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1 Abstract

Emerging from recent research in software testing, fuzzing has become a popular and well-
studied topic. Coverage-guided mutation-based fuzzing is particularly successful because
of its ability to balance overhead and fuzzing capabilities. However, little research
has focussed on supplying coverage-guided mutation-based fuzzers with meaningful
seed corpora to bootstrap the fuzzing campaign. Previous approaches to seed corpora
generation are not applicable in situations with limit resources and can’t be adopted to
fuzzers that don’t leverage inputs as seeds. Alleviating these shortcomings, we propose
a novel technique for quickly generating seed corpora for a fuzzer that uses seeds in
the form of sequences of bytes that control its generators. Moreover, we develop four
filtering techniques that minimize a set of inputs generated by a fast blackbox fuzzer and
transform these inputs into seeds. We evaluate our approach on four real-world programs
and report an increase in efficiency of discovering new failures and new coverage.



2 Introduction

In recent advances in software testing, fuzzing has emerged as a promising technique for
finding bugs, resource bottlenecks and other unwanted or unexpected program behaviour.
Fuzzing can be described as the process of randomly generating inputs to a program under
test (PUT), executing the PUT with these inputs, collecting execution information and
using this information to adapt the generation procedure for future inputs. In particular,
greybox fuzzing has attracted industrial and scientific attention because of its ability to
balance overhead and fuzzing capabilities. Greybox fuzzers apply lightweight techniques
to obtain execution information such as coverage to determine the ability of inputs to
trigger diverse behaviour in the PUT. Coverage is an approximate measurement of the
parts of the PUT that were executed by an input. A particularly successful technique
in the field of greybox fuzzing is mutation-based fuzzing that creates novel inputs by
applying mutations to previous inputs.

In this work, we want to focus on the recently proposed greybox fuzzer Zest [45]. Zest is
a mutation-based fuzzer, but also builds on top of ideas from the field of property-based
testing. Concretely, inputs in Zest are created by generators which base their decisions
on parameter sequences. Instead of mutating inputs directly, Zest mutates parameter
sequences that are then used by a generator to create inputs.

We want to improve Zest by supplying it with a seed corpus. Seed corpora form the
starting point of mutation-based fuzzers and contain a number of seeds. Seeds are used
as initial inputs for mutation. Most fuzzers can be initialized without seeds, in which
case they randomly generate first inputs out of thin air. However, in [52], [25] and [20]
researchers have established that a large seed corpus can increase the ability of a fuzzer
to cover diverse behaviour in the PUT and to uncover bugs. Moreover, they found that
a minimized seed corpus is the best choice for bootstrapping a mutation-based fuzzer.
Seed corpora minimization is the current state of the art for supplying a mutation-based
fuzzer with seeds. The approach gets a large initial set of inputs that is usually crawled
from the internet. Next, it tries to find a minimal subset of the initial set that maximizes
the coverage in the PUT. Prominently, afl-cmin is part of the highly successful mutation-
based greybox fuzzer AFL [67]. The tool executes every input in the initial set of inputs,
collects coverage for each input, and adds an input to the seed corpus if it revealed new
coverage. Other approaches have improved seed corpora minimization in different ways
(e.g. [52], [25] [26]), but its foundations remain the collection of an initial set of inputs,
the execution of the initial inputs to obtain coverage information and the minimization
using the coverage information.

Recently, Herrera et al. [26] conducted a survey on the use of seed corpora in current
fuzzing research. They found that a majority of fuzzing papers exclude information on
seed corpora, don’t explain the selection of the concrete corpus or start with empty or
manually crafted corpus. They further found that this may lead to results that are biased
based on the selection of the concrete corpus. We believe that the lack of examination
of seed corpora is caused by the little research on the topic and the infeasibility of seed
corpora minimization in some situations. Precisely, seed corpora minimization requires
a large set of inputs to be available in the first place. Such an initial set might not be



available or infeasible to obtain due to resource restrictions. Another limitation of seed
corpora minimization is that it requires the execution of each input in the initial set to
obtain coverage data. This process can be extremely time-consuming for large sets of
initial inputs. For our work, we want to supply Zest with an initial set of seeds. This task
reveals another shortcoming of previous work on seed corpora minimization. Specifically,
previous research focussed on seeds that are inputs to the PUT. However, Zest requires
seeds to be parameter sequences. We also need to mention that Zest itself does not
provide a procedure to create initial seeds (i.e. initial parameter sequences).

We tackle the problem of initial seed corpora from a new angle. Instead of minimizing
a set of initial inputs, we automatically generate an initial seed corpus. First, our
approach runs the quick blackbox fuzzer RLCheck [53] to obtain a large set of initial
inputs. Blackbox fuzzers are known to generate orders of magnitude more inputs than
greybox fuzzers like Zest in the same amount of time. Therefore, using RLCheck allows
us to create inputs quickly instead of crawling inputs from the internet. We should
note that RLCheck belongs to the same line of research as Zest, and thus also leverages
generators to create inputs. Nevertheless, RLCheck also operates on inputs instead of
parameter sequences. Therefore, we develop a technique to obtain parameter sequences
alongside inputs generated in RLCheck. We call this part of our approach transformation.
Transformation solves the issue of Zest requiring parameter sequences as seeds. We
now have a large set of parameter sequences that we could hand to Zest as its seeds.
However, previous research ([52], [25], [26]) suggests that minimizing the seed corpora
yields better results in fuzzing. Moreover, blackbox fuzzers like RLCheck exploit little
information on the execution of inputs, which leads to these fuzzers generating many
similar inputs. Therefore, we want to minimize the set of parameter sequences by filtering
them. Contrary to seed corpora minimization, we want to avoid the time-consuming
execution of the PUT with the seeds to collect coverage. Therefore, we exploit data
that we collect alongside the generation process of inputs in RLCheck to filter the set
of parameter sequences. We design four filtering techniques that exploit different data
collected in RLCheck’s generators.

In order to evaluate our new approach, we compare it against Zest without seeds on
four real-world programs that use two widely-used file formats (JavaScript and XML).
Moreover, we discover that our new approach can significantly increase Zest’s efficiency
of uncovering new bugs and new coverage. This observation suggests that our approach
is particularly useful when faced with limited resources for testing. However, we also
observe that our approach can’t significantly outperform Zest in terms of total coverage.
We explain this observation by considering that we don’t modify Zest’s fuzzing loop and
its internal mechanics, which enables Zest to find the same coverage as in our approach,
given enough time.

