
Objektorientierte Programmierung mit C++ Dr. K. Ahrens

123

2. Klassen in C++

Vererbung: Grundprinzip von OO
– Übernahme von Eigenschaften aus einer Klasse
– Erweiterung / Modifikation

Beispiel: ein Stack mit Buchführung
class CountedStack : public Stack // IST EIN STACK
{
 int min, max, n, sum; // zusätzliche Attribute
public:
 CountedStack(int dim = 100);
 void push (int i); // redefined !
 int minimum(); // neu
 int maximum(); // neu
 double mean(); // neu
 double actual_mean();// neu
// pop, empty, full aus der Basisklasse !
};

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

124

2. Klassen in C++ back -->

CountedStack::CountedStack(int dim):Stack(dim),n(0),sum(0){}

void CountedStack::push(int i) {
 sum+=i;
 if (!n++) { min = max = i; }
 else { min = (i<min) ? i : min; max = (i>max) ? i : max; }
 Stack::push(i); // use base functionality NOT push(i)
}

double CountedStack::actual_mean() {
 if (top) { int s=0;
 for (int i=0; i<top; i++) s += data[i];
 return double(s)/top; // direct access to base members
 } else std::exit(-4);
}

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

125

2. Klassen in C++

Ist ein (nutzerdefinierter) Copy-Konstruktor erforderlich ?

Nein, weil der implizite Copy-K. die Copy-K.en aller Basisklassen ruft
und für die Erweiterung CountedStack shallow copy ausreichend ist:

// implizit bereitgestellt:
CountedStack::CountedStack(const CountedStack& other)
 :
 Stack(other) {/* real copy */}

Der (nutzerdefinierte) Stack-Copy-K. erwartet allerdings eine
const Stack& ????

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

126

2. Klassen in C++

– Jedes CountedStack - Objekt IST EIN Stack-Objekt

CountedStack cs; ... cs.pop();
void foo (Stack&); ... foo (cs);

– von der Ableitung zur Basisklasse ist implizit eine Projektion
definiert

void bar (Stack); ... bar(cs); // slicing

– nur bei public Vererbung gilt die IST EIN Relation

Stack Stack

Δ CountedStack

!

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

127

2. Klassen in C++

non-public Vererbung

class Deriv1 : private Base { };
Deriv1 IST nirgends EIN Base == die Vererbung ist ein (nicht erkennbares)
Implementationsdetail

class Deriv2 : protected Base { };
Deriv2 IST nur in Ableitungen von Deriv2 EIN Base == die Vererbung ist
nur Ableitungen Deriv2 von bekannt

das Layout von Objekten abgeleiteter Klassen wird von der Art der Vererbung
NICHT beeinflusst !

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

128

benutzbar
von

außen

2. Klassen in C++

Zugriffsrechte in C++

benutzbar
in C

private protected public

benutzbar
in B

private protected public

benutzbar
in A

private protected public

class A

class B : public A

class C : protected B

benutzbar
in C

private protected public

class D : private C

Objektorientierte Programmierung mit C++ Dr. K. Ahrens

129

2. Klassen in C++

struct ist implizit public, class ist implizit private

Depricated:
struct erbt implizit public, class erbt implizit private

Beim lookup von Funktionsnamen erfolgt
 overload resolution VOR access check !
class X {
 foo(int);
public:
 foo(int, int = 0);
};

int main(){ X x;
 x.foo(1); //call of overloaded `foo(int)' is ambiguous
}

