pn′) + 1 ≥ log(n′)− 1+ 1 the claim follows. If n = 2l + 1 then
n′ cannot have this form, because n′ = 2l−1 and n ≥ 6. Thus we repeat the proof for n′ such
that n′ is a power of 2 and the stronger claim td(Pn′) ≥ log(n) and use this stronger result
together with log(n) = log(n′) + 2.

The last lemma already brings us one kind of forbidden subgraphs (see figure 7.1 for an ex-
ample) for graphs of bounded tree-depth, but it also ensures that other forbidden subgraphs
cannot be to far away from each other in a component that contains no long path. This ob-
servation is one of the key building blocks of the following theorem.

Theorem 7.5 ([DGT12]). Let G be a graph such that td(G) > k, where k ∈ N, then G contains a
connected subgraph F such that |V(F)| ≤ 22k−1 and td(F) > k.

Proof. For k = 1 the minimal forbidden graph F is the K2, i.e. a single edge. If k = 2 a graph
with td(G) > 2 either a contains a path or a cycle of length 3, otherwise it would be a disjoint

94

Tree-depth Computation of tree-depth and decompositions

union of stars. Now let k be minimal such that the theorem does not hold. Since the subgraph
relation is transitive, we may assume that G is connected and td(G) = k + 1, otherwise we
argue for a subgraph with this property. If G contains a path of length 2k − 1 as a subgraph,
we may choose this path as our forbidden subgraph F by lemma 7.4 (stronger argument for
n′), otherwise G has diameter 2k − 2.

Because k is a minimal counterexample, G contains a subgraph F′ with |V(F′)| ≤ 22k−2 and
td(F′) ≥ k. Set {v1, . . . , vl} = V(F′). For each vi, i ∈ [l] the tree-depth decreases by at most
one, if we delete it and hence td(G− vi) ≥ k. We use the minimality of k again and conclude
that there are subgraphs Fi of G− vi such that td(Fi) ≥ k and |V(Fi)| ≤ 22k−2 .

Now look at the union graph F = (V(F′) ∪⋃
i∈[l] V(Fi), E(F′) ∪⋃

i∈[l] E(Fi)) of all forbidden
subgraphs. It has at most l + l2 vertices and may not be connected. But if we assume that
∀i ∈ [l] : V(F′) ∩ V(Fi) 6= ∅, F is connected and its maximal number of vertices becomes
l2 = 22k−1 . Furthermore, for any vertex v ∈ V(F), F − v either contains F′ or some Fi and
thus td(F) ≥ k + 1.

On the other hand, if F′ ∩ Fi = ∅ for some i ∈ [l], we only need those two subgraphs to ensure
the containment of either F′ or Fi in F − v for all v ∈ V(F) and F being the graph induced
by the union of the two vertex sets. Finally, we modify F by adding a path between the two
subgraphs if needed (existent in G), but the length is still at most 2l + 2k − 3 ≤ 22k−2 .

7.2.2. Bounded treewidth and Courcelle's theorem

Unfortunately, a detailed discussion of Courcelle's theorem [Cou90] would be to long and
distracting. We therefore only state the result and refer to e.g. [FG06, section 11.4]. Instead of
the original theorem we use a generalization as proved in [FFG02], which helps us to reduce
the runtime, when we like to find roots of tree-depth decompositions. We start by defining
the problem in a way strictly tailored to our needs.

Definition 7.6. A graph formula shall be a first order formula over the signature (E), i.e. all
its atomic formulas either have the form x1 = x2 or E(x1, x2). A G-assignment for a graph
G is a function from the variables (of φ) to V(G). If β is G-assignment with β(x1) = u and
β(x2) = v the atomic formula E(x1, x2) evaluates to true under the assignment β if and only
if {u, v} ∈ E(G). If (x1, . . . , xl) are free variables of φ, we say G |= φ(a1, . . . , al) if (G, β) |= φ,
where β = {(xi, ai) | i ∈ [l]}. The model relation |= itself is defined inductively over the
structure of first order formulas as usual.

We use this to define the following parameterized problem.
l-FO G E (tw = k)

Input : G ∈ Graphs, a graph formula φ with l free variables and k ∈N

Parameter : k + |φ|
Output : If tw(G) ≤ k the set φ(G) = {(a1, . . . , al) ∈ V(G)l | G |= φ(a1, . . . , al)}

•

The following theorem is a special case of the generalization of Courcelle's theorem found in
[FFG02]. Note that the full version there also covers monadic second order logic and arbitrary
structures.

95

Computation of tree-depth and decompositions Tree-depth

Theorem 7.7 ([FFG02, Theorem 4.12]). For all l ∈ N, l-FO G E (tw = k) is
fixed-parameter tractable (in f (k + φ)|V(G)|l for some f). 6�

One building block of theorem 7.7 is the ability to compute a tree decomposition of minimal
width.

T D
Input : A graph G and k ∈N

Parameter : k
Output : A tree decomposition of width k if one exists, else null.

Theorem 7.8 ([Bod96]). T D is fixed-parameter tractable (in timeO(f (k)|V(G)|)
for some f). 6�

What remains, is the proof of the fact that the treewidth is bounded by the tree-depth.

Lemma 7.9 ([BGHK95]). For all graphs G the inequality tw(G) < td(G) holds.

Proof. Let F be a tree depth decomposition of G with height td(G)− 1 and {u, v} ∈ E(G).
Then there is w.l.o.g. a simple path r, . . . , u . . . , v in F, where r is the root of a component of
F. For each v ∈ F let

Bv = {r, . . . , v | r, . . . , v is a simple path and r is the root of the component containing v} .

Define (B, T, s) such that V(T) = V(F) ∪ {s} such that s /∈ V(F), E(T) = E(V) ∪ {{s, ri} |
ri is root of a component of F} and Bs = ∅. Then for each edge e = {u, v} ∈ E(G) either e ⊆
Bv or e ⊆ Bu and for all vertices v ∈ V(G), we have B−1(v) = V(subt(F, v)). Hence (B, T, s)
is a tree decomposition of G having width td(G)− 1 and thus tw(G) < td(G). Alternatively,
we may also just take the leaves of this decomposition, order them lexicographically by the
path that leads to them in F (order of V(G) does not matter) and join consecutive bags by
an edge. We obtain a path decomposition with the same width (see chapter 8, equation
(8.3.6)).

Finally, we define the following parameterized problem and show it is in FFPT.

T-D D
Input : A graph G and k ∈N

Parameter : k
Output : A tree-depth decomposition of width k if one exists, else null.

Theorem 7.10 ([NO12, Theorem 17.3]). T-D D is fixed-parameter tractable.

Proof sketch. If G is not connected, we handle each component separately, so assume G is
connected. By lemma 7.9 and theorem 7.8, we may first try to compute a tree decomposi-
tion (B, T, r) of the input graph G and output null if tw(G) > k. Using theorem 7.5 we
further compute a set of forbidden induced subgraphsFk−1 for the class Tk−1 of graphs with
tree-depth at most k− 1. This set is used to generate a formula φ such that

G |= φ(v) ⇔ G− v ∈ Fk−1-free .

96

Tree-depth Application to C L(td = k)

Theorem 7.7 then enables us to compute φ(G). If φ(G) is empty, there cannot be tree-depth
decomposition of height k− 1, because td(G) > k and we return null. In any other case we
choose some member of v ∈ φ(G) as the (or a in case of multiple components) root of our
tree-depth decomposition and recurse with k − 1 if k > 0. Otherwise we add the isolated
vertices of G − v as leaves to our decomposition. All calls to other algorithms require only
FPT-time.

7.3. Application to C L(td = k)

We already saw in many places of this work, that once we have a polynomially bounded
set of tree-like structures for every graph, we can apply some modified tree isomorphism
algorithm to construct an isomorphism algorithm for arbitrary graphs. Not surprisingly,
[BDK12] also follows this scheme. Hence the first step is to obtain a bound on the set of
tree-depth decompositions with height td(G) − 1 for a given graph G. The kind of bound
we obtain is different from chapter 6, where there was only one decomposition for a given
root bag. This time, the number of decompositions for a given root remains unbounded (by
td(G)), but the set of roots of decomposition with minimal height itself is bounded. This
bound follows directly from theorem 7.5.

Corollary 7.11 ([BDK12, end of section 3.1]). Let G be a connected graph such that td(G) = k.
Then

|{r | F = (V(F), E(F), r) is a tree-depth decomposition of G of height k− 1}| ≤ 22k−2
.

Proof. Apply theorem 7.5 for k− 1, hence G has a subgraph F with at most 22k−2 vertices and
td(F) = k. We argue as in the proof of lemma 7.3 and observe that for any possible root r of a
tree-depth decomposition td(G− r) = k− 1. But if we remove a vertex v /∈ V(F), G− v still
contains F as a subgraph and thus td(G − v) = k. Hence all possible roots belong to V(F)
and the proposition directly follows.

Note that there is a second (or rather the main) proof for the boundedness of the set of pos-
sible roots in [BDK12], which uses yet another characterization of tree-depth via cops-and-
robbers games, since the authors of [BDK12] were not aware of [DGT12] at first. We also
remark, that the most important point of this corollary is, that the bound is a computable
function of the tree-depth. A third possibility to proof the boundedness of the set of pos-
sible roots is to use [NO12, Lemma 6.13 and Exercise 6.6]. The lemma 6.6 there states that
the class of graphs with tree-depth at most k is well-quasi-ordered by the subgraph isomor-
phism relation and thus definable via a finite set of forbidden (induced) subgraphs. Exercise
6.6. sketches, how to construct a first order formula to test for tree-depth ≤ k for a fixed k.
Thus using this formula with theorem 7.7 and algorithm 4.2 (minimal forbidden subgraph)
would even allow us to compute V(F) (and thus |V(F)|) for a minimal forbidden subgraph
F in a given input graph G. However, the definition of FPT requires a computable function
of k alone and while [NO12, Lemma 6.13] implies that |V(F)| has an upper bound solely
depending on k, it does not show how to compute it.

A second remark concerns the unboundedness of the total number of tree-depth decompo-
sitions with height td(G) − 1. For v ∈ V(G), G − v may have a number m of components
C1, . . . , Cm not bounded by td(G). Nevertheless, it is easy to see that we can choose roots for

97

Application to C L(td = k) Tree-depth

tree-depth decompositions of each G[Ci] independently, if we want to construct a canonical
labeling for G. It only matters that the choice of each root ri ∈ Ci is in some sense canonical
and that there is an order among the components that is not influenced by that choice.