In short, we make the following contributions:

o We design and implement a method for constructing parameter sequences inside
the generators of RLCheck.

o We design and implement four methods for filtering parameter sequences based on
three different types of data collected from RLCheck’s generators.



o We evaluate our approach on a set of four real-world programs and determine if
our approach can improve the fuzzing capabilities of Zest.

In the following sections, we will present the background of our approach and name related
work (section , explain our approach in detail (section , present the experimental
setup and results of the evaluation of our approach (section [5)) , conclude our work and
discuss future work. (section [f).

3 Background and Related Work

3.1 Fuzzing

Fuzzing is a software testing technique that lately received a lot of scientific attention due
to its ability to consistently uncover faults in software. First described in 1990 by Miller
et al. [40], fuzzing has developed into an important testing technique applied on large
scale by big tech companies (e.g. [55]). The basic idea of fuzzing is to create random
inputs to a program under test (PUT), observe the execution of the PUT with these
inputs, and use the obtained information to construct new inputs. We do not aim to give
a full picture of the field of fuzzing, but rather give a broad overview. For a more detailed
view on the current state of the art of fuzzing, we refer to the recent survey [39]. Fuzzing
can be classified in many ways. Typically, fuzzing is classified by the amount and type of
information collected during execution (i.e. blackbox, greybox and whitebox fuzzing) or
the way how new inputs are generated (i.e. generation-based and mutation-based).

Blackbox Fuzzing Collecting minimal information about the execution of the PUT
is the main property of blackbox fuzzing (e.g. [28], [53], [27], [2], [54]). Typically,
blackbox fuzzers only observe if an input caused the PUT to crash. However, some
blackbox fuzzers exploit other sources of information to drive the fuzzing process. The
advantage of blackbox fuzzing is its ability to generate numerous inputs in a short period
of time. Blackbox fuzzers can often generate orders of magnitude more inputs than other
approaches, but suffers from its limited ability to exploit information about the execution
of the PUT. In other words, blackbox fuzzers can quickly generate many inputs, but the
quality of these inputs is often underwhelming, leading to the repeated execution of the
same parts of the PUT or getting stuck in error-handling code.

Whitebox Fuzzing Contrary to the little information exploited in blackbox fuzzing,
whitebox fuzzers leverage detailed and almost perfect knowledge about the execution of
the PUT. The aim of whitebox fuzzing is to trigger rare and hard-to-reach branches in
the PUT.

Symbolic execution (e.g. [18], [30], [23], [10], [7], [14], [9], [66]) is a prominent whitebox
fuzzing techniques. Symbolic executors collect path constraints along the execution path
of inputs. Path constraints are sets of logical expressions that describe conditions that
input variables have to satisfy to execute a certain path. By negating individual elements



in the path constraints, new paths can be discovered. This method can be used to
systematically exercise all paths in a PUT. However, real-world PUT’s often contain an
enormous amount of unique paths, leading to scalability issues and the path explosion
problem.

Another whitebox approach is taint analysis (e.g. [21], [64]), which aims to observe
memory segments that are influenced by input variables. Concretely, memory segments
that contain input variables are marked (i.e. they become tainted) and whenever data is
read from these segments and flows into other parts of the memory, those new parts are
marked as well. Additionally, taint analysis also collects the operations performed on
tainted memory segments. Using this information allows fuzzers to observer conditional
statements that are influenced by the input variables and change inputs variables to
alternate the outcome of these conditions. As with symbolic execution, this approach
suffers from scalability issues when applied to large PUT’s because of its heavy use of
program insights.

Overall, whitebox fuzzing can often effectively generate inputs that trigger diverse program
behaviour, but fail to scale to real-world applications because of the number of unique
paths.

Greybox Fuzzing Blackbox fuzzing and whitebox fuzzing offer their own advantages,
but both also suffer from different limitations. A highly successful trade-off between
exploitation of program insights and quickness in generating inputs is greybox fuzzing.
Greybox fuzzers (e.g [67], [6], [46], [45] [50], [15], [34], [35], [12], [62], [11], [51], [36]) owe
their success to their ability to balance fuzzing overhead and fuzzing capabilities. Usually,
greybox fuzzers collect less fine-grained execution information than whitebox fuzzers
while collection more sophisticated execution information than blackbox fuzzers.

A common approach in greybox fuzzing is to collect code coverage during execution.
Code coverage is an approximate representation of the parts of the PUT that are
executed. Collection of code coverage is carried out, through the use of instrumentation.
Instrumentation is a lightweight technique that inserts additional code into the PUT that
emits signals when specific parts of the PUT are executed. Depending on the instrumented
locations, different coverage measures can be extracted (e.g. branch coverage, function
coverage or basic block coverage). When a fuzzers leverages this coverage data to select
inputs for further fuzzing, the fuzzer is considered to be coverage-guided. Algorithm
shows an example of coverage-guided fuzzing that we will explain later on.

Generation-based Fuzzing and Mutation-based Fuzzing Generation of new inputs is
a key part of fuzzing, and fuzzers take different approaches to archive this.

Inputs in generation-based fuzzing are created using some input format specification.
Common approaches use generators (e.g. [53], [I7], [22], [45]) or grammars (e.g. [56], [61],
[24], [19], [28], [57], [36]) for the production of new inputs. Generators directly produce
inputs, while grammars are commonly passed to a procedure that generates inputs using
the production rules of the grammar.

Another approach that has been very popular in recent research is mutation-based fuzzing



(e.g. [67], [6], [11], [46], [50], [L5], [51], [34], [35], [12], [62]). The key idea is to apply
mutations to an existing input. Mutations are commonly applied to inputs that satisfied
some criteria. As an example, AFL [67] mutates inputs that previously increased
coverage. Common mutation operators include bit flips, insertion of specific predefined
bytes, random byte insertion or removal of bytes.

Hybrid Approaches Classifying fuzzer using the previously mentioned categories is not
always possible. Moreover, there are many hybrid approaches to fuzzing that combine
different ideas.

Fuzzers like Zest [45], LangFuzz [28] or Nautilus [8] combine mutation strategies with
generation-based ideas to create new inputs.

