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Abstract. Load balancing is an important issue in parallel numerical

simulations. However, state-of-the-art libraries addressing this problem

show several deficiencies: they are hard to parallelize, focus on small edge-

cuts rather than few boundary vertices, and often produce disconnected

partitions.

We present a distributed implementation of a load balancing heuristic for

parallel adaptive FEM simulations. It is based on a disturbed diffusion

scheme embedded in a learning framework. This approach incorporates

a high degree of parallelism that can be exploited and it computes well-

shaped partitions as shown in previous publications. Our focus lies on

improving the condition of the involved matrix and solving the resulting

linear systems with local accuracy. This helps to omit unnecessary com-

putations as well as allows to replace the domain decomposition by an

alternative data distribution scheme reducing the communication over-

head, as shown by experiments with our new MPI based implementation.

Keywords: Load balancing, graph partitioning, parallel adaptive FEM

computations.

1 Introduction

Finite Element Methods (FEM) play a very important role in engineering for
analyzing a variety of physical processes that can be expressed via Partial Dif-
ferential Equations (PDE). The domain on which the PDEs have to be solved
is discretized into a mesh, and the PDEs are transformed into a set of equa-
tions defined on the mesh’s elements (see e. g. [5]). Due to the sparseness of the
discretization matrices these equations are typically solved by iterative methods
such as Conjugate Gradient (CG) or multigrid.

Since an accurate approximation of the original problem requires a very large
number of elements, this method has become a classical application for paral-
lel computers. The parallelization of numerical simulation algorithms usually
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follows the Single-Program Multiple-Data paradigm: Each of the P processors
executes the same code on a different part of the data. Thus, the mesh has to
be split into sub-domains, each being assigned to one processor. To minimize
the overall computation time, all processors should roughly contain the same
number of elements. Furthermore, since iterative solution algorithms perform
mainly local operations, the parallel algorithm mostly requires communication
at the partition boundaries. Hence, these should be as small as possible due to
the very high communication costs involved.

Depending on the application, some areas of the simulation space require
higher resolutions and therefore more elements. Since in many cases the location
of these areas varies over time, the mesh is refined and coarsened during the
computation. Yet, this can cause imbalance between the processor loads and
therefore delay the simulation. To avoid this, the element distribution needs to
be rebalanced during runtime. For this, the application is interrupted and the
repartitioning problem is solved. Although this interruption should be as short
as possible, it is also important to find a new balanced partitioning with small
boundaries that does not cause too many elements to change their processor.
Migrating elements can be extremely costly since large amounts of data have to
be sent over communication links and stored in complex data structures.

In previous work [19, 15] we have shown that (re-)partitioning heuristics fo-
cusing on the shape of partitions are able to find solutions with a small number of
boundary vertices while also causing little migration. There, we have compared
our method to the state-of-the-art libraries Metis [11] and Jostle [21] regard-
ing solution quality and runtime. It turns out that while the solution quality of
the shape-optimizing approach is usually the best, its main drawback is its long
runtime and high memory consumption. Therefore, in this paper we present a
new parallel implementation based on the message-passing interface MPI that
incorporates several improvements addressing these problems.

The remaining part of the paper is organized as follows. In the next section
we recapture related work and explain the shape optimizing bubble framework.
Section 3 describes the diffusion scheme applied within this framework as its
growth mechanism and an enhancement to the condition of the involved matrix.
Our parallel MPI based implementation is presented in Section 4. The new con-
cept of solving the linear systems with local accuracy reduces the computation
time as well as the memory requirements. Additionally, it facilitates a new data
distribution scheme decreasing communication. Subsequently, we present some
of our experiments in Section 5 before we give a short conclusion.

2 Related Work

2.1 Graph Partitioning and Load Balancing Heuristics

Balancing an FEM mesh can be expressed as a graph (re-)partitioning problem.
The mesh is transformed into a graph whose vertices represent the computational
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work and the edges their interdependencies. Due to its complexity existing li-
braries for this problem are based on heuristics. State-of-the-art implementations
like Metis [11], Jostle [21] or Party [17] follow the multilevel scheme [7] with a
local improvement heuristic based on exchanging vertices between partitions.
This heuristic reduces the number of cut-edges or the boundary size as well as
balances the partition sizes. Hence, the final solution quality mainly depends
on this method. Implementations are mostly based on the Kernighan-Lin (KL)
heuristic [12], while the local refinement in Party is derived from theoretical anal-
ysis with Helpful-Sets (HS) [8]. To address the load balancing problem during
parallel computations, distributed versions of the libraries Metis [20] and Jos-
tle [22] have been developed. However, due to the sequential nature of the KL
heuristic, their parallelization is difficult. This situation is even worse with the
HS heuristic in Party due to the large overhead for exchanging large vertex sets.