7.3.1. An isomorphism order for subdecompositions

We now define an order among the components as demanded above, or rather an order
among subdecompositions. A subdecomposition is tree-depth decomposition of a subgraph
augmented by the path from its root to the root of the global decomposition. The order of
subdecompositions and thus components in a recursive algorithm will also depend on the
previous choice of root vertices, specifically on the adjacency of the new root to all previous
roots.

Definition 7.12 ([BDK12]). Let G and H be a graphs, S ⊆ V(G), T ⊆ V(H) such that G[S]
and H[T] are connected, (p1, . . . , pl) ∈ V(G \ S)l, (q1, . . . , qm) ∈ V(H \ T)m, F a tree-depth
decomposition of G[S] with root s and F′ one of H[T] with root t. We define the order C on
subdecompositions such that

(G, S, (p1, . . . , pl), F) C (H, T, (q1, . . . , qm), F′) if

1. l = m and adj(G[{p1, . . . , pl}]) = adj(H[{q1, . . . , ql}]) (sorted according to index) and
2. |S| < |T| or |S| = |T| and
3. c < d, where c is the number of components in G[S]− s and d this number in H[T]− t,

or c = d and
4. (e1, . . . , ec) < (e′1, . . . , e′c), where ei = IE(G)({pi, s}) and e′i analogous for t or (e1, . . . , ec) =

(e′1, . . . , e′c) and
5. ((G, C1, ps, F1), . . . , (G, Cc, ps, Fc)) C ((H, D1, qt, F′1), . . . , (H, Dc, qt, F′c)) lexicographically,

where Ci/Di are the components of G[S]− s and H[T]− t respectively, ps = (p1, . . . , pl, s),
qt = q1, . . . , ql, t, Fi = F[Ci] (root of Fi is the topmost vertex of Ci in F), F′i is defined
analogously and the components itself are sorted according to E (s.b.). If the tuples for
some index i are incomparable (s.b.), then the same holds for the entire pair.

If the first point of C is not fulfilled, two subdecompositions are incomparable. We let E
denote a relation such that (G, S, (p1, . . . , pl), F) E (H, T, (q1, . . . , qm), F′) if the subdecom-
positions are comparable, but (H, T, (q1, . . . , qm), F′) 6 (G, S, (p1, . . . , pl), F). •

It is not hard to see that this is an isomorphism order à la Lindell [Lin92], so we will only
sketch the proof of the following theorem.

Lemma 7.13 ([BDK12]). Let G1 and G2 be graphs, then G1
∼= G2 if and only if there are tree-depth de-

compositions F1 and F2 such that (G1, V(G1), ∅, F1) E (G2, V(G2), ∅, F2) and (G2, V(G2), ∅, F2) E
(G1, V(G1), ∅, F1).

Proof sketch. Let G1 and G2 be two isomorphic graphs, then the existence of F1 and F2 such that
the propositions in the lemma are fulfilled can be easily proved by induction on td(G). As-
sume that (G1, V(G1), ∅, F1) E (G2, V(G2), ∅, F2) and (G2, V(G2), ∅, F2) E (G1, V(G1), ∅, F1).
Then the third condition ensures F1

∼= F2 and by the first condition this further guarantees
G[V(P1)] ∼= G[V(P2)] for each pair of root-leaf paths P1 in F1 and P2 in F2. Hence G1

∼= G2
because all edges connect vertices on such a path by the definition of tree-depth decomposi-
tions.

98

Tree-depth Application to C L(td = k)

This order at hand we now define algorithm 7.1. Note that the computation of E is spread
among the algorithm and used to sort subdecompositions as well to select minimal roots.

7.3.2. Canonical labeling algorithm

Algorithm 7.1. Canonical labeling via tree-depth decompositions [BDK12]: canonT-
DepthDec

Input : Connected graph G, S ⊆ V(G), (p1, . . . , pl) ∈ V(G \ S)l and k ∈N

Output : Canonical labeling and tree-depth decomposition of (G, S, p1, . . . , pl)

1 if (td(G[S])=1) //S is singleton set S = {vS}
2 | return bijection φ : S→ [|S|] and F←(S, ∅, vS)
3 if td(G) > k
4 | return null
5 if td(G) < k
6 | k← td(G)
7 R← {v ∈ S | td(G[S]− v)← k− 1}
8 R← {v ∈ R | ∀ u ∈ R : adjStr(G, S, p1, . . . , pl, v) ≤ adjStr(G, S, p1, . . . , pl, u) }
9 for r ∈ R

10 | (Cr,1, . . . , Cr,m)← components of G[S]− r
11 | for i ∈ [m]
12 | | (φr,i, Fr,i)← canonTDepthDec(G, Cr,i, (p1, . . . , pl, r), k− 1)
13 | end
14 | sort the pairs (Cr,i, φr,i, Fr,i) according to E
15 | Dr ← ((Cr,1, Fr,1, φr,1), . . . , (Cr,m, Fr,m, φr,m))
16 end
17 R← {v ∈ R | ∀ u ∈ R : Dv E Du}
18 choose r ∈ R; m← number of components of G[S]− r
19 φ← φr,0 ∪

⋃
i∈[m] (φr,i + ∑j∈[0,i−1] |φr,j|) where φr,0 = {(r, 1)}

20 F← (S,
⋃

i∈[m] ({{r, r(Fr,i)}} ∪ E(Fr,i), r)
21 return (φ, F)

22 subprocedure adjStr(G, S, (p1, . . . , pl), r)
23 | m← number of connected components in G[S]− r
24 | return (m, e1, . . . , el), where ei = IE(G)({pi, r})
25 end

Theorem 7.14 ([BDK12]). Algorithm 7.1, called as canonTDepthDec(G, V(G), ∅, k), computes
a canonical tree-depth decomposition and a corresponding canonical labeling for a connected input
graph G if td(G) = k in time O(f (k)|V(G)|3 log |V(G)|). Hence C L(td = k)
is fixed-parameter tractable.

Proof. The correctness follows nearly directly from the fact that E is an isomorphism order
and we prove it by induction on the height in the recursive call tree. The trivial return for
td(G) = 1 is obviously correct, so assume that td(G) = k > 1 after line 6. The second assign-
ment to R already tests condition 3 and 4, while the conditions 1 and 2 are trivially fulfilled

99

Application to C L(td = k) Tree-depth

Figure 7.2. Recursion tree for a tree-depth decomposition seen from a single vertex: we
only consider the component including f on each level, so whether we choose a or b first is
irrelevant.

a b c d e f

r0 = c d

r1 = e e f

r2 = f f

is we compare different roots. By the inductive hypothesis we know that the subdecomposi-
tion tuples for each root are canonical and canonically sorted by the way they are computed
in the for-loop. So the last assignment to R also chooses canonically among the roots.

To proof the runtime, we investigate the recursion tree. A leaf corresponds to a single
vertex v of G. But this time we cannot argue by a simple partition argument as this is not
a one-to-one correspondence. Nevertheless, if we look at one call in level i (from the root
i = 0) of the recursion tree, then by corollary 7.11 and line 6 there are at most g(i) = 22k−2−i

candidates for a root vertex and v is only in at most one component for each of them. Hence a
vertex v corresponds to at most h(k) = ∏i∈[0,k−1] g(i) leaves, of which there are thus at most
|V(G)|h(k), where k is the argument k of the topmost call (see also figure 7.2). Once more,
the inner vertices of the recursion tree all have outgoing degree greater than 1 and thus there
are at most O(|V(G)|h(k)) calls to canonTDepthDec.

We proceed with the analysis of each recursive call. The first two assignments to R each
take time O(g(k)|S|) (using theorem 7.7 as in the proof of theorem 7.10). The for-loop is
dominated by the sort in line 14 which makes O(m log m) comparisons of time complex-
ity O(|S|2) (we can use m, because it is equal for all r ∈ R). Line 14 also contains a sort,
this time with g(k) log g(k)m comparisons. The assembly of the canonical labeling and the
canonical tree-depth decomposition takes time O(|S|). Thus, if we set g′(k) = g(k) log g(k)
and use m ≤ |S|, the entire runtime of a single call is bounded by O(g′(k)|S|3 log |S|). But,
observe that such a call is shared among |S| leaves of the recursion tree and thus the amor-
tized runtime for a single leaf of a single call is only O(g′(k)|S|2 log |S|). If we now define
f (k) = ∏i∈[0,k−1] g′(i)2 and multiply the amortized runtime with the number of calls, the
global runtime follows.

Remark 7.15. The authors of [BDK12] further define a notion of generalized tree-depth by as-
signing a depth of 1 to a larger class of graphs and then recursively going on as in lemma 7.3.
However, instead of a bounded set of forbidden subgraphs, the class of graphs with bounded
generalized tree-depth has only a bounded set of forbidden minors (a minor of a graph is ob-
tained by deleting vertices and/or edges and/or contracting connected subgraphs). Because
of this, the Robertson-Seymour theorem then guarantees that an f (k)O(|V(G)|c)-time mem-
bership test exists for the graphs of bounded generalized tree-depth, but this is not enough
to fulfill our uniform definition of FPT. !

100

Part III.

Overview, Conclusion and Outlook

…pick the fruits …

101

8. Relations among parameters

After we treated G I and C L parameterized by different
parameters, we will turn our attention to the parameters to sketch a complete picture. As
we have seen in corollary 1.17, if a parameter κ is covered by some other parameter λ and
the parameterized problem (A, λ) is fixed-parameter tractable, then (A, κ) is fixed-parameter
tractable, too. The sections of this chapter are devoted to the treewidth (which covers many
parameters discussed in this work), prime parameters (as defined in chapter 5) and a graph
illustrating the cover relation. We start with an extension of definition 1.12, which defines
further symbols for pairs of parameters depending on their relationship w.r.t. �.