Another idea to hybridize different fuzzing approaches is to combine the ability of
whitebox fuzzers to explore all feasible paths with greybox fuzzing that can explore
diverse behaviour in the PUT more quickly (e.g. [60], [43]). Notably, Driller [58] tries to
combine the ability of symbolic execution to overcome strict token comparisons with the
ability to quickly explore a large area of the PUT possessed by many greybox fuzzers.
Moreover, Driller partitions the PUT into compartments that are separated by strict
token comparison. Inside compartments, Driller relies on a mutational greybox fuzzer to
quickly explore many paths. When the greybox fuzzer can’t increase coverage any more,
Driller switches to a symbolic executor to possibly overcome hard comparisons. Once
the symbolic executor archives new coverage, the fuzzers takes over again and so on.

Mutation-based Coverage-guided fuzzing In this work we want to improve Zest [45]
which is a coverage-guided fuzzer that incorporates both mutation- and generation-based
fuzzing. Therefore, we want to present how a coverage guided mutation-based fuzzer
works and present the generation-based part of Zest in section [3.3] Algorithm [I] presents
a conceptual overview of the coverage-guided mutation-based fuzzing approach. The
fuzzer gets a program that it should test as its input. This program is commonly called
"program under test" (PUT). Additionally, a set of initial inputs called seeds is handed to
the fuzzer. First, the fuzzer initializes a set of inputs that should be mutated favourably
by adding all seeds to the set (line 1). Inputs in this set are called interesting inputs.
Next, a set is initialized that should store the coverage that was emitted by all executed
inputs (line 2). Line 3 starts the process that is often called the fuzzing loop. The fuzzing
loop is executed until a stopping criterion is reached. Common stopping criterion are
timeouts or the first discovery of a bug in the PUT. Inside the fuzzing loop, a candidate
for mutation is selected from the set of interesting inputs (line 4). This selection is often
referred to as seed selection, and the procedure that schedules seed selection is known
as seed scheduling. In line 5 a so-called energy is assigned to the candidate according
to a power schedule. Power scheduling determines how many mutations are applied
to a candidate. Next, the candidate is mutated according to its energy (line 6) and
executed with the PUT to obtain coverage data and the result of the execution (line 7).
If the execution resulted in a failure, a failure handling routine is executed (line 8 and
9). Failure handling would typically save the failure’s stack trace and the corresponding



Algorithm 1 Mutation-based Coverage-guided Fuzzing

Input: P > P Program under test
Input: S > S Set of initial seeds
interestinglnputs < S > Set of inputs that should be mutated
totalCoverage < () > Current coverage of all executed inputs
while !stoppingCriterion do
candidate < Select(S)
energy < AssignEnergy(candidate)
mutant <— Mutate(energy, candidate)
coverage, result <— run(P, mutant)
if result == FAILURE then
handleFailure()
else if |totalCoverage U coverage | > | totalCoverage | then
interestingInputs < interestingInputs U {mutant}
totalCoverage < totalCoverage U coverage
13: end if
14: end while

— = =
o2

input that produced it, but can also perform approach-specific tasks. Lines 10,11 and
12 are responsible for handling coverage data. If an input archived novel coverage, it
is added to the list of interesting inputs and its coverage is added to the set of known
coverage. For our approach, we will not modify the core concept of the fuzzing loop, but
instead focus on supplying the fuzzing process with a set of seeds.

3.2 Boosting Fuzzing

As a popular subject of research, fuzzing has been improved by numerous ideas. In
this section, we will give an overview of existing improvements, focusing mainly on
coverage-guided mutation-based fuzzing. We note that every work presented in this
section is orthogonal to our new technique. Specifically, we focus on initial seeds, while
the approaches in this section improve other parts of the fuzzing loop.

Power Schedules and Seed Schedules In [I1] Bohme et al. present Entropic that
applies principles from the field of information theory to mutation-based greybox fuzzing.
Concretely, they measure the information gain that an input archives when it is executed
with the PUT. The information gain is then used to assign energy to inputs, which
assembles a new power schedule.

In AFLFast Bohme et al. [I2] modelled the power scheduling of coverage-guided mutation-
based greybox fuzzing as markov chains. Furthermore, they discovered that classic
mutation-based fuzzers like AFL [67] tend to generate inputs, trough mutation, that
continuously execute high density regions. To overcome this, they introduce a novel
power schedule. For a given input, energy is assigned that is inversely proportional to
the number of inputs that previously executed the path of the given input. Furthermore,



they also exponentially increase the amount of offspring from the input every time it is
selected for mutation.

In [63] Wang et al. designed multi-level coverage metrics that combine strengths of
differently coarse coverage metrics to select inputs for further mutations. They organize
inputs in a cluster tree that includes more fine-grained coverage measures in deeper levels
of the tree. Moreover, they interpret seed scheduling as traversing this cluster tree and
model the seed scheduling problem as a multi-armed bandit problem that they solve with
existing algorithms.

Cerebro [36] elaborates both on power schedules and seed schedules. First, Cerebro
proposes a novel multi-objective online algorithm for seed scheduling that uses coverage
and code complexity among other objectives. For power scheduling, Li et al. proposes
an approach that adaptively rates the potential of an input to uncover new coverage and
uses this potential as the criterion for power scheduling.

Mutation Strategies AFLSMART [50] is an approach that tries to improve the mutation
strategy of coverage-guided mutation-based fuzzing by enhancing it with information
on the expected file format of inputs. In order to make mutations structure-aware, they
exploit an input file format specification, which increases the probability of generating
valid inputs. Moreover, AFLSMART also defines a new wvalidity-based power schedule
that assigns more energy to inputs are likely to be more valid than others.

FairFuzz [34] focuses on biasing mutations to produce inputs that execute rare branches.
Whenever an input triggers a rare branch, the input is mutated at each possible location
to determine which mutations can be applied while still reaching the new rare branch.
This information is forged into mutation masks that restrict mutations. Using those
masks allows FairFuzz to focus on rare branches.

Superion [62] tries to overcome the grammar-blindness of mutation strategies. Concretely,
inputs are parsed into their abstract syntax trees (ASTs) which are then mutated.
Superion mutates ASTs by exchanging entire subtrees with subtrees present in other
inputs in the fuzzing queue.

Overcoming Hard Conditional Statements Angora [I5] extends branch coverage by
enriching it with contezt on (un)visited branches. Moreover, Angora keeps track of
unvisited branches and collects path constraints for these branches using scalable bit-level
taint tracking. The approach applies a search algorithm based on gradient-descent to
solve path constraint that they model as constrained functions.