While the global edge-cut is the classical metric that most graph partition-
ers optimize, it is not necessarily the best metric to follow [6] because it does
not model the real communication and runtime costs of FEM computations.
Hence, different metrics have been implemented to model the real objectives
more closely [16, 11]. As an example, since the convergence rate of the CGBI
solver in the PadFEM environment depends on the geometric shape of a parti-
tion, its load balancer iteratively decreases the partitions’ aspect ratios by apply-
ing the algorithm“Bubble” [3], whose basic idea appeared already in [23]. Yet, its
implementation contains a strictly sequential part and suffers from some other
difficulties described in [18]. Details about this algorithm and how to overcome
its issues are discussed in the following.

2.2 The Bubble Framework

The bubble framework is related to the k-means algorithm well-known in cluster
analysis [13] and transfers its ideas to graphs: First, one chooses randomly for
each partition one vertex as its center vertex. With this initial set of seed ver-
tices at hand, all remaining vertices are assigned to their closest seed based on
some distance measure. (This resembles the simultaneous growth of soap bubbles
starting at the seed vertices and colliding at common borders.) After all vertices
of the graph have been assigned this way, each sub-domain computes its new
center, which acts as the seed in the next iteration. This can be repeated until a
stable state is reached. Fig. 1 illustrates the three main operations. This frame-
work can be implemented in various ways, but many approaches show some
major disadvantages for our given problem (cf. [14] for a broader discussion).
They can be overcome by the growth mechanism explained next.

3 The Diffusion Based Growth Mechanism

Our implementation of the bubble operations is based on solving diffusion prob-
lems on the input graph. This is due to the fact that diffusion prefers densely
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Fig. 1. The main bubble framework op-

erations: Determine initial seeds for each

partition (left), grow partitions around

the seeds (middle), move seeds to the par-

tition centers (right).

Fig. 2. Schematic view: Placing load on

single vertices (left) or a partition (right),

the diffusion process, and the mapping of

vertices to the partitions according to the

load.

connected regions of the graph. Thus, one can expect to identify vertex sets that
tend to possess a small number of boundary vertices.

3.1 The FOS/C Diffusion Scheme

Generally speaking, a diffusion problem consists of distributing load from some
given seed vertex (or vertices) into the whole graph by load exchanges between
neighbor vertices. Standard diffusion schemes like FOS [1] converge to fully bal-
anced load distributions. This is undesired here because the amount of load
should represent a distance between vertices. Hence, we disturb FOS to obtain a
hill-like load distribution with meaningful diffusion distances between vertices.

How this hill-like distribution is interpreted as distance values is illustrated
in figure 2. Given a seed vertex for each partition (left), we place load on the
respective seed and use a diffusive process to have it spread into the graph. This
is performed independently for every partition. After the load is distributed,
we assign each vertex to that partition it has obtained the highest load amount
from (highest load means shortest distance). The next step (right) does not place
load on a single seed vertex only, but distributes it evenly among all vertices of
the given partition. After performing the diffusion process, the resulting load
distribution can either be used as an optional consolidation or for contracting
the partitions to the seed vertices of the next iteration. A consolidation again
assigns the vertices to partitions according to the highest load as in the previous
step. This further improves the partition shapes. During a contraction, for each
partition the vertex containing the highest load becomes its new seed.

We now restate some important properties of the diffusion scheme applied
(for details cf. [14]). Let L be the Laplacian matrix of the unweighted, connected
input graph G = (V,E). Shifting a small load amount δ (drain) from each vertex
back to the seed vertex/vertices (comprised in the set S ⊂ V ) in each iteration by
the drain vector d leads to the desired disturbed diffusion scheme called FOS/C
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with the matrix/vector notation w(i+1) = Mw(i) + d, where M = I− αL is the
diffusion matrix with some suitable constant α > 0, w(i) is the load vector at
iteration i and d the drain vector, whose vector sum is 0, so that d ∈ range(L).