Definition 8.1. For two graph parameters κ and λ we write κ ‖ λ if neither κ � λ nor λ � κ,
κ ≺ λ if κ � λ and λ � κ and κ ≈ λ if κ � λ and λ � κ. •

8.1. Treewidth and related parameters

Definition 8.2 (cstw: [YBFT99]). The strong pathwidth spw(G), the connected strong treewidth
cstw(G) and the connected strong pathwidth cspw(G) of a graph G are the minimal width
over all strong tree decompositions (B, T, r) of G such that T is a path (spw) or ∀t ∈ V(T) :
G[Bt] is connected (cstw) or both conditions are met simultaneously (cspw). The pathwidth
pw(G) is the minimal width over all tree-decompositions whose underlying tree is a path.
For disconnected graphs G, we set cstw(G) = cspw(G) = |V(G)|. •

We remark that the notion of connected strong path/tree width in the previous definition
requires all bags to be connected, as opposed to e.g. the c-connected path distance width
(definition 6.7), where only the root bag has to be connected.

Lemma 8.3. For all graphs G
stw(G) ≤ tdw(G) and spw(G) ≤ pdw(G) (8.3.1)
tw(G) ≤ 2 stw(G)− 1 and pw(G) ≤ 2 spw(G)− 1 (8.3.2)
tw(G) ≤ fvs(G) + 1 (8.3.3)
td(G) ≤ vc(G) + 1 and stw(G) ≤ vc(G) (8.3.4)

max deg(G) ≤ 3 spw(G)− 1 (8.3.5)
pw(G) < td(G) (8.3.6)

Proof. The first inequality holds by definition of the tree distance decomposition and a path
distance decomposition can be turned into a strong path decomposition by making a bag out
of each of its levels. To turn a strong tree decomposition into a tree decomposition add to
each bag the vertices of its parental bag (and mind that tw has the additional −1), for a path
decomposition do the same with (e.g.) the left neighbor bags. Let M be a feedback vertex set

102

Relations among parameters Treewidth and related parameters

of a graph G. G \M has a trivial tree decomposition (B, T, r) with width 1, hence (B′, T, r)
with B′t = Bt ∪M is a tree decomposition having width |M|+ 1. By a similar argument, we
turn a minimal vertex cover into a path starting from the root in a tree-depth decomposition
and add all remaining vertices as leaves to construct a tree-depth decomposition of height
vc(G). Furthermore a vertex cover can also serve as the root bag of a strong tree decomposi-
tion. Since all other vertices form an independent set, each of them is contained in a singleton
leaf bag. The proof of lemma 6.3 easily generalizes to strong path decompositions. Finally,
take the path decomposition as constructed in lemma 7.9 to prove pw(G) < td(G).

We now turn or attention to pairs of parameters that do not cover each other.

Lemma 8.4.
∀κ ∈ {pw, td, stw, tw} : κ ‖ max deg (8.4.1)

∀κ ∈ {pw, td, cspw, stw} : κ ‖ fvs (8.4.2)
∀κ ∈ {rtdw, cstw, stw} : κ ‖ pw (8.4.3)

cspw � td and td � stw (8.4.4)

Proof. (8.4.1): It is well known ([RS91]) that the treewidth is unbounded on grids
Gl×m = ([l]× [m], {{(i, j), (i′, j′)} | |i− i′| ≤ 1, |j− j′| ≤ 1}) .

On the other hand the class of stars has unbounded degree.

(8.4.2): The pathwidth is unbounded on trees: e.g. join three trees with pathwidth k via a sin-
gle edge to a new vertex to obtain a tree with pathwidth k+ 1 (see [RS83] for details). Further
the strong treewidth is unbounded on wheels (a cycle with an additional vertex connected
to all vertices on the cycle), because the central vertex has to be in the same or a neighboring
bag as any other vertex in the wheel. But since there is a cycle connecting each neighbor of
the central vertex, two adjacent neighbors may not be in different subtrees and thus there
are all contained it at most two bags. On the other hand a path of disjoint cycles C4 con-
nected by single edges has connected strong pathwidth 4 and unbounded feedback vertex
number. To compare tree-depth and feedback vertex number, we use that the tree-depth is
unbounded on paths (see lemma 7.4), while a star whose vertices are replaced with cycles
C4 has tree-depth 4 and unbounded feedback vertex number.

(8.4.3): Wheels also have bounded pathwidth (the central vertex and one additional vertex
can be placed in all bags). On the other hand trees of course have bounded connected strong
treewidth and rooted tree distance width.

(8.4.4): The tree-depth is unbounded on paths, while the closure of a rooted tree of height 2
whose non-leaves have degree k has tree-depth 3 and strong treewidth k− 1. This is because
in a strong tree-decomposition all leaves of the rooted tree have to be in bags of distance at
most one to the bag of the root (which is w.l.o.g. the root bag) and since k leaves are connected
via their parents, they may not be in different subtrees of the strong tree-decomposition, seen
from the root bag.

We now consider the relations among different distance widths and compared with the
strong widths.

103

Treewidth and related parameters Relations among parameters

Figure 8.1. The pincushion graph H2 (see proof for equation (8.5.1)): pinheads are colored
black.

0, 4

0, 3

0, 2 2, 2

0, 1 2, 1 3, 1

−4, 0 −3, 0 −2, 0 −1, 0 0, 0 1, 0 2, 0 3, 0 4, 0

−3,−1 −2,−1 0,−1

−2,−2 0,−2

0,−3

0,−4

Figure 8.2. A path distance decomposition of the pincushion H2: the dashed lines symbolize
a path (with additional vertices) as constructed in the proof of equation (8.5.5).

3, 1 2, 1 2, 2 0, 1 0, 2 0, 3 0, 4

4, 0 3, 0 2, 0 1, 0 0, 0

−4, 0 −3, 0 −2, 0 −1, 0

−3,−1 −2,−1 −2,−2 0,−1 0,−2 0,−3 0,−4

N0

N1 N2 N3 N4 N5 N6 N7

Lemma 8.5.
pdw ≺ spw [YBFT99] (8.5.1)

rpdw ≺ pdw [YBFT99] (8.5.2)
cspw ≺ rpdw ≈ cpdw ≈ 1- clpdw(G) [YBFT99; Ota12] (8.5.3)
rpdw � cstw � tdw [YBFT99] (8.5.4)

2- cpdw ‖ rtdw [Ota12] (8.5.5)
spw � tdw (8.5.6)

104

Relations among parameters Treewidth and related parameters

Figure 8.3. The book graph B5 (see proof of equation (8.5.4))

Figure 8.4. A connected strong path decomposition and a rooted path distance decomposi-
tion: as constructed in the proof of equation (8.5.3). The dashed arrows depict bmin(j) and
nmin(i), the others bmax(j) and nmax(i) for i = 2 and j = 3.

r a b

c d k

e f

g h

i j

r

a c d

b f

k g h e

i j

B0

B1

B2

B3

B4

N0

N1

N2

N3

N4

Proof. (8.5.1): A path distance decomposition N defines the strong path decomposition (B, [0, |N|−
1], 0) with Bi = Ni. For the other direction let a pincushion Hk (called ribbon in [YBFT99]) of
size k be the minimal graph (w.r.t. ⊆ for edges and vertices) such that

−2k ∈ V(Hk) ∧ ∀i ∈ [−2k + 1, 2k] : ((i, 0) ∈ V(Hk) ∧ {(i− 1, 0), (i, 0)} ∈ E(Hk))

and ∀i ∈ [0, k], s ∈ {−1, 1}, j ∈ [2i] :

((s(2k − 2i), sj) ∈ V(Hk) ∧ {(s(2k − 2i), sj), (s(2k − 2i), s(j− 1))} ∈ E(Hk)) .

See figure 8.1 for the pincushion H2. Further let Gk be the graph consisting of 2k+ 2 pincush-
ions Hk (glued together at (2k, 0) and (−2k, 0) respectively). Observe that Gk has spw(Gk) ≤ 3
by tilting each pin at position Gk[{(i, l) | l = j}] (for some j) to the left if it is has no negative
second component and to the right otherwise. Assume that N0 is a root set of a minimal path
distance decomposition N for Gk. Then there are two consecutive pincushions such that N0
has no vertex in any of them. We now look w.l.o.g. on the right part of the left pincushion and
assume that a shortest path to each (i, j) with positive i goes over (0, 0) (if not this is true for
the left part of the right pincushion). But there are k + 2 pinheads ((i, j) such that i + j = 2k)
and these pinheads all have distance i + j to (0, 0) and are thus in the same distance level of
N.

(8.5.2): rpdw � pdw holds by definition, so we just show pdw � rpdw. To do this, we
reuse our pincushion Hk from the first part of the proof. A path distance decomposition N
of width 4 can be obtained by choosing N0 = {(2k, 0), (−2k, 0)} and tilting the pins as in the
first part of this proof (see figure 8.2). On the other hand assume that there is some path
distance decomposition N of Hk with N0 = {(i, j)}. W.l.o.g. assume that i ≤ 0. Then we
are left with the same scenario as above and have 2k + 2 vertices (i′, j′) such that i′ + j′ = 2k.
Thus rpdw(Hk) > k.

(8.5.3): rpdw � cspw holds because cycles have unbounded cspw (see proof for (8.5.4)). We

105

Treewidth and related parameters Relations among parameters

now show that if the width of a connected strong path decomposition (B, [0, l], 0) of a graph
G is k, the width of a rooted path distance decomposition N with {r} = N0 ⊆ B0 (w.l.o.g.
B0 6= ∅) is at most k2. Let nmax(i) = max{j | Nj ∩ Bi 6= ∅}, bmax(j) = max{i | Nj ∩ Bi 6= ∅}
and nmin, bmin be defined analogously (see figure 8.4). We then have

∀i ∈ [0, l] : nmax(i)− nmin(i) ≤ k− 1 (1)
∀i ∈ [0, l], h < i : nmin(i)− nmin(h) ≥ i− h (2)

The first inequality holds because G[Bi] is connected, the second one holds because a vertex
v ∈ Bi whose distance to r is minimal in Bi needs a predecessor on its shortest path from r in
an adjacent bag, i.e. Bi−1. The first inequality now yields

∀j ∈ [0, |N| − 1] : j ≤ nmax(bmin(j)) ≤ nmin(bmin(j)) + k− 1 ,

while the second one yields
∀j ∈ [0, |N| − 1] : nmin(bmin(j)) + k ≤ nmin(bmin(j) + k) .

