Objektorientierte Programmierung mit C++ Dr. K. Ahrens

2. Klassen in C++ P

Vererbung: Grundprinzip von OO

— Ubernahme von Eigenschaften aus einer Klasse
— Erweiterung / Modifikation

Beispiel: ein Stack mit Buchflihrung
class CountedStack : public Stack // IST EIN STACK
{
int min, max, n, sum; // zusadtzliche Attribute
public:
CountedStack (int dim = 100) ;
void push (int i); // redefined !
int minimum(); // neu
int maximum(); // neu
double mean(); // neu
double actual mean() ;// neu
// pop, empty, full aus der Basisklasse !
};

stemanalyse 123

.
Objektorientierte Programmierung mit C++ Dr. K. Ahrens Humboldt

Universitat

Informatik

2. Klassen in C++

CountedStack: :CountedStack (int dim) :Stack (dim) ,n(0) ,sum(0) {}

void CountedStack: :push(int i) {

sum+=1i;
if ('n++) { min = max = 1i; }
else { min = (i<min) ? i : min; max = (i>max) ? 1 : max; }

Stack::push(i); // use base functionality NOT push (i)

double CountedStack::actual mean() {

if (top) { int s=0;
for (int i=0; i<top; i++) s += datal[i];
return double(s)/top; // direct access to base members

} else std::exit(-4);

124

Objektorientierte Programmierung mit C++ Dr. K. Ahrens ' :

2. Klassen in C++
Ist ein (nutzerdefinierter) Copy-Konstruktor erforderlich ?

Nein, weil der implizite Copy-K. die Copy-K.en aller Basisklassen ruft
und fir die Erweiterung Countedstack shallow copy ausreichend ist:

// implizit bereitgestellt:
CountedStack: :CountedStack (const CountedStacké& other)

Stack (other) {/* real copy */}

Der (nutzerdefinierte) stack-Copy-K. erwartet allerdings eine
const Stacké& ???°?

stemanalyse 125

Objektorientierte Programmierung mit C++ Dr. K. Ahrens ';» mboldt

2. Klassen in C++

— Jedes CountedStack - Objekt IST EIN Stack-Objekt

CountedStack es; ... cs.pop()
void foo (Stacks&); ... foo (cs) ;

— von der Ableitung zur Basisklasse ist implizit eine Projektion
definiert

void bar (Stack); ... bar(cs); // slicing A

Stack Stack

A CountedStack

— nur bei public Vererbung gilt die IST EIN Relation

stemanalyse 126

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

non-public Vererbung

class Derivl : private Base { };

Derivl IST nirgends EIN Base == die Vererbung ist ein (nicht erkennbares)
Implementationsdetail

class Deriv2 : protected Base { };

Deriv2 IST nur in Ableitungen von Deriv2 EIN Base == die Vererbung ist
nur Ableitungen Deriv2 von bekannt

das Layout von Objekten abgeleiteter Klassen wird von der Art der Vererbung
NICHT beeinflusst !

127

stemanalys:

Objektorientierte Programmierung mit C++ Dr. K. Ahrens M

2. Klassen in C++

Zugriffsrechte in C++

class A

--
““““
- v
3 »

benutzbar
in A

private || protected| |publxe

class B : public A

PenUthar private | protected| fpublic
W = benutzbar
class C : protected B von
= auB3en
PenUthar private| protected| [publiec
in C ;
class D : pritiEE—E—~////
PenUthar private| protected| [public
in C | :
RO I———. <1128

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

2. Klassen in C++
struct ist implizit public, class ist implizit private

Depricated:

Beim lookup von Funktionsnamen erfolgt
overload resolution VOR access check !
class X {
foo(int) ;
public:
foo(int, int = 0);

g

int main(){ X x;
x.foo(1l); //call of overloaded "foo(int)' is ambiguous

}

stemanalyse 129