Theorem 1 (Convergence of FOS/C). [14] The FOS/C scheme converges
for any arbitrary initial load vector w(0).

Corollary 1. [14] The convergence state w(∗) of FOS/C can be characterized
as w(∗) = Mw(∗) +d ⇔ (I−M)w(∗) = d ⇔ αLw(∗) = d. Hence, the convergence
state can be determined by solving the linear system Lw = d, where w = αw(∗).

The resulting load vector w represents the hill-like distribution we need in
order to compute diffusion distances between a seed and some other vertex.
Therefore, we have the choice to compute this vector by local operations (e. g.
the second order diffusion scheme [4]) or by generally faster solvers using global
knowledge (such as CG or multigrid), whichever is more appropriate.

3.2 Improving the Matrix Condition

Observe that if load diffuses faster into dedicated regions, then the flow over the
edges directing there must be higher than the flow over edges pointing elsewhere.
Due to [9] and [2] we know that the solution of the FOS/C diffusion problem
is equivalent to a ‖ · ‖2-minimal flow over the edges of the graph. The diffusion
problem can therefore be regarded as a flow problem, too. To make the sink of
the flow unique, we insert an extra vertex into the input graph G of n nodes
as in [15]. This new vertex is connected to every other vertex in G by an edge
of weight φ > 0, which leads to a modified Laplacian matrix Lφ having one
additional row and column whose off-diagonal entries are all −φ. The diagonal
of Lφ contains for each row the weighted degree of the corresponding vertex,
so that it is symmetric positive-semidefinite (spsd) and of rank n. The resulting
linear system is denoted by Lφwφ = dφ with the following drain vector dφ:

dφ(v) =


δ · |V |/|S| : v ∈ S

−δ · |V | : v is the extra vertex
0 : otherwise

Solving this spsd system by iterative methods can be made faster and more
robust to numerical imprecision by fixing entries (as many as the dimension of
the null space of Lφ) of wφ and deleting their corresponding rows and columns
from the matrix [10]. Hence, we improve on previous work [15, 14] by fixing the
value of the extra vertex to be zero and delete the row and column appended
to L before. What remains is the addition of φ to the diagonal values of L.
This results in a symmetric positive-definite (spd) matrix whose condition can
be controlled by the parameter φ (therefore we actually solve L′w′ = d′, where
L′ = L + φI and d′ (resp. w′) equals dφ (resp. wφ) without the entry for the
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extra vertex). Note that this simple preconditioning is well-defined by the notion
of the extra vertex.

Using L′ has even more advantages than improving the convergence and
robustness of iterative solvers: the distributions of different seeds are comparable
without post-processing because the extra vertex acts as a common reference
point. Moreover, unlike in [15], the extra vertex is eliminated from the actual
solution process, which makes the use of multigrid/multilevel methods easier and
further speeds up computations.

4 Parallel Implementation of Bubble-FOS/C

In this section we present the Bubble-FOS/C algorithm, its new MPI based
implementation, and show improvements to the algorithm in terms of runtime
and memory consumption. For sake of simplicity we denote the linear system of
our diffusion/flow problem from now on Lw = d, although it has the structure of
L′w′ = d′ from the previous section. A specific system corresponding to partition
p is denoted by Lwp = dp, p ∈ {1, ..., P}.

4.1 The Bubble-FOS/C Heuristic

Incorporating FOS/C into

Algorithm Bubble-FOS/C(G, π, l, i)

01 in each loop l

02 if π is undefined π = determine-seeds(G)

03 else parallel for each partition p

04 centers = Contraction(G, π)

05 parallel for each partition p

06 π = AssignPartition(G, centers)

07 in each iteration i

08 parallel for each partition p

09 π = Consolidation(G, π)

10 π = scale-balance(π)

11 π = greedy-balance(π)

12 return smooth(π)

Fig. 3. Sketch of the algorithm.

the bubble framework results
in the algorithm sketched in
Figure 3. It can be invoked
with or without a valid parti-
tioning π. In the latter case,
we determine initial seeds ran-
domly (line 2). Otherwise, we
contract the given partitions
(lines 3-4) by applying the
proposed mechanism based on
solving the P linear systems
Lwp = dp. Then, we determine
a partitioning (lines 5-6) before
performing optional consolida-
tions (lines 7-9). These consol-
idations can also be used for

balancing by scaling the vectors wp (line 10). This approach can quickly find
almost balanced solutions in most cases. If necessary, we perform an additional
greedy balancing operation (line 11) to guarantee a certain partition size.