But we further know that for all j ∈ [0, |N| − 1] the inequality nmin(b{max}(j)) ≤ j holds.
Thus bmin(j) + k ≤ bmax(j) would bring us the contradiction j < j and we conclude bmax(j)−
bmin(j) < k and hence for all j ∈ [0, |N| − 1], we have

|Nj| =
∣∣∣⋃{Bi | Bi ∩ Nj 6= ∅}

∣∣∣ < k2 .

rpdw � cpdw holds by definition, so we just show the converse. Let N be a path distance
decomposition of width k such that N0 is connected. Take for some r ∈ N0 the path distance
decomposition N′ with N′0 = {r}. Now any vertex v in N′i cannot be in Nj for j > i, because
r is an element of N0. But it cannot be in Nj for j < i− (k− 1) either, because if it is at such
a distance j to some r′ ∈ N0 its distance to r may not exceed j + k since N0 is connected and
has size k. Thus the width of N′ is at most k2. Exactly the same argument also works for the
1- clpdw, since we do not the connectedness, but the bounded distance.

(8.5.4): Cycles have rooted path distance width 2. Assume a bag of connected strong tree
decomposition contains some subpath of a cycle. Then the remaining subpath has to be in
the same subtree and both ends have to be at distance one to the first bag. Thus the cycle is
split among two bags. To show cstw � tdw, we look at books. A k-book shall be a graph

B = ({a, b} ∪ {c, d} × [k], {{a, b}} ∪
⋃

i∈[k]
{{a, (c, i)}, {(c, i), (d, i)}, {(d, i), b}}).

The book graph Bk consists of k + 1 copies of k-books connected by a path (see figure 8.3).
We refer to those vertices which are part of this path by bi, i ∈ [k + 1]. Now assume that Bk
has a tree distance decomposition of width at most k. Then its root bag does not contain any
vertex from at least one of the books. The corresponding bi is the closest vertex to the root
bag among the vertices in its book. But because bi has k + 1 neighbors in its book who are
connected via the corresponding ai, there has to be a bag of width k = 1 which contradicts
the assumption. A connected strong tree decomposition of a single book is e.g. a star with
{a, b} as central bag and the others bags being {(c, i), (d, i)} for i ∈ [k].

(8.5.5): rtdw � 2- cpdw follows from rtdw � pw. For the other direction look again at the
pincushion Hk and its decomposition with N0 = {(2k, 0), (−2k, 0)} (figure 8.2). We add two
additional vertices v−i and v+i in each level Ni that does not contain a pinhead and for those
which do contain one define v−i to be the pinhead with a negative component and v+i to be the
other pinhead in Ni. Further for i ∈ [0, |N| − 2] we add the edges {v+i , v+i+1} and {v−i , v−i+1}
to Hk and name the new graph H′k and the new partition N′. Clearly N′ is a path distance

106

Relations among parameters Parameters vs. prime parameters

decomposition of H′k and with |N0| = 2 and width at most |N| + 2 ≤ 6. The new paths
(dashed in figure 8.2) do not change the distance of the nonnegative pinheads to (0, 0) and
since they are now connected by a path (whose vertices have greater distance to (0, 0)) they
have to be in the same bag of a tree distance decomposition whose root bag has no vertex
with strictly positive component. This holds likewise for the other pinheads and thus we can
apply the argument we used for pdw � rpdw.

(8.5.6): We combine the arguments for equation (8.5.5) and (8.5.1), i.e. we take the graph
Gk consisting of 2k + 2 pincushions and add the path connecting the pinheads to every pin-
cushion as for (8.5.5). Again we have to “explore” at least one pincushion from (0, 0) (as for
(8.5.1)), but now the pinheads lie on a path and have to go into the same bag of a tree distance
decomposition.

Remark 8.6. If we compare the best known runtimes for C L parameter-
ized by 1-clpdw (O(22(3k−1)k

(k + 1)!2|V(G)|2)), cpdw (O((2k)!(k + 1)!|V(G)|2)) and rpdw
(O((k+ 1)!2|V(G)|2)) and keep in mind that when one of the parameters is k the others are at
most k2, we see that the specialized algorithm for the connected path distance with is faster
than that for the rooted path distance width with k replaced by k2. !

8.2. Parameters vs. prime parameters

Even a superficial look at prime parameters suggests that they are at most as large as their
corresponding original parameter for many “natural” parameters, i.e. those, which capture
hard instances for graph problems well. As the prime parameters are defined via a maximum
over prime graphs in the modular decomposition of a graph, we have to look at the relation
between those prime graphs and the original graph. There are two operations needed to
transform a graph G into one of the prime graphs in its modular decomposition: induced
subgraphs (for some module M) and quotient graphs. But it is easy to see that the quotient
graph is also isomorphic to an induced subgraph of G if we represent each module with
exactly one of its vertices. So we are left with considering induced subgraphs and thus the
“natural” class of parameters turns out to be the class of hereditary parameters. Below, we
will give a formal definition and state the above observation as a lemma.

Definition 8.7. Let κ be a graph parameter. We say that κ is hereditary if for all graphs G
and all V′ ⊆ V(G) the inequality κ(G[V′]) ≤ κ(G) holds. •

Lemma 8.8. Let κ be an invariant hereditary graph parameter. Then ′κ(G) ≤ κ(G) holds for all
graphs G.

Proof. Let P be a prime graph appearing in MD(G) such that κ(P) is maximized. Then either
κ(P) = 0 or P = quot(G[M]) for some module M of G. Furthermore there is a bijection
φ : V(P)→ V(G[M]) such that ∀N ∈ V(P) : φ(N) ∈ N and P ∼=φ Pφ, where V(Pφ) = rng(φ)
and E(Pφ) = {φ(e) | e ∈ E(P)}. Hence Pφ is a subgraph of G[M] and since κ is hereditary
and an invariant, we have

′κ(G) ≤ κ(P) = κ(Pφ) ≤ κ(G[M]) ≤ κ(G) .

107

Parameters vs. prime parameters Relations among parameters

Note that this proof also works for quotients modulo any other modular decomposition, not
only the quasi-maximal modular decomposition that is implied by our definition of quot(G)
for a graph G.

Corollary 8.9. Let G be a graph. Then ′max deg(G) ≤ max deg(G), ′tw(G) ≤ tw(G), ′td(G) ≤
td(G) and ′F -free-mn(G) ≤ F -free-mn(G) for any graph class F .

Proof. It is obvious that max deg is hereditary, the same holds for F -free-mn as F -free is de-
fined via induced subgraphs. For the treewidth observe, that we simply may delete unused
vertices from a tree distance decomposition, i.e. for any subgraph G′ and any tree decompo-
sition (B, T, r) of G we set B′i = Bi ∩ V(G′) and use (B′, T, r) as a tree decomposition of G′.
As the tree depth decomposition is defined via a subgraph, the tree-depth is clearly heredi-
tary.

Example 8.10. For F -free-mn(G) we have a closer look on how modification sets and for-
bidden graphs are related when we consider a graph G and its quotient graph Q. W.l.o.g.
let F ∈ F be a forbidden subgraph in Q (see figure 8.5, where F is cycle). Then there is a
corresponding subgraph F′ = (φ(V(F)), φ(E(F))) in G where φ is an isomorphism like in
the proof of lemma 8.8. Let S′ be a F -free modification set and s′ a modification for F′. If s′

is a vertex of G then we set s = φ−1(s′), if s′ = {u, v} such that ∀M ∈ V(Q) : {u, v} * M
we set s = φ−1(s′) = {φ−1(u), φ−1(v)}. (Non-)edges within modules are ignored, as they
are not present in the quotient graph and there preimage would be a vertex of Q. Observe
that for a minimal set of changes {s′1, . . . , s′l} ⊆ S′ that alters F′ such that it is no longer in F ,
φ−1({s′1, . . . , s′l}) does the same for F. Furthermore the correspondence φ−1 does not depend
on F and thus S = φ−1({s′ ∈ S′ | @M ∈ V(Q) : s′ ⊆ M}) is a F -free modification set of Q
and |S| ≤ |S′|. e.g.

Figure 8.5. Forbidden subgraph, modification set and quotient graph (example 8.10)

G :
F′ = G[{2, 3, 5}]

S′ =
{1, 2, {3, 5}, {3, 4}}

1

2

3

4
56

Q = quot(G) :
F = Q

S = {{1, 2}}

{1,2}

{3,4}

{5,6}

For the color multiplicity we first have to define what we mean by the coloring of the quotient
graph. A natural solution is to choose the multiset of colors present in each module. This
directly gives rise to the following lemma.

Lemma 8.11. Let (G, c) be a colored graph and the color of a module M ∈ V(quot(G)) be defined
as c(M) = {{c(v) | v ∈ M}}. Then ′cm(G, c) ≤ cm(G, c).

Proof. As always we only consider the quotient graph case. Let Q = quot(G) and Ci be a
color class c−1(i) of G. Then at most |Ci| modules M ∈ V(Q) may contain a vertex v ∈ Ci
and thus C′i = {M ∈ V(Q) | Ci ∩M 6= ∅} is a union of color classes of (Q, c) for each i, it
has with size |C′i | ≤ |Ci| and any color class is a subset of some C′i .

108

Relations among parameters Parameters vs. prime parameters

Lampis [Lam12] introduces a parameter called the neighborhood diversity which is defined
via a partition into modules and is able to show that this new parameter covers the vertex
cover number. Luckily, the main idea of his proof works for prime parameters as well.

Lemma 8.12. Let κ be a graph parameter. Then vc � ′κ.

Proof. Let S be a vertex cover of a graph G. Then G \ S has no edges and its vertices cannot
distinguish each other, thus we can partition V(G) \ S into at most 2|S| modules of G. Com-
bined with the trivial partition of S into singleton sets, we obtain a partition of V(G) into
at most 2|S| + |S| modules. Because vc is hereditary, any graph G[M] (M is a module of G)
has at most 2vc(G) + vc(G) modules and thus any prime graph in MD(G) has at most this
number of vertices. Furthermore we implicitly assume κ to be invariant and hence ′κ(G) is
bounded from above by

max{κ(H) | H ∈ G, |V(H)| ∈ [0, 2vc(G) + vc(G)]} .

8.2.1. Prime distance widths

The distance widths are not hereditary because the removal of a vertex or edge can result in
a collapse of multiple distance levels.

Example 8.13. Look again at the pincushion graph Hk as defined in the proof of equation
(8.5.1) and as depicted in figure 8.2. If we add a new vertex v that is connected to both
(−2k, 0) and (2k, 0), the rooted path distance width becomes 4, whereas it was k + 2 without
this modification. Nearly the same holds for the rooted tree distance width (6 vs. k + 2), if
we add the additional path connecting all pinheads as in the proof of equation (8.5.5). e.g.