VUzzer [51] leverages dynamic taint analysis to track bytes that flow into magic byte
comparisons to enable targeted mutation of those bytes. Furthermore, VUzzer also
incorporates a fitness function that weights inputs according to the basic blocks they
execute. The approach uses a static analyser to assign weights to basic blocks according
to the probability of reaching them, and assigns low weights to error handling code.
Matryoshka [16] identifies control flow dependent and taint flow dependent conditional
statements of a targeted conditional statement. Moreover, Chen et al. propose three
techniques to simultaneously fulfil all dependent conditional statements.



Steelix [35] tries to overcome magic byte comparisons without dynamic taint analysis or
symbolic execution. Moreover, Steelix first identifies interesting magic byte comparisons
(e.g. multiple byte magic bytes) in assembler code. Leveraging lightweight binary instru-
mentation and the information about interesting magic byte comparisons enables Steelix
to fuzz these comparisons. Furthermore, Steelix guides fuzzing by using comparison
progress and coverage. Comparison progress is the progress in satisfying magic byte
comparisons.

T-Fuzz [49] takes a different approach to overcome hard conditional statements. Con-
cretely, T-Fuzz removes hard conditional statements when the fuzzer can’t solve them
and continues with the transformed PUT (i.e. transformation fuzzing). This approach
will lead to false positives. Therefore, T-Fuzz leverages a symbolic execution-based
post-processing approach to eliminate false positives.

Other Boosting Techniques FuzzFactory [46] tries to make mutation-based coverage
guided fuzzing applicable to any domain. The technique allows testers to specify domain-
specific properties (i.e. waypoints) that interesting inputs should possess. Moreover,
FuzzFactory guides its fuzzing campaign using multiple waypoints and classical coverage
measures.

In [24] Godefroid et al. proposes a method for training a generative neuronal network
with inputs to learn an input grammar and generate novel inputs from the learned model.
Furthermore, the paper introduces the learn and fuzz-challenge for machine learning used
in fuzzing. This challenge represents the conflict between learning a good model while
also generating malformed inputs that may violate the model. They tackle this challenge
by allowing the model to generate tokens that does not correspond to the best learned
token at certain points in the generation process.

In [20] Fioraldi et al. improves the ability of fuzzers to detect failures that are dependent
on specific program states. Moreover, they represent the program states with likely
invariants learned from a corpus of inputs. These likely invariant describe common
relations between variables in the PUT and can be negated to reach new program states.

3.3 Zest and JQF

The target for our novel seed generation technique is the coverage-guided state-of-the-art
fuzzer Zest [45]. Zest is implemented in the fuzzing framework JQF [44] that enables
coverage guided fuzzing for Java programs. In this section we will present the concept
of Zest accompanied by its implementation in JQF. Zest is JQF’s default approach,
so distinguishing between the ideas behind Zest and the implementation in JQF is not
always possible. JQF is highly customizable and is already delivered with alternative
approaches to Zest (e.g. an AFL [67] implementation).

Zest inherits from two mayor lines of research, namely mutation-based coverage-guided
fuzzing and property-based testing. We already discussed mutation-based coverage-guided
fuzzing in section [3.1) but Zest takes a slightly different angle to this approach. Concep-
tually, Zest works in a loop consisting of a guidance generating parameter sequences, a
parametric generator consuming those sequences to produce inputs and a test runner
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executing inputs to create coverage data that is led back into the guidance. In the
following paragraphs, we will first describe the research line of property-based testing
and then describe the individual components in detail.

Property-based Testing Property-based testing (e.g. [48], [17], [37], [38], [33]) introduces
the idea to test for faults that don’t cause the PUT to crash. Classical testing will only
report a bug when the PUT crashes or fails to terminate. With this testing approach,
errors that don’t crash the PUT are not detectable. As an example, consider a simple
calculator implementation that produces a wrong result for additions if a specific value
is used as an operand. Such fault would not cause a crash of the calculator, but rather
terminate with a wrong result. Therefore, property-based testing defines properties to
find fault that have no classical indicators. Properties can be described as specifications
of expected input-output behaviour. That is, properties define a set of assumptions
and assertions. If an input fulfils all assumptions and fails to fulfil any assertion, it
is considered to violate a property and thus a fault is detected. To generate inputs,
property-based testing approaches utilize some kind of input format specification.The
input format specification can be a textual specification that is then used by some
procedure to generate inputs, or it could be an implemented unit that directly generates
inputs, such as QuickCheck’s [I7] generators. Using the input format specification allows
to automatically generate inputs, execute them with the PUT and check the properties.
Zest uses generators and also allows testing for properties.

As Zest uses both mutations and generators, it is both a mutation-based and a generation-
based fuzzer.

Parametric Generators Inspired by property-based testing approaches like QuickCheck
[5], Zest relies on generators to create novel inputs. The advantage of using generators is
that they have embedded information about the expected syntax of a specific file type,
which allows Zest to consistently generate syntactically valid inputs. This is particularly
useful when a PUT expects highly structured inputs like XML files. Generating completely
random inputs can hardly create any syntactically valid inputs for such structured formats.
Generators in QuickCheck use randomness to create inputs. Moreover, when a generator
has to make a choice, it requests bytes from a source of randomness to determine the choice.
The nondeterminism introduced by the use of randomness can create diverse inputs, but
also leads to many unusable or redundant inputs. To alleviate those shortcomings, Zest
introduces parametric generators that are deterministic and dependent on parameter
sequences. Specifically, parametric generators get a parameter sequence as their source
of randomness. Parameter sequences are sequences of bytes constructed in the Zest’s
guidance to enforce a specific sequence of choices in the generator. The authors of Zest
made the observation that mutating a byte in a parameter sequence and handing it to a
generator leads to a change in the input spice while maintaining syntactical validity. Using
this insight allows Zest to mutate parameter sequences and feed them into generators
that create syntactically valid inputs.
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Conversely, other state-of-the-art mutation-based fuzzers like AFL [67] or libFuzzer [6]
usually mutate inputs directly. Directly mutating input bytes leads to many invalid
inputs that only execute error-handling code and thus reduce the time to fuzz the core
program logic.

Generators in JQF get a SourceOfRandomness object as an input. This object does not
necessarily have to be a parameter sequence (e.g. it could just be a stream of random
bytes). Thus, other approaches can make different use of generators than Zest. To
modify the input generation, users can write own generators and also modify the way
generators make choices. As an example, RLCheck [53], a JQF extension, implements
new generators that make choices based on policies obtained through reinforcement
learning.

Property-based Tests and Test Runners JQF allows tester to specify own unit test in
the nature of property-based testing. Property-based testing in JQF is enabled through
the JUnit-quickcheck [5] extension of JUnit [4]. Tester can specify assumptions and asser-
tions to define properties inside test methods. We note that assumptions are commonly
used in PUT’s to ensure syntactic validity, meaning that users can extend existing validity
constraint by adding own assumptions. Additionally, tester can annotate test methods
with generators that should be used to automatically create inputs (e.g. parametric
generators for Zest). Generators used in test methods can be implemented by the tester,
selected from a range of generators provided by JQF, or automatically selected by JQF if
the test method is annotated with type instead of a generator. Coverage guided fuzzing
is enabled through instrumentation of the PUT. JQF builds its instrumentation on
top of the Java bytecode manipulation tool ASM [1]. By default, branch coverage is
collected. Branch coverage is obtained by instrumenting every point in the PUT where
the control flow can diverge. In other words, if two inputs execute two different branches
after a conditional statement, they have different branch coverage. After the PUT is
instrumented and the generator has created an input, JQF executes the PUT with the
input, collects coverage date and return this information to the fuzzing guidance.
Execution of the PUT is done using test runners provided by JUnit. Test runners will
emit execution results. When JUnit executes an input it can have three results: success,
failure or invalid. Success as the result means that JQF executed the PUT without
encountering an error and all assertion and assumptions were fulfilled. If the result is
invalid, then JQF detected a violation of an assumption. Lastly, a failure result means
that JQF encountered an unexpected error during execution (including violation of
assertions).

A general idea of Zest [44] is to split the program under test (PUT) into a syntactic
analysis stage and a semantic analysis stage. The syntactic analysis stage is where the
input is checked for syntactic validity. Zest targets the semantic analysis stage, where
the core program logic is situated. In the previous paragraph, we discussed how Zest
uses generators to create syntactically valid inputs. In reality, not all inputs generated
by a generator are considered syntactically valid. This invalidity has different reasons,
reaching from incorrect generators, PUT’s that don’t support all features of a given file
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format or a specific definition of validity inside the test methods. Zest therefore aims to
use validity information as an additional selection criterion for inputs for further fuzzing.
To archive this, Zest makes use of JQF’s property-based testing abilities. If an input fails
an assumption, it is considered to be invalid. Using this feedback allows Zest to prioritize
fuzzing valid inputs that exercise program logic.

Driving Fuzzing with Guidances Guidances are where the main fuzzing algorithm is
executed. They implement the majority of the fuzzing loop, including seed selection,
mutation and power scheduling. Guidances pass information to the generators and
process coverage data and execution results obtained from the test runners. Tester
can define their own guidances to add novel fuzzing algorithms to the JQF framework.
Concretely, JQF provides a guidance interface containing four methods that should be
implemented. Two of those methods are used to get data from the guidance that is used
to create new inputs. Moreover, this data could be parameter sequences as in Zest or,
alternatively, inputs to the PUT for fuzzing approaches that don’t use generators. The
other two methods in the guidance interface are used to receive execution data.

The fuzzing loop of Zest is a modified version of algorithm [I} Instead of interesting inputs,
Zest’s guidance maintains a queue of interesting parameter sequences. Therefore, the set
in line 1 of algorithm would be a set of parameter sequences. As Zest collects coverage
of valid inputs alongside all coverage, there is another set storing valid coverage like in
algorithm (1] line 2. Zest’s seed selection (i.e. line 4) iterates over the set of interesting
parameter sequences beginning with the first sequence added to the set. Power scheduling
(i.e. line 5) is completely random in Zest, meaning that a parameter sequence will receive
a random number of mutations. More concretely, energy is sampled from a geometric
distribution with a mean of four but no upper bound. A single mutation to the parameter
sequence (i.e. line 6 in algorithm [1]) is carried out by choosing a random length [ from the
same geometric distribution as used for the energy, choosing an offset k£ in the parameter
sequence, and replacing [ continuous bytes starting at the byte at the offset £ with
random bytes. This mutational step is applied multiple times according to the energy.
Next, in line 7 of algorithm [1| the PUT is executed with an input. However, Zest would
first pass the mutated parameter sequence to a parametric generator to obtain an input.
This input would then be executed to collect coverage data and the execution result.
Failure handling (i.e. lines 8 and 9 in algorithm (1)) is performed by saving the parameter
sequence that produced the failure. Coverage handling (i.e. lines 10-12) is also extended
by Zest. Concretely, Zest collects coverage archived by valid inputs alongside coverage
of all inputs. In addition to lines 10-12, Zest would also add the coverage archived by
a valid input to the set of valid coverage. Moreover, if an input increased the valid
coverage, its parameter sequence is added to the set of interesting parameter sequences.
We can summarize Zest’s guidance as a procedure that continuously selects a parameter
sequence that previously increased coverage or valid coverage, mutates the sequence by
applying random byte-level mutations, passing the parameter sequence to a parametric
generator to obtain an input, passing the input to a test runner that emits coverage data
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and execution results, and updating coverage, valid coverage and the set of interesting
parameter sequences using coverage and execution results.

Seeds in Zest JQF allows testers to initialize fuzzing campaigns with seeds files. Each
seed file contains a single initial input to the fuzzing loop inputs. Zest also supports the
initialization with seed files. Specifically, Zest considers every seed file as a sequence of
bytes that is uses as a parameter sequence. Thus, a tester can’t give Zest an input to
the PUT as a seed, but have to construct a parameter sequence representing the input.
This is a mayor limitation of Zest, as it restricts the availability of seeds. Moreover, Zest
neither provides a tool to generate parameter sequences for a given input nor comes with
a procedure to generate seeds quickly. Zest is usually run without seeds, and thus uses
the first minutes of its fuzzing campaign to create meaningful inputs that can execute
deep program logic. We try to improve this part of Zest by presenting a technique that
quickly and automatically generates parameter sequences that produce diverse inputs
and handing them to Zest.

Improvements to Zest In this section, we present approaches that elaborate on the
ideas proposed by Zest and also extend the JQF framework. These improvements are
orthogonal to our work.

In [42] Nguyen et al. classify choices inside Zest’s generators into those that are responsible
for values for input variables (i.e. value choices) and those that are responsible for the
generation of different structures (i.e. structure choices). Furthermore, they identify
parts of parameter sequences that flow into structure choices or value choices. Using
this information, they design structure-aware and structure-preserving mutations that
can be systematically applied to equally traverse the input space. They also record
parameter sequences responsible for new structures to enable the quick discovery of
diverse structures.

Another improvement to Zest is Confetti [32] that integrates symbolic execution into
Zest. Concretely, Confetti adds an independent thread to Zest that runs a symbolic
executor. However, the goal is not to replace Zest’s fuzzing loop, but instead to give Zest
hints at runtime. Confetti hands interesting parameter sequences, saved by Zest, to the
symbolic executor that uses taint tracking to obtain targeted hints. Targeted hints point
at concrete bytes in the parameter sequence that Zest should change to a specific value
to uncover new branches. Moreover, targeted hints can also be saved as global hints that
Zest can insert into a parameter sequence instead of applying a targeted hint or normal
mutation.

3.4 RLCheck

Another fuzzer extending the JQF [44] framework is RLCheck [53]. RLCheck is a blackbox
fuzzer utilizing reinforcement learning to quickly generate diverse and syntactically valid
inputs. As its blackbox classification suggests, RLCheck is not relying on execution insight
like coverage data. However, is uses information from inside its generators alongside the
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results of the execution to drive the generation. Specifically, RLCheck makes use of the
validity feedback provided by JQF to learn what makes up valid inputs.

Learning Choices for Generators In RLCheck, generators have two mayor concepts,
states and choices. Fach generator traverses trough different states by taking choices.
Concretely, the generators enters a new state after every choice. RLCheck tries to
base these choices on previous choices in the same state. This idea is realized with
reinforcement learning and a state abstraction function.

States traversed by a generator are captured in a state sequence. Generators for complex
file formats tend to traverse hundreds or thousands of states. Therefore, to efficiently
process these state sequences, RLCheck makes use of a state abstraction function to
compress the state sequence to a fixed size. Additionally, state sequences are combined
with their respective choices at each state to form choice sequences.

Reinforcement learning is used to learn a policy for supplying the generators with choices.
This process is based on Monte Carlo Control [59]. Whenever an input is executed, the
execution result, input values and choice sequences used for generation are recorded.
RLCheck assigns a fitness value to each state-choice pair in the choice sequence. High
fitness values are assigned to choice sequences that generate syntactically valid inputs
that also contain values never seen before (i.e. diverse values). Furthermore, when a
generator has to make a choice, it prefers a choice that has previously archived high
fitness values. This procedure tends to heavily exploit validity feedback, restricting
RLCheck to a set of choices that created valid inputs before. Thus, exploration is added
by occasional random generator choices to increase diversity of generated inputs.

RLCheck’s Implementation in JQF RLCheck implements new generators that contain
additional functionality to capture and exploit choice sequences. The generation process
is mostly the same as in Zest [45]. However, when a generator in Zest would request
bytes from its parameter sequence, RLCheck’s generator request a decision from a guide.
Guides represent the interface between generators and the reinforcement learners. A
generator creates multiple learner instances through the guide. Moreover, each type of
choice has its own learner (e.g. RLCheck has separate learners for choosing integers and
for choosing characters). Generators also forward fitness values, for the learners, through
the guide. RLCheck implements state abstraction functions by simply trimming choice
sequences to a fixed size of the last choices.

RLCheck also implements a new guidance. Contrary to Zest, the generators are directly
invoked inside the guidance and no mutation or seed selection is performed. That is
because Zest operates on parameter sequences that are handed to generators, while
RLCheck only reuses execution results (invalid, success or failure). Therefore, the
guidance forwards execution results to the generators and their learners to reward valid
inputs with diverse values. This process is repeated until the user-defined timeout is
reached.

JQF’s test execution is untouched by RLCheck and the validity feedback created by the
test runners is vital to RLCheck. However, RLCheck implements own property-based
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tests that are not annotated with generators as in Zest. More specifically, the novel
unit tests directly get inputs from the guidance, which itself gets the inputs from the
generators.

3.5 Initial Seeds

In 2014 Rebert et al. [52] suggested the importance of an initial seeds for covering large
parts of the program under test (PUT) by evaluating their novel family of Minset al-
gorithms for selecting an initial seed corpus from a large set of inputs. More recently,
Herrera et al. surveyed current research in the field of mutation-based greybox fuzzing in
regard to their use and discussion of initial seeds ([26]). They found that the majority of
fuzzing research either excludes information about their seed corpus, use a single seed, or
use no seeds at all. Moreover, they discovered that many of these research papers don’t
discuss the impact or motivation behind the choice of seeds. In addition, Herrera et al.
also confirmed the advantage of using a larger initial set of seeds for finding bugs and for
increasing coverage ([25], [26]). Furthermore, their results suggest that a minimized set
of seeds is optimal.

Seed Corpora Minimization The current state of the art for the selection of seed
corpora is seed corpora minimization (e.g. [25], [26], [52]).The idea behind seed corpora
minimization is to select a minimal subset of a large set of inputs that maximizes the
behaviour executed in the PUT. The large set of inputs is usually crawled from the
internet, and we will call the set initial set in this section.

Prominently, afl-cmin is a tool included in the highly successful mutation-based coverage-
guided greybox fuzzer AFL [67]. The tool takes an initial set, executes the PUT with
each input inside the set, and greedily selects those inputs that increase coverage. The
selected inputs form the seed corpora that is used as a starting point for fuzzing in AFL.
In [52] Rebert et al. formalize seed corpora minimization as an instance of the minimal
set cover problem (MSCP). The MSCP gets a set X and a finite list F' = {S4,...,S,}
of subsets of X such that every object in X is a member of at leats one S; € F. The
goal of MSCP is to find a minimal C' C F' such that every object in X is a member of
at least one 5; € C'. The minimal set C' is called minset. Rebert et al. also explain
the use of the weighted version of the MSCP (WMSCP) which additionally assigns a
weight to each S; € F' and tries to minimize these weights instead of the size of C. Both
the MSCP and WMSCP are known to be NP-hard. Therefore, Rebert et al. leverage
greedy polynomial-time approximation algorithms to solve both problems. In order to
incorporate (W)MSCP with seed corpora minimization, they extract the set of coverage
archived by each input in the initial set. Moreover, they use the union of all individual
coverage sets (i.e. the coverage archived by a single input from the initial set) as the
superset X in (W)MSCP and all individual coverage sets as the finite list of subsets.
Afterwards, they apply an approximation algorithm to solve the (W)MSCP. They call
their MSCP and WMSCP algorithms unweighted Minset and weighted Minset. For
weighted Minset they use execution time of the input and file size of the input as weights,
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resulting in time Minset and size Minset respectively. Their experiments suggest that
the unweighted Minset algorithm performs best. Moreover, they find that seed corpora
minimization is important to cover large parts of the PUT, by showing an advantage of
a minimized seed corpus over using all inputs in the initial set.