Depending on the quality of the initial solution, it is advisable to repeat
the learning process several times. (A multilevel scheme can help to keep the
number of repetitions small [14].) Before returning the partitioning π, vertices
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can be migrated optionally if the number of their neighbors in another partition
is larger than the number in their own partition (line 12). This further smooths
the partition boundaries but might lead to a slightly higher imbalance.

4.2 Partial Graph Coarsening

As explained above, one needs to solve P linear systems Lwp = dp with the same
matrix L and a different right-hand side dp for each bubble operation based on
FOS/C. However, since a vertex is assigned according to the maximum load
value, we notice that only a part of the solution is relevant to the vertex assign-
ment due to its hill-like manner. Hence, it is not necessary to compute the exact
solution for all vertices of the graph, but only in the important areas surround-
ing the respective partition, and an approximation elsewhere. This observation
can be exploited to both speed up the computations and reduce the memory
requirements in a parallel implementation:

Before the first computation, each domain creates a local level hierarchy.
Similar as in state-of the-art graph partitioning libraries, this is achieved by
calculating a 2-approximation of a maximum weighted matching restricted to
edges connecting local vertices. These are then combined to form the vertices
of the next level. After that, the implemented data structure allows us to solve
linear systems that are composed of different levels of the hierarchy, reflecting
the different solution accuracies on the domains.

To solve a linear system, we project the drain vector onto the respective
vertices of the lowest hierarchy level and first compute load values there. Figure 4
(left) illustrates a solution for one partition on the lowest levels. One can see that
the highest solution values can be found close to the originating domain. Since
the matching process preserves the graph structure, the solution on the lowest
level is similar to the expected load distribution in the original graph. Hence, we
are able to use it to determine the most relevant parts of the solution. Important
domains will be switched to a higher hierarchy level while the unimportant ones
remain on the lowest one.

The approximate solution is then interpolated to higher levels where neces-
sary and the system is solved again more accurately. Figure 4 (middle) gives an
example of a load distribution that has been calculated with varying accuracy.
In the important regions of the graph, the linear system is solved on the highest
hierarchy level, that is the original graph, while in areas further away from the
respective domain lower levels are used.

Although we now have to solve two linear systems per partition, a small one
on the lowest hierarchy levels and the second one on the mixed levels, less runtime
is required in total compared to solving one system on the original graph. The
lowest levels of the hierarchy are very small and can be processed quickly. The
additional time spent in this computation is compensated by the reduction of
the system sizes in the second computation.
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Fig. 4. Vertex loads on the lowest levels (left) and the final solution with local accuracy

on the respective levels (middle). The shown solution has been computed for the pink

domain leading to the displayed partitioning (right). Edges between vertices of different

domains (the initial partitioning) are cut.

Note that for each of the P linear systems a different part of the graph is
important. Hence, on each domain a number of hierarchy levels contribute to
the respective solutions. In our implementation, all systems are solved simulta-
neously with a standard CG solver. Therefore, we are able to combine the data
sent by all P instances and reduce the number of necessary messages.

4.3 Domain Decomposition vs Domain Sharing

Usually a domain decomposition is applied to distribute a graph on a parallel
computer. Following this practice, the implemented CG solver requires three
communications per iteration, one matrix communication that updates the halo
values and two scalar products. Hence, the number of messages is proportional
to the number of iterations, which typically grows with the system size.

Since we solve P linear systems concurrently, a second possibility to distribute
the computations onto the processing nodes exists. Instead of letting every node
process the chosen hierarchy level of its own domain for each of the P systems, it
is possible to assemble one complete linear system on each processor. The systems
are then solved locally without any communication, and finally the solution is
sent back to the domains. We call this approach domain sharing.

Domain sharing requires copies of all domains on every other node which
usually is impossible due to the involved memory requirements. However, we
have seen that an accurate solution is not required in many areas of the graph,
especially if the number of partitions is large. Hence, mainly lower levels of the
hierarchy have to be copied which reduces the memory requirements significantly.