Nevertheless, we will show in the following lemmas that the prime distance widths cover
their ordinary counterparts. This come from the fact that modules and quotient graphs are
deeply connected with distances. In fact e.g. the algorithm from [TCHP08] partitions the
vertex set according to a rooted path distance decomposition. We will only handle connected
modules, because all prime graphs in MD(G) are quotient graphs of connected subgraphs
induced by modules (see definition 5.11).

Lemma 8.14. Let N be a path distance decomposition of a graph G having width k and M be a module
of G such that G[M] is connected. Then G[M] has a path distance decomposition N′ of width at most
3k such that |N′0| ≤ |N0|.

Proof. If no nonempty module M′ ⊆ V(G) \M is adjacent to M, then the distances in G[M]
are the same as those in G for all pairs of vertices u, v ∈ M. Hence we assume there is such
an adjacent module M′. Thus any pair of vertices of M is connected via path of length 2 in
G and M is spread over at most three bags of N. Since no path distance decomposition of
G[M] can have width more than |M|, the claim follows.

Lemma 8.15. Let N be a path distance decomposition of a graph G having width k. Then quot(G)
has a path distance decomposition N′ such that for all i ∈ [0, |N′| − 1] the inequality |N′i | ≤ |Ni|
holds.

109

Parameters vs. prime parameters Relations among parameters

Proof. We set N′0 = {M ∈ V(quot(G)) | M ∩ N0 6= ∅} and N′i = {M ∈ V(quot(G)) |
M ∩ N0 6= ∅} \ N′0 for all i ∈ [0, |N|]. Since the distance between vertices of different mod-
ules does not depend on distances within each module, N′ is clearly a path distance decom-
position of quot(G) (after truncation if necessary).

For (minimal) tree distance decompositions, we have to handle some additional cases, but
apart from that the situation is similar.

Lemma 8.16. Let (B, T, r) be a minimal tree distance decomposition of a graph G having width k and
let M be a module of G such that G[M] is connected, then G[M] has a tree distance decomposition
(C, U, s) of width at most k such that |Cs| ≤ |Br|.

Proof. If M is not adjacent to any other module, we argue as in lemma 8.14, so assume that is
is adjacent to at least one other module. If Br ∩M = ∅ then M is contained in one distance
level and thus each component of G[M] is contained in one bag of (B, T, r). Thus we may
assume that there is a set Cs with Cs = M∩ Br 6= ∅. We now look at the minimal tree distance
decomposition (C, U, s) of G[M] which is uniquely defined by its root bag Cs. Again we are
left with two cases for the root bag Br.

If Br contains a vertex v ∈ V(G) \ M that is adjacent to all vertices in M then all vertices
in M \ Cs have to be in the first level of (B, T, r) and thus every connected component of
G[M] \ Cs is contained in a single bag of (B, T, r). Hence the width of (B, T, r) is at least the
width of (C, U, s).

If Br contains no such vertex the vertices in M with distance one to Br are exactly those with
distance one to Cs. Furthermore, since Br ∩M 6= ∅, there has to be a vertex v with distance
one to Br that is adjacent to all vertices in M. Hence all bags Cu for a child u of s in U are
subsets of a single bag Bt for some child t of r in T and obviously v ∈ Bt. Now we argue
for the third level of (B, T, r) in a similar way as we did for the second level in the previous
paragraph.

Intuitively, an additional adjacent vertex from another module just flattens down the decom-
position tree to a single level, so it cannot make bags smaller. Observe that the pathological
example 8.13 works by connecting only two old vertices by a new one, whereas we would
have to connect the new vertex to all old vertices if they shall form a module that does not
include the new vertex.

Lemma 8.17. Let (B, T, r) be a minimal tree distance decomposition of a graph G. Then quot(G) has
a tree distance decomposition (C, U, s) of such that there is an injective function φ : V(T) → V(U)
such that for all t ∈ V(T) we have |Cφ(t)| ≤ |Bt|.

Proof. Use lemma 8.15 and observe that whenever two modules M, M′ of G are adjacent
in quot(G), then all of there vertices are and thus the levels of the minimal tree distance
decomposition (C, U, s) (Cs defined as N′0 in lemma 8.15) are split as least as fine as the levels
of (B, T, r).

We collect all those findings in the following theorem.

Theorem 8.18. Let κ be in {rpdw, c- cpdw, pdw, rtdw, tdw}. Then κ � ′κ.

110

Relations among parameters Parameters vs. prime parameters

Proof. For all parameters but the c-connected path distance width, this directly follows from
the lemmas above. Furthermore the proof of equation (8.5.3) that we can replace root sets
with c component with those of size c and the new width is quadratic in the old width. If we
use c-rpdw for the minimal width over all root sets with at most c vertices, we thus have

c- cpdw � c- rpdw � ′c- rpdw � ′c- cpdw .

8.2.2. Some incomparability lemmas

To complete our picture of prime parameters we show how they relate to the maximal pa-
rameters w.r.t � considered in this work.

Lemma 8.19. Let κ be a parameter in {max deg, tw, cm, em} and ′λ be any prime parameter. Then
′λ 6� κ.

Proof. All the non-prime parameters in question are unbounded on (colored) cographs and
′λ(G) = 0 for cographs G by definition.

This of course also holds for all the parameters covered by the treewidth.

Lemma 8.20. The prime parameter ′κ of a graph parameter κ ∈ {max deg, tw} is unbounded.

Proof. For max deg take a star G with arbitrary maximal degree ≥ 2 and add an edge (with
a new leaf) to all of its leaves. Then each pair of vertices lies on a common induced path of
length at least 4, which enables us to apply lemma 5.6 and conclude that the inclusion of a
pair in a module forces the inclusion of the entire path. But all paths intersect and thus G is
prime.

With a similar argument as above it is easy to see that grids Gl×m with l + m > 4 are prime
(see proof of equation (8.4.1)).

We again remark that this carries over to all the parameters covered by treewidth, e.g. fvs,
td, stw and pw.

Lemma 8.21. tw � ′κ for κ ∈ {fvs, pw, stw}.

Proof. Let C be the class of graphs, obtained by connecting cycles C4 at opposite vertices and
connecting an additional vertex to one of the non-junctional vertices of each C4 (see figure
8.6). Obviously any feedback vertex set of a graph G ∈ C has size at least |V(G)|/8 and while
the treewidth is 2. By lemma 5.6 a graph G ∈ C is obviously prime.

By lemma 5.6 we can obtain a class of trees with unbounded prime pathwidth as follows. As
in the proof of equation (8.4.2) we construct trees with pathwidth k + 1 by combining three
trees of pathwidth k. Finally we replace the leaves of each tree by a path of length 2. This
ensures that each pair of vertices lies on an induced path of length at least 3. Wheels with
at least five vertices are already prime, thus the prime strong treewidth does not cover the
treewidth.

111

Graph of the cover relation Relations among parameters

Figure 8.6. A class of graphs with bounded tw, but unbounded ′fvs

. . .

8.3. Graph of the cover relation

The following graph represents a collection of the results from all lemmas in this chapter.
To keep it clear, only a few prime parameters are depicted. For the same reason we did
not include further parameters as bandwidth or cutwidth (see e.g. the overview graph in
[YBFT99]).

Figure 8.7. Relations among parameters: This graph is similar to a Hasse diagram (but � is
not antisymmetric). Adjacent parameters on the the same level cover each other, any other
downwards edge from κ to λ means λ � κ. A black colored parameter κ means that C-
 L is fixed-parameter tractable w.r.t. κ, whereas gray means that G I-
 is fixed parameter tractable w.r.t. κ.

′2-cpdw ′td ′fvs tw max deg ′rtdw

fvs pw stw

td spw cstw tdw

vc pdw (2, 1)-cstdw

2-cpdw rtdw

1-clpdw cpdw rpdw

cspw

112

9. Overview of results

In this chapter we briefly hint towards other results showing the inclusion of parametrized
G I in either XP or FPT and state a table of known upper bounds.

Eigenvalue multiplicity Using similar group-theoretic techniques as in [Bab79; FHL80],
[BGM82] showed that G I(em) ∈ XP. The key idea is to see the vertices
v ∈ V(G) of a graph G as the unit vectors of R|V(G)|, to see φ ∈ Aut(G) as a permutation
matrix and to use the fact that a projection Matrix PW of an eigenspace W of the adjacency
matrix of G commutes with each φ ∈ Aut(G). Iteratively the decomposition of R|V(G)| into
eigenspaces is transformed into a coloring (using the lengths of projections). Linear algebra
techniques provide a supergroup for the restriction of Aut(G) to each new color class of size
at most |V(G)|em(G). At last the tower-of-groups approach is applied as in section 3.3.

The paper of Evdokimov and Ponomarenko [EP99] which proved that C L-
(em) ∈ FPT has little in common with the earlier approach. Nevertheless they use a
technique (so called canonical labeling cosets) introduced by Babai and Luks in [BL83]. But
this technique is not applied to G itself, but to the cellular algebra of G. This algebra is an
alternative interpretation of the output of the 2-dim. Weisfeiler-Lehman algorithm and the
eigenvalue multiplicity relates to decompositions of this algebra using representation theory.

Treewidth A k-tree is a graph that can be constructed in the following way: start with a
k-clique G0 = Kk and in each step choose a new vertex v /∈ V(G) and a subset K ⊆ V(G)
such that G[K] is a k-clique and define

Gi+1 = (V(Gi) ∪ {v}, E(Gi) ∪ {{v, w} | w ∈ K}) .

Subgraphs of k-trees are called partial k-trees and are exactly the graphs with treewidth
at most k. In [Bod90] Bodlaender showed that G I(tw = k) ∈ XP. His
algorithm constructs a special decomposition into k-separators S (S ∈ (V(G)

k) such that G \ S
is not connected) with additional information for one input graph G1. For the other graph
G2 the algorithm tries to construct a compatible decomposition testing all pairs (S, C), where
C is a component of G \ S and S a k-separator, against all such pairs of the decomposition of
G1. The .5 in the exponent (see table 9.1) comes from a reduction of a certain subproblem of
the test for each such pair to the bipartite matching problem.

9.1. Table of all results

Let V = V(G1) for an instance (G1, G2, k) (or ((G1, c1), (G2, c2), k) resp.) then the following
upper bounds for (C) G I/ C L parametrized by κ
are known:

113

Table of all results Overview of results

Ta
bl

e
9.

1.
K

no
w

n
up

pe
rb

ou
nd

sf
or

pa
ra

m
et

riz
ed

G



I







an
d

C






L





K

no
w

n
up

pe
rb

ou
nd

Pa
ra

m
et

er
κ

G



I







C






L





C

ol
or

m
ul

tip
lic

ity
cm

O
((

k!
)3

k2 |
V
|6
)

[B
ab

79
;F

H
L8

0]
id

en
tic

al
[K

L8
1]

Ei
ge

nv
al

ue
m

ul
tip

lic
ity

em
F
P
T

[E
P9

9]
id

en
tic

al
[E

P9
9]

Fe
ed

ba
ck

ve
rt

ex
nu

m
be

r
fv

s
O
((

2k
+

4k
lo

g
k)

k k|
V
|2
)

[K
S1

0]
X
P

F
-fr

ee
m

od
ifi

ca
tio

n
nu

m
be

r
F

-f
re

e-
m

n
F
P
T

a
[K

S1
0]

X
P

a

Ro
ot

ed
pa

th
di

st
an

ce
w

id
th

rp
dw

O
((

k
+

1)
!2 |

V
|2
)

[Y
BF

T9
9]

id
en

tic
al

co
r.

6.
6

Ro
ot

ed
tr

ee
di

st
an

ce
w

id
th

rt
dw

O
((

k
+

1)
!2 |

V
|2
)

co
r.

6.
23

id
en

tic
al

co
r.

6.
23

c-
co

nn
ec

te
d

pa
th

di
st

an
ce

w
id

th
c-

cp
dw

O
((

2k
)!
(k

+
1)

!|V
|c+

1)
[O

ta
12

]
id

en
tic

al
co

r.
6.

11
c-

co
n.

d-
se

p.
tr

ee
di

st
an

ce
w

id
th

(c
,d
)-

cs
td

w
F
P
T

th
m

.6
.2

6
id

en
tic

al
th

m
.6

.2
6

Tr
ee

-d
ep

th
td

O
(

f(
k)
|V
|3

lo
g
|V
|)

[B
D

K
12

]
id

en
tic

al
[B

D
K

12
]

Pr
im

e
pa

ra
m

et
er

′ κ
F
P
T

b
co

r.
5.

20
F
P
T

c
co

r.
5.

24
Tr

ee
w

id
th

tw
O
(|

V
|k+

4.
5)

[B
od

90
]

X
P

e.
g.

[W
ag

11
]d

M
ax

im
um

de
gr

ee
m

ax
de

g
|V
|O

(k
)

[B
L8

3]
id

en
tic

al
[B

L8
3]

G
en

us
g

|V
|O

(k
)

[M
il8

0;
FM

80
]

id
en

tic
al

[M
il8

0;
FM

80
]

a
if
|F
|∈

N
an

d
F

-



G




I






∈
P

b
if

C





G



I







is
fix

ed
-p

ar
am

et
er

tr
ac

ta
bl

e
w

.r.
t.

κ
c

if
C





C







L





is
fix

ed
-p

ar
am

et
er

tr
ac

ta
bl

e
w

.r.
t.

κ
d

in
A
C

1
fo

rfi
xe

d
k

114

10. Outlook and Conclusion

We discussed all but one (eigenvalue multiplicity [EP99]) parameters for which the fixed-
parameter tractability of the graph isomorphism problem is currently settled. Furthermore,
we enriched this collection by the definition of additional width parameters inspired by the
work of Otachi [Ota12] and the treatment of modular decompositions which lead us to the
concept of prime parameters. For all but one (modification numbers) class of parameters
discussed in this work, we contrasted algorithms for G I and C
L and in most cases described the transformation from a G I to a
C L algorithm, the exception being the tree-depth where the first FPT algo-
rithm [BDK12] for G I already worked via canonical labelings. To aggregate
all the things we learned in chapters 3 to 7, we collated the established relations among the
considered parameters and added missing ones (mostly for the parameters introduced in this
thesis) in chapter 8. Figure 8.7 graphically represents this and section 9.1 gives an overview
of the fixed-parameter tractability results for G I and C L.
Based on this we separately draw our conclusions and provide an outlook for the following
different issues.

Gap between different parameterized problems In sections 2.2 and 2.3, we saw that the
considered polynomial time equivalent problems remain equivalent under fpt Turing reduc-
tions if parametrized by the same parameter, provided that the colored isomorphism/canon-
ical labeling problem is fpt Turing reducible to the uncolored counterpart. This restrictions is
not a huge obstacle, because the standard polynomial time reductions work for many natural
parameters, after an adequate modification, if necessary. Nevertheless, we asked (questions
2.11 and 2.18) for a general solution, at least for FFPT parameters.

Of much greater interest is the gap between G I and G C.
As usual, instead of G C, we considered C L, which is
equivalent under fpt Turing reductions (lemma 2.20, subject to C G C-
≤fpt-T G C). For most of the parameters we considered, there is no gap
between G I and C L. When Babai introduced his tower of
groups[Bab79] for graphs of bounded color multiplicity, he explicitly asked for a similar can-
onization procedure, but this question was answered soon [KL81] (see also [Luk10, 11–26]).
For those parameters who offer a tree like description or decomposition (tree-depth, distance
widths and prime parameters), directly constructing a canonical labeling algorithm using the
ideas of the linear time algorithm for trees in [AHU74] combined with an isomorphism order
on subtrees similar to Lindell's [Lin92] is a natural approach and hence there is no gap for
these parameters. Nevertheless, Yamazaki, Bodlaender, Fluiter and Thilikos [YBFT99] went
a different way when they introduced distance decompositions and it was not until [DTW12]
that an isomorphism order was used for tree distance decompositions. This order heavily
inspired our approach which closes the gap between path distance decompositions and tree
distance decompositions as well as the gap between G I and C L-

115

Table of all results Outlook and Conclusion

 for graphs of bounded distance widths.

The situation is different for modification numbers and this may be due to the way the al-
gorithms of Kratsch and Schweitzer [KS10] work. While all other isomorphism algorithms
considered in this thesis either do symmetric things in both graphs or even combine both
graphs (color multiplicity), their algorithms look for a forbidden subgraph in one graph and
for a modification set in the other graph. Furthermore, the number of modification sets is
for most classes not bounded by a function of the parameter or a polynomial of the number
of vertices and edges in the graph. We already outlined the importance of such a bound in
chapters 6 and 7. Hence it seems interesting to further study the following two questions.

Question 10.1. LetF be a finite set of graphs, such that G I is in P for graphs
in F -free. Is C L(F -free-mn = k) fixed-parameter tractable? ?

Question 10.2. Is C L(fvs = k) fixed-parameter tractable? ?

Modular decompositions and prime parameters In chapter 5 we have seen that modular
decompositions reduce the general isomorphism/canonization problems to those on prime
graphs. Using this observation we defined prime parameters which turned out to be gener-
alizations of their ordinary counterparts for many parameters in section 8.2. Especially, we
could show this for many distance widths despite the fact that they are not hereditary. Nev-
ertheless, the overall conclusion is mixed. On the positive side, prime parameters integrate
well in the framework of graph parameters and they do not overestimate the hardness of
instances that are actually easy. Unfortunately, on the other hand, the prime parameters do
not cover any additional parameters considered here that are not already covered by their
ordinary counterpart. We complete the discussion of modular decomposition with a hint
towards split decompositions [Cun82]. Split decompositions can be seen as a generalization
of modular decompositions and it is not unreasonable to expect that our methods carry over
to them.

Distance widths beyond treewidth There is little to add as a conclusion regarding dis-
tance widths, however we outline further research directions. Most importantly, the general
problem, whether C L parameterized by path or tree distance width is fixed-
parameter tractable, is still open. It might be further interesting to study distance colorings
based on the minimal distance to c sets instead of just one (= path distance decomposition)
and whether faster algorithms than the tower-of-groups approach exist for c = 2, 3, Note
that the size of the color classes would be no longer covered by the treewidth, since grids have
metric dimension 2, that is, the distances to e.g. (1, 1) and (1, m) are unique in the grid Gl×m
[MT84].

Impact of parameterized complexity on G I The conclusion regarding
the fruitfulness of the interplay of parameterized complexity and G I de-
pends on the viewpoint. From the algorithmic or practical stance the notion of fixed-parameter
tractability has motivated several results. The entire concept of distance widths was intro-
duced [YBFT99] to examine the fixed-parameter tractability of G I w.r.t. to
parameters similar to the treewidth. Moreover all foreign vital lemmas in [KS10] come from
research in parameterized complexity [Cai96; CFLLV08; RSS06], so it seems unlikely that

116

Outlook and Conclusion Table of all results

the findings in [KS10] would have been made and stated without the explicit notion of fixed-
parameter tractability. To a lesser extent this also holds for the tree-depth [BDK12], especially
if we keep in mind that a large part of this article discusses why the number of choices for
the roots in each level is bounded. On the other hand the tree-depth itself has a variety of
applications and definitions and the alternative way to proof the above mentioned bound on
the number of root candidates comes from [DGT12], which is a purely combinatorial article.

The evaluation changes if we take the perspective of (parameterized) complexity theory.
While the positive results for parameters like color multiplicity and the absence of such
results for parameters like treewidth or genus after two decades of research may hint to-
wards different complexities of their parameterized graph isomorphism problems, there
is yet no hardness result, that could underpin this impression. Not to mention that the
situation seemed similar for the eigenvalue multiplicity until the findings in [EP99]. As
W[1]-hardness of a parameterized problem implies that it is not in P unless W[1] = FPT
Kratsch and Schweitzer [KS10] ask for a weaker notion of hardness, i.e. hardness for a class
C, FPT ⊆ C ⊆ W[1]. A parameterized analogon of the classical class GI (see [KST93]) could
fulfill this role, however there is no obvious candidate for a class para-GI, such that e.g. G
I(tw = k) would be hard for this class.

Note that, by contrast, it is easy to define a class like
C = {(L, κ) | (L, κ) ≤fpt-T G I(one)}

to rephrase classical results in the language of parameterized complexity. Since, for instance,
G I for bipartite graphs is GI-complete [BC79], we could say that G
I(χ = k) is C-hard, where χ is the chromatic number, because G I-
(one) ≤fpt-T G I(χ = k). However, this is only helpful if one does
not like to mix notion from classical and parameterized complexity and gives no additional
knowledge.

All in all we conclude, that the parameterized complexity of G I remains
mainly uncharted and that the picture in the parameterized world is even more diverse than
in the classical world, thus the need for further research is unabated.

117

Part IV.

Appendix

…and gather up the leaves.

118

List of Figures

1.1 Illustration of the difference between FPT and XP 21

2.1 Two isomorphic graphs, but two non-isomorphic colored graphs 23
2.2 Two non-isomorphic graphs . 23

3.1 A graph and a corresponding tower of groups (construction of example 3.11) . 43

4.1 Exhaustive application of rules in definition 4.8 58

5.1 The graph Gn,m of example 5.23 with n = 3 and m = 4 70

7.1 A path of length 14 and a tree-depth decomposition of it 94
7.2 Recursion tree for a tree-depth decomposition seen from a single vertex 100

8.1 The pincushion graph H2 (see proof for equation (8.5.1)) 104
8.2 A path distance decomposition of the pincushion H2 104
8.3 The book graph B5 (see proof of equation (8.5.4)) 105
8.4 A connected strong path decomposition and a rooted path distance decompo-

sition . 105
8.5 Forbidden subgraph, modification set and quotient graph (example 8.10) . . . 108
8.6 A class of graphs with bounded tw, but unbounded ′fvs 112
8.7 Relations among parameters . 112

119

List of Algorithms

2.1 d-dimensional Weisfeiler-Lehman algorithm for d ≥ 2 30
2.2 Vertex coloring from d-dimensional Weisfeiler-Lehman algorithm for d ≥ 2 . . 31
2.3 Remove leaves and recolor [AHU74, Example 3.2] 32
2.4 Canonical labeling of trees . 33
2.5 Graph isomorphism for disconnected graphs . 34

3.1 The sift-algorithm [FHL80] . 39
3.2 The close-algorithm [FHL80] . 40
3.3 The sift-and-close-algorithm [FHL80] . 41
3.4 Graph isomorphism for graphs of bounded color class sizes. 45
3.5 Canonical labeling for graphs of bounded color class sizes. 46

4.1 C modification set, for C = F -free [Cai96] . 50
4.2 Minimal forbidden induced subgraph [Cai96] 51
4.3 Graph isomorphism for graphs with bounded F -free modification sets [KS10] 53
4.4 Graph isomorphism for graphs with bounded feedback vertex number [KS10] 59
4.5 Graph isomorphism for graphs with one cycle per component [KS10] 60

5.1 Naïve isomorphism test for cographs . 63
5.2 Naïve computation of the quasi-maximal modular partition 66
5.3 Graph isomorphism via modular decomposition 69
5.4 Canonical labeling via modular decomposition 71
5.5 Canonical labeling via modular decomposition (iterative) 72

6.1 Graph isomorphism for graphs of bounded rooted path distance width [YBFT99] 74
6.2 Canonical labeling of path distance decompositions 76
6.3 Enumerate path distance decompositions by adding neighboring vertices [Ota12] 78
6.4 Graph isomorphism for graphs of bounded c-connected path distance width

[Ota12] . 79
6.5 Enumerate path distance decompositions with bounded c-cluster width 80
6.6 Minimal tree distance decomposition for a given root bag [YBFT99] 82
6.7 Graph isomorphism for graphs of bounded rooted tree distance width [YBFT99] 84
6.8 Canonical labeling for minimal tree distance decompositions 88
6.9 Canonical labeling for minimal tree distance decompositions 89

7.1 Canonical labeling via tree-depth decompositions [BDK12] 99

120

Bibliography

[AHU74] A. Aho, J. Hopcroft and J. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974 (cit. on pp. 31, 32, 115, 120).

[Bab79] L. Babai. Monte Carlo Algorithms in Graph Isomorphism Testing. Tech. rep.
Université de Montréal, 1979 (cit. on pp. 37, 42, 43, 46, 113–115).

[BC79] K. S. Booth and C. J. Colbourn. Problems polynomially equivalent to graph
isomorphism. Tech. rep. TR 77-04. Computer Science Department, Univiversity
of Waterloo, 1979 (cit. on pp. 26, 117).

[BDK12] A. Bouland, A. Dawar and E. Kopczyński. On tractable parameterizations of
graph isomorphism. Parameterized and Exact Computation. Springer, 2012,
pp. 218–230 (cit. on pp. 92, 97–100, 114, 115, 117, 120).

[BGHK95] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Al-
gorithms 18.2 (1995), pp. 238–255 (cit. on p. 96).

[BGM82] L. Babai, D. Y. Grigoryev and D. M. Mount. Isomorphism of graphs with
bounded eigenvalue multiplicity. Proceedings of the fourteenth annual ACM
symposium on Theory of computing. STOC '82. San Francisco, California,
United States: ACM, 1982, pp. 310–324 (cit. on p. 113).

[BK79] L. Babai and L. Kučera. Canonical labelling of graphs in linear average time.
Proceedings of the 20th Annual Symposium on Foundations of Computer Sci-
ence. Washington, DC, USA: IEEE, 1979, pp. 39–46 (cit. on p. 29).

[BL83] L. Babai and E. M. Luks. Canonical labeling of graphs. Proceedings of the fif-
teenth annual ACM symposium on Theory of computing. STOC '83. New York,
NY, USA: ACM, 1983, pp. 171–183 (cit. on pp. 46, 113, 114).

[Bod+98] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller and Z.
Tuza. Rankings of graphs. SIAM Journal on Discrete Mathematics 11.1 (1998),
pp. 168–181 (cit. on pp. 92, 93).

[Bod90] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partialk-trees. Journal of Algorithms 11.4 (1990), pp. 631–643
(cit. on pp. 20, 113, 114).

[Bod96] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on computing 25.6 (1996), pp. 1305–1317 (cit. on
p. 96).

[Cai96] L. Cai. Fixed-parameter tractability of graph modification problems for hered-
itary properties. Information Processing Letters 58.4 (1996), pp. 171–176 (cit. on
pp. 50, 51, 116, 120).

121

Table of all results Outlook and Conclusion

[CFI92] J. yi Cai, M. Fürer and N. Immerman. An optimal lower bound on the number
of variables for graph identifications. Combinatorica 12.4 (1992), pp. 389–410
(cit. on p. 29).

[CFLLV08] J. Chen, F. V. Fomin, Y. Liu, S. Lu and Y. Villanger. Improved algorithms for
feedback vertex set problems. Journal of Computer and System Sciences 74.7
(2008), pp. 1188–1198 (cit. on pp. 55, 56, 116).

[CHM81] M. Chein, M. Habib and M.-C. Maurer. Partitive hypergraphs. Discrete mathe-
matics 37.1 (1981), pp. 35–50 (cit. on p. 67).

[Cou90] B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics. Ed.
by J. van Leeuwen. MIT Press, 1990, pp. 193–242 (cit. on pp. 93, 95).

[Cou96] B. Courcelle. The definition in monadic second-order logic of modular decompo-
sitions of ordered graphs. Graph Grammars and Their Application to Computer
Science. Vol. 1073. Lecture Notes in Computer Science. Springer, 1996, pp. 487–
501 (cit. on p. 70).

[CPS85] D. Corneil, Y. Perl and L. Stewart. A Linear Recognition Algorithm for
Cographs. SIAM Journal on Computing 14.4 (1985), pp. 926–934 (cit. on p. 63).

[CTW08] Y. Chen, M. Thurley and M. Weyer. Understanding the Complexity of Induced
Subgraph Isomorphisms. Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part I. ICALP '08. Reykjavik, Iceland:
Springer-Verlag, 2008, pp. 587–596 (cit. on pp. 16, 19).

[Cun82] W. H. Cunningham. Decomposition of directed graphs. SIAM Journal on Alge-
braic Discrete Methods 3.2 (1982), pp. 214–228 (cit. on p. 116).

[Dam91] P. Damaschke. Induced subgraph isomorphism for cographs is NP-complete.
Proc. 16th Int. Worksh. Graph-Theoretic Concepts in Computer Science. Lecture
Notes in Computer Science 484. Springer-Verlag, 1991, pp. 72–78 (cit. on p. 63).

[DF95a] R. Downey and M. Fellows. Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24.4 (1995), pp. 873–921 (cit. on p. 13).

[DF95b] R. Downey and M. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W [1]. Theoretical Computer Science 141.1-2 (1995),
pp. 109–131 (cit. on p. 13).

[DF95c] R. G. Downey and M. R. Fellows. Parameterized Computational Feasibility.
Ed. by P. Clote and J. Remmel. Birkhäuser, 1995, pp. 219–244 (cit. on p. 55).

[DF99] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 1999 (cit.
on pp. 13, 19).

[DGT12] Z. Dvořák, A. C. Giannopoulou and D. M. Thilikos. Forbidden graphs for
tree-depth. European Journal of Combinatorics 33.5 (2012), pp. 969–979 (cit. on
pp. 94, 97, 117).

[DTW12] B. Das, J. Torán and F. Wagner. Restricted space algorithms for isomorphism on
bounded treewidth graphs. Information and Computation 217 (2012), pp. 71–83
(cit. on pp. 85, 90, 115).

[EP62] P. Erdős and L. Pósa. On the maximal number of disjoint circuits of a graph.
Publicationes Mathematicae Debrecen 9 (1962), pp. 3–12 (cit. on p. 57).

122

Outlook and Conclusion Table of all results

[EP99] S. Evdokimov and I. Ponomarenko. Isomorphism of coloured graphs with
slowly increasing multiplicity of Jordan blocks. Combinatorica 19.3 (1999),
pp. 321–333 (cit. on pp. 20, 113–115, 117).

[EST12] M. Elberfeld, C. Stockhusen and T. Tantau. On the space complexity of parame-
terized problems. Parameterized and Exact Computation. IPEC 2012. Springer,
2012, pp. 206–217 (cit. on p. 21).

[FFG02] J. Flum, M. Frick and M. Grohe. Query evaluation via tree-decompositions.
Journal of the ACM 49.6 (2002), pp. 716–752 (cit. on pp. 95, 96).

[FG03] J. Flum and M. Grohe. Describing parameterized complexity classes. Informa-
tion and Computation 187.2 (2003), pp. 291–319 (cit. on p. 21).

[FG06] J. Flum and M. Grohe. Parameterized complexity theory. Springer-Verlag New
York Inc, 2006 (cit. on pp. 13, 14, 17, 19, 20, 95).

[FHL80] M. Furst, J. Hopcroft and E. Luks. Polynomial-time algorithms for permutation
groups. Foundations of Computer Science, 1980., 21st Annual Symposium on.
1980 (cit. on pp. 37–42, 113, 114, 120).

[FM80] I. S. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the
isomorphism of graphs of fixed genus. Proceedings of the twelfth annual ACM
symposium on Theory of computing. STOC '80. Los Angeles, California, United
States: ACM, 1980, pp. 236–243 (cit. on p. 114).

[Gal67] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Sci-
entiarum Hungarica 18 (1967), pp. 25–66 (cit. on pp. 64, 65).

[Gur97] Y. Gurevich. From invariants to canonization. Bulletin of the EATCS 63 (1997)
(cit. on pp. 26, 29).

[Hof82] C. M. Hoffmann. Group-theoretic algorithms and graph isomorphism. Vol. 136.
Lecture Notes in Computer Science. Springer, 1982 (cit. on p. 25).

[HP10] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decom-
position. Computer Science Review 4.1 (2010), pp. 41–59 (cit. on pp. 64, 67).

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations. The IBM Research Symposia Series. Plenum Press, New
York, 1972, pp. 85–103 (cit. on pp. 14, 55).

[KL81] P. Klingsberg and E. M. Luks. Succinct certificates for a class of graphs. St.
Joseph's University, preprint. 1981 (cit. on pp. 46, 114, 115).

[KMP77] D. E. Knuth, J. H. Morris and V. R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing 6 (1977), pp. 323–350 (cit. on pp. 34, 39).

[KMS95] M. Katchalski, W. McCuaig and S. Seager. Ordered colourings. Discrete Mathe-
matics 142.1 (1995), pp. 141–154 (cit. on p. 92).

[KS10] S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback ver-
tex set number. Algorithm Theory-SWAT 2010 (2010), pp. 81–92 (cit. on pp. 33,
52–54, 58–60, 114, 116, 117, 120).

[KST93] J. Köbler, U. Schöning and J. Torán. The Graph Isomorphism Problem: Its Struc-
tural Complexity. Birkhäuser, 1993 (cit. on p. 117).

[Lam12] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorith-
mica 64.1 (2012), pp. 19–37 (cit. on p. 109).

123

Table of all results Outlook and Conclusion

[Lin92] S. Lindell. A logspace algorithm for tree canonization. Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing. ACM. 1992,
pp. 400–404 (cit. on pp. 85, 92, 98, 115).

[Luk10] E. M. Luks. Permutation Groups in Parallel: Canonical Forms. Ohio State Uni-
versity. Combinatorics, Groups, Algorithms, and Complexity: Conference in
honor of Laci Babai's 60th birthday. 2010. : http : / / www . babai60 . org /
slides/luks.pdf (cit. on pp. 46, 115).

[Luk82] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polyno-
mial time. Journal of Computer and System Sciences 25 (1982), pp. 42–65 (cit.
on p. 20).

[Mat79] R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters 8.3 (1979), pp. 131–136 (cit. on p. 25).

[Mil79] G. L. Miller. Graph isomorphism, general remarks. Journal of Computer and
System Sciences 18.2 (1979), pp. 128–142 (cit. on pp. 5, 22).

[Mil80] G. Miller. Isomorphism testing for graphs of bounded genus. Proceedings of the
twelfth annual ACM symposium on Theory of computing. ACM. 1980, pp. 225–
235 (cit. on p. 114).

[MT84] R. A. Melter and I. Tomescu. Metric bases in digital geometry. Computer Vi-
sion, Graphics, and Image Processing 25.1 (1984), pp. 113–121 (cit. on p. 116).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univerity
Press, 2006 (cit. on pp. 13, 14, 19).

[NO06] J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. European Journal of Combinatorics 27.6 (2006), pp. 1022–
1041 (cit. on pp. 92–94).

[NO12] J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algo-
rithms. Algorithms and Combinatorics 28. Springer, 2012 (cit. on pp. 93, 94, 96,
97).

[Ota12] Y. Otachi. Isomorphism for Graphs of Bounded Connected-Path-Distance-
Width. Algorithms and Computation. Springer, 2012, pp. 455–464 (cit. on
pp. 73, 74, 77–79, 104, 114, 115, 120).

[RS04] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner's conjecture. Jour-
nal of Combinatorial Theory, Series B 92.2 (2004), pp. 325–357 (cit. on p. 93).

[RS83] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal
of Combinatorial Theory, Series B 35.1 (1983), pp. 39–61 (cit. on p. 103).

[RS84] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. Journal
of Combinatorial Theory, Series B 36.1 (1984), pp. 49–64 (cit. on p. 15).

[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. Journal of algorithms 7.3 (1986), pp. 309–322 (cit. on p. 15).

[RS91] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to
tree-decomposition. Journal of Combinatorial Theory, Series B 52.2 (1991),
pp. 153–190 (cit. on p. 103).

[RSS06] V. Raman, S. Saurabh and C. R. Subramanian. Faster fixed parameter tractable
algorithms for finding feedback vertex sets. ACM Transactions on Algorithms
2.3 (2006), pp. 403–415 (cit. on pp. 56, 116).

124

http://www.babai60.org/slides/luks.pdf
http://www.babai60.org/slides/luks.pdf

Outlook and Conclusion Table of all results

[RSV04] B. Reed, K. Smith and A. Vetta. Finding odd cycle transversals. Operations Re-
search Letters 32.4 (2004), pp. 299–301 (cit. on p. 55).

[Sab61] G. Sabidussi. Graph derivatives. Mathematische Zeitschrift 76.1 (1961), pp. 385–
401 (cit. on p. 64).

[Sch88] U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences 37.3 (1988), pp. 312–323 (cit. on p. 3).

[See85] D. Seese. Tree-partite graphs and the complexity of algorithms. Fundamentals
of Computation Theory. Ed. by L. Budach. Springer. 1985, pp. 412–421 (cit. on
p. 15).

[Spi83] J. Spinrad. Transitive orientation in O(n2) time. Proceedings of the fifteenth
annual ACM symposium on Theory of computing. ACM. 1983, pp. 457–466 (cit.
on p. 64).

[Sum73] D. P. Sumner. Graphs indecomposable with respect to the X-join. Discrete
Mathematics 6.3 (1973), pp. 281–298 (cit. on p. 62).

[TCHP08] M. Tedder, D. Corneil, M. Habib and C. Paul. Simpler linear-time modular de-
composition via recursive factorizing permutations. Automata, Languages and
Programming. Springer, 2008, pp. 634–645 (cit. on pp. 67, 109).

[Wag11] F. Wagner. Graphs of Bounded Treewidth Can Be Canonized in AC1. Computer
Science--Theory and Applications: : 6th International Computer Science Sym-
posium in Russia. Springer, 2011, pp. 209–222 (cit. on p. 114).

[Wei76] B. Weisfeiler, ed. On Construction and Identification of Graphs. Lecture Notes
in Mathematics. Springer, 1976 (cit. on p. 29).

[WL68] B. Weisfeiler and A. A. Lehman. Reduction of a graph to a canonical form and
an algebra which appears in the process. Russian. Nauchno-Technicheskaya In-
formatsia 2.9 (1968), pp. 12–16 (cit. on p. 29).

[YBFT99] K. Yamazaki, H. L. Bodlaender, B. de Fluiter and D. M. Thilikos. Isomorphism
for graphs of bounded distance width. Algorithmica 24.2 (1999), pp. 105–127
(cit. on pp. 17, 73–75, 80, 82–84, 102, 104, 105, 112, 114–116, 120).

125

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und nur unter Ver-
wendung der angegebenen Quellen und Hilfsmittel angefertigt habe. Weiterhin erkläre ich,
eine Diplomarbeit in diesem Studiengebiet erstmalig einzureichen.

Berlin, den 25. September 2013 .

Statement of authorship

I declare that I completed this thesis on my own and that information which has been directly
or indirectly taken from other sources has been noted as such. Neither this nor a similar work
has been presented to an examination committee.

Berlin, September 25, 2013 .

	Preface
	Contents
	Introduction
	Notation and basic definitions
	Parameterized complexity theory
	Parameterized problems
	Graph parameters
	FPT and fpt-reductions
	The weft hierarchy
	Other classes

	The graph isomorphism problem
	Graph isomorphisms and canonical forms
	Parameterized isomorphism problems
	Parameterized canonization problems
	Basic algorithms
	The Weisfeiler-Lehman algorithm
	Linear time algorithms for trees
	Linear time isomorphism algorithm for colored cycles
	Disconnected graphs

	Parameterized problems in FPT
	Color multiplicity
	Towers of groups
	The sift-and-close-algorithm
	sift …
	…and close

	Application to Graph Isomorphism(cm)
	Stabilizing the sets of equally colored edges
	Algorithm, its correctness and runtime

	Application to Canonical Labeling(cm)
	Consequences

	Modification sets
	Finite set of forbidden induced subgraphs
	Find a minimal forbidden induced subgraph
	Application to Graph Isomorphism
	Classes with forbidden subgraphs

	Feedback vertex set
	Find a feedback vertex set, …
	… ensure that the graphs have a short cycle …
	… and use them to fix a pair of vertices.

	Modular decompositions
	Cographs
	Modules and the uniqueness of the modular decomposition
	The modular decomposition tree and its computation
	Application to Graph Isomorphism
	Application to Canonical Labeling

	Distance widths
	Rooted path distance width
	Isomorphism test
	Canonical labelings

	Connected and clustered path distance width
	Connected path distance width
	Clustered path distance width

	Rooted tree distance width
	Isomorphism test
	Canonical Labelings

	c-connected d-separating tree distance width

	Tree-depth
	Some equivalent definitions
	Computation of tree-depth and decompositions
	Characterization via forbidden subgraphs
	Bounded treewidth and Courcelle's theorem

	Application to Canonical Labeling(td=k)
	An isomorphism order for subdecompositions
	Canonical labeling algorithm

	Overview, Conclusion and Outlook
	Relations among parameters
	Treewidth and related parameters
	Parameters vs. prime parameters
	Prime distance widths
	Some incomparability lemmas

	Graph of the cover relation

	Overview of results
	Table of all results

	Outlook and Conclusion

	Appendix
	List of Figures
	List of Algorithms
	Bibliography