Herrera et al.[25] has elaborated on the idea of formalizing seed corpora minimization
as an instance of the (weighted) minimal set cover problem ((W)MSCP) to minimize a
seed corpus (as in [52]). Their new approach is MoonLight that builds a matrix from
the initial set. Inside this matrix, each row is an input whereas each column represent a
single coverage measurement. In other words, the value in row ¢ and column j of the
matrix represents if the i-th input emitted the j-th coverage measure when executed with
the PUT. MoonLight solves the MSCP by applying dynamic programming with a set
of rules to continuously remove rows and columns from the matrix and select inputs
as seeds in the process. They design a set separate set of rules for the WMSCP. This
approach is still producing no optimal solution to the (W)MSCP, as it applies heuristic
rules when no other rule can be applied.

More recently, Herrera et al. have proposed OPTIMIN [26] that can generate an optimal
solution to the seed corpora minimization problem. OPTIMIN archives this optimal
solution by representing seed corpora minimization as an instance of the maximum
satisfiability problem (MAXSAT). MAXSAT gets a list of boolean formulas divided into
soft constraints and hard constraints. The task in MAXSAT is to satisfy all hard con-
straints and to maximize the total number (or weighted total) of satisfied soft constraints.
OPTIMIN formalizes each coverage measurement as a hard constraint. Additionally, for
each input in the initial set, the removal of that input from the seed corpus is formalized
as a soft constraint. In other words, to solve this instance of MAXSAT each coverage
measurement has to be in the minimized seed corpora (i.e. satisfy all hard constraint)
and a maximum number of input should be dropped from the seed corpus (i.e. satisfy the
maximum amount of soft constraints). To solve the MAXSAT, Herrera et al. leverage an
existing MAXSAT-solver.

Seed corpora minimization requires a set of inputs to be available. However, a set of
inputs might not be available due to undocumented input file formats. This issue was
reported in [25] for some of their benchmarks. Additionally, collecting the initial set
(e.g. by crawling inputs from the internet) requires manual effort and might not be
feasible because of limited time or other restrictions. Another limitation of seed corpora
minimization is that it requires execution of the instrumented PUT to obtain coverage
data. Collecting coverage for every input in a large initial set is time-consuming, wasting
resources that could be used for fuzzing instead. Our approach tries to alleviate those
limitations by not relying on the availability of an initial set of inputs. Moreover, we
generate a large initial set using a quick blackbox fuzzer. Instead of collecting coverage
to minimize the seed corpus, we exploit data collected during the generation of inputs to
filter them. Additionally, we free the user from any manual involvement by automating
the entire process.
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Other Approaches Skyfire [61] tries to generate a diverse, rare and valid seed corpora.
Moreover, the approach takes as inputs a context-free grammar and an initial seed corpus.
Next, Skyfire combines the initial corpus with the grammar to create a probabilistic
context-sensitive grammar. This novel grammar consists of rules enriched with contexts
and probabilities according to their usage in the given corpus. Skyfire then exploits this
grammar to heuristically generate rare and size-restricted inputs. Those inputs are then
executed with the PUT and coverage is collected. Next, coverage information is used
to filter coverage-redundant inputs. In a last step, Skyfire mutates the filtered inputs
by exchanging entire subtrees in their abstract syntax trees with subtrees derived from
the same non-terminal symbols. Skyfire is restricted by the availability of initial inputs
and a production grammar. Contrary, our new approach does not require any inputs or
grammars. Skyfire generates new inputs, which is a shared property with our approach.
However, we leverage generators to create inputs, while Skyfire uses a grammar. Contrary
to our approach, Skyfire requires the execution of inputs to obtain coverage data.
Similar to Skyfire, MoonShine [47] requires additional data for seed generation. MoonShine
is a greybox fuzzer targeting operating system interfaces. Inputs to such interfaces are
sequences of system calls. The challenge in fuzzing interfaces for operating systems is
that system calls have dependencies that have to be fulfilled in order for the system calls
to work (e.g. a read-call requires the previous opening of an input file descriptor in read
mode). Moonshine tries to generate seeds that already satisfy these dependencies by
collecting a large set of real-world system call traces, greedily choosing system calls that
increase coverage inside the operating system interface, and using lightweight analysis to
determine dependencies using the extracted system call traces. Our approach is hardly
comparable to MoonShine as we target Java PUT’s while MoonShine targets interfaces
of operating systems. Similar to the other approaches, MoonShine relies on the collection
of initial data for seed corpora creation. Contrary, we avoid collecting initial data and
rely on generators to create inputs.

Another approach for dealing with initial seeds is seedless fuzzing (SLF) [65]. The
motivation behind SLF is the potential unavailability of initial seeds. SLF tries to
generate seeds alongside regular coverage-guided mutation-based fuzzing (i.e. they use
AFL [67]). Tt starts with an input consisting of four random bytes and fuzzes regularly
until a validity check in the PUT fails. When a validity checks fails, SLF tries pre-defined
mutation- and search strategies to identify which bytes of the input influence the validity
check. These bytes are grouped into a field. Next, SLF applies other mutation- and
search strategies to classify the failed validity check. Equipped with the knowledge about
the type of the validity check and the fields influencing it, SLF determines interdepended
validity checks. Interdependent validity checks are previously resolved checks that depend
on the same fields as the current check. Lastly, SLF applies a multi-goal search algorithm
to satisfy all interdependent validity checks and create a new valid seed. Contrary to our
approach, SLF works concurrent with the fuzzing campaign. SLF tries to ensure validity
of seeds by solving validity checks. However, this approach is limited by the classification
of validity checks. In particular, the authors note that SLF is currently unable to deal
with one type of validity check. When detecting this particular validity check, SLF would
return to normal fuzzing. Contrary, our technique leverages the power of generators to
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create valid inputs with RLCheck [53]. Moreover, RLCheck’s reinforcement learning is
tuned to prioritize valid inputs. However, our approach shares the motivation of not
relying on the availability of initial inputs with SLF.

Motivation of our new Approach Previous research in regard to seed corpora has
focussed on coverage-guided mutation-based fuzzing that requires seeds to be inputs to
the PUT. For Zest [45], an approach that requires seeds to be parameter sequences, this
previous research is not applicable. However, Zest is a promising technique that also
incorporates coverage-guided mutation-based ideas. Therefore, the results of [52], [25]
and [26] that a minimized seed corpus is optimal for uncovering bugs and increasing
coverage in the PUT should also apply to Zest. To apply these insights to Zest, we design
a novel seed corpora generation approach that is able to quickly supply Zest with a set
of seeds.

Except for SLF [65], all previous approaches for seed corpora generation require the
availability of an initial set of inputs. We argue that such a set might not be available,
or its acquisition might be infeasible due to resource restrictions or undocumented file
types. To alleviate those shortcomings, we leverage the blackbox fuzzer RLCheck top
quickly generate a large set of inputs. Additionally, due to RLCheck’s focus on validity
and we obtain a set of mostly valid inputs.

Reducing the size of an initial set of inputs is a common task in previous approaches.
Furthermore, previous research tries to reduce the size of the initial set by executing
each input, collecting coverage and selecting a minimal set of inputs that maximizes
the coverage in the PUT. We argue that execution of each input is a time-consuming
task for large initial sets. Therefore, we propose an approach that filters the set of
inputs, obtained by RLCheck, by exploiting different information collected during the
generation of these inputs. It is important to note that we also execute the PUT during
the generation of inputs with RLCheck. However, RLCheck does not capture coverage
during execution, which enables RLCheck to execute orders of magnitude more input
than approaches executing an instrumented PUT (to capture coverage).

3.6 Adaptive Random Testing

Adaptive random testing (ART) is an extension to classical random testing (RT) that tries
to randomly select meaningful test cases to a PUT from the entire input space. Contrary
to RT, ART tries to distribute the selected test cases so that the entire input space is
equally covered. There are many ART approaches that leverage different definitions of
similarity or distance between test cases. For more details, we refer to the recent survey
[29] on ART.

Our approach aims to filter seeds so that they trigger diverse behaviour in the PUT, which
represents a similar task to distributing test cases like ART tries to do. A key difference
is that we filter a preselected set of inputs (i.e. the inputs RLCheck generated) instead of
selecting them from the entire input space. Moreover, we don’t directly filter inputs, but
rather use other information for filtering (more details in section [4.2)). Another difference
is that we don’t want to execute the PUT for filtering, while many ART approaches
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Figure 1: Conceptual overview of our approach.

involve executions. Although there are many differences between ART and our approach,
both share the goal to select dissimilar inputs from a larger set. Therefore, for two of our
four filtering techniques, we borrow the select-test-from-candidates strategy from ART.
Select-test-from-candidates strategy is a simple ART technique that relies on the definition
of a similarity measure and does not require the execution of the PUT. The approach
continuously chooses a random set of inputs from the input space (in our case the set of
inputs obtained from RLCheck) called candidate set. Next, a candidate is chosen from
the candidate set that minimizes the similarity measure. In other words, the chosen
input has a minimal similarity to all previously chosen inputs. We describe our usage of
these techniques and the selected similarity measures in section [4.2]

4 Our Approach

Figure [I] depicts an overview of our approach to seed corpora generation. We first run
RLCheck [53] and its generators, obtaining inputs and additional filtering information.
Afterwards, we transform inputs into parameter sequences and filter them, potentially
using additional filtering information. When the filtering process is finished, parameter
sequences are written to seed files that are used by Zest [45] to start its fuzzing campaign.
Our approach consists of two mayor parts that we will describe in this section. First,
the transformation is where we construct parameter sequences usable as seeds for Zest.
More specifically, we transform inputs generated in RLCheck into parameter sequences
that would produce the same input when given to a parametric generator in Zest. The
second part is the filtering of inputs generated by RLCheck to reduce the number of seeds
handed to Zest. Additionally, we will show how we integrated those two parts into the
existing RLCheck implementation. In the following three sections we present details on
the transformation and our new generators (section [4.1), filtering techniques (section
and the integration of both parts in the existing implementation of RLCheck (section

13).
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4.1 Transformation

Transformation is the part where we construct parameter sequences usable as seeds for
Zest [45], which is crucial to our approach. In figure [1| we indicate that transformation
is carried out after RLCheck is finished with generating inputs. However, we want to
construct these parameter sequences alongside the generation of inputs in RLCheck [53].
We argue that constructing parameter sequences alongside the inputs saves computational
resources. Concretely, at a given state of a generator, all possible information about the
recently generated part of the input are available. Constructing the parameter sequence
after the generation of the input is finished would essentially restore all of this information
again and thus waste resources in comparison to constructing the sequences alongside
the generation process. Moreover, RLCheck generators are similar to their counterparts
in Zest, which also eases on the fly construction of parameter sequences.

Interface for new Generators To allow construction of parameter sequences and
collection of filtering data, we extended RLCheck’s generators. Furthermore, we created
a novel interface for our new generators that extend the interface for RLCheck generators.
The interface mainly supplies functionality for transmitting information to and from
the generators. On the incoming side, generators get instructions on which information
they should store for filtering. Parameter sequences are always saved. In the outgoing
direction, generators supply parameter sequences and additional filtering information
through the interface.

Generators Implementing the generators can be described as extending RLCheck’s
generators to emit parameter sequences that enforce a similar control flow through Zest’s
generators. Although RLCheck’s generators are similar to Zest’s, this work was not
trivial and posed many challenges that we will discuss in this section. First, recall that
whenever a generator in Zest has to make a decision, it reads bytes from a parameter
sequence to decide on the next generation step. Thus, for every input generated in
a RLCheck generator, we need to construct a parameter sequence that guides Zest’s
generator to create the same input. Our approach to this problem is to find each read
from a parameter sequence in Zest’s generators and identify the context of the read (i.e.
what is generated using the obtained bytes). Next, we look at RLCheck’s generator for
the same file type and find the part of the generator that has the same context (i.e. the
part that generates the same part of an input). Then, we determine how many bytes

Zest’s generator reads and how they are used. Finally, using the information about
context and usage of bytes, we extend RLCheck’s generator to construct a parameter
sequence that enforces the same generational behaviour in Zest’s generator than the
behaviour in RLCheck’s generator