5 Experimental Results

In this section we present some of our experiments executed on a Fujitsu Siemens
hpcLine2. This system consists of 200 computing nodes, each of which has two
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nolevel (DD) DD DS

Graph 8 16 32 64 8 16 32 64 8 16 32 64

shock9 2.68 2.97 3.53 4.17 2.49 2.26 1.53 1.74 1.96 1.34 0.99 1.01

ocean 7.27 8.43 8.90 9.61 8.79 6.67 4.90 8.17 8.84 4.75 3.17 3.02

wave 17.93 18.48 20.75 37.02 31.90 25.76 26.79 25.26 43.67 27.40 18.16 10.22

auto 37.92 40.84 48.39 53.08 126.15 106.04 79.08 52.19 141.93 77.88 42.30 24.53

hermes 70.89 74.35 77.63 112.93 191.71 144.11 95.17 87.26 165.75 105.31 54.08 29.08

Table 1. Running times (s) for Bubble-FOS/C algorithm without the level approach

(nolevel, domain decomposition by default), with hierarchy and domain decomposition

(DD), and with hierarchy and domain sharing (DS). The shock9 (|V | = 36476, |E| =

71290, φ = 0.008), ocean (|V | = 143437, |E| = 409593, φ = 0.06), wave (|V | =

156317, |E| = 1059331, φ = 0.07), auto (|V | = 448695, |E| = 3314611, φ = 0.125),

and hermes (|V | = 320194, |E| = 3722641, φ = 0.12) graphs have been repartitioned

on 8, 16, 32, and 64 processors respectively.

Intel Xeon 3.2 GHz EM64T processors and 4 GB RAM. In our tests, we only
use a single processor per node. We apply the Intel Compiler 8.1 and the Scali
MPI implementation via the Infiniband interconnection. The test set comprises
a number of two- and three-dimensional FEM graphs of different sizes. Since the
results are similar, we only include five of them here.

As mentioned, it has already been shown [15, 14] that the Bubble-FOS/C
algorithm is able to produce partitionings with few boundary vertices. Since the
solution quality varies only little in the settings, we focus our attention on the
run-time improvements here.

Table 1 displays the recorded run-times for the five selected graphs. The first
column contains the values for the classical domain decomposition approach
without constructing a level hierarchy. Note that with the number of partitions
the number of linear systems doubles, as well as the number of CPUs. Hence,
in the optimal case of this setting all run-times were roughly the same, slightly
varying due to the different right hand sides of the linear systems and the result-
ing number of CG iterations. Of course, the communication overhead prohibits
this.

The middle column lists the run-times applying the level approach and do-
main decomposition. Though we construct the hierarchy and solve the additional
small systems on the lowest levels, usually comparable run-times for 8 processors
can be achieved. Note that with 8 processors it is very likely that every part of the
hierarchy has to be solved on the highest level, especially for three-dimensional
graphs, since almost all domains share a common border. If the number of par-
titions increases, we notice some run-time reduction in contrast to the approach
without levels. However, for 64 processors the run-times increase again for the
two small graphs, which can be explained with the increasing communication
overhead.
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The results of the domain sharing approach can be found in the right column.
Although large messages are sent before and after solving the linear systems,
it turns out that avoiding communication inside the CG solver speeds up the
calculation significantly. This advantage becomes larger with a growing number
of partitions, because the fraction of vertices where no exact solution is required
increases as well. Hence, for larger number of processors (32 and more) this new
scheme shows a clear improvement to the original method regarding run-time.

6 Conclusion

We have presented the parallel load balancing heuristic Bubble-FOS/C and sig-
nificant improvements concerning a parallel implementation. By introducing an
extra vertex, we are able to improve the condition of the involved matrices and
therefore the numerical stability and complexity, without changing the matrix
structure. Constructing local hierarchies and solving the linear systems with par-
tial accuracy reduces the problem size and therefore the memory requirements.
This allows us to solve the linear systems locally and avoid high latency com-
munication inside the solver, which leads to a significant run-time reduction in
case of a larger number of partitions.

In the future, it would be interesting to replace the Conjugate Gradient
method and combine the presented hierarchical approach with a faster algebraic
multigrid solver instead. Note that the latter is based on hierarchy levels by
default.
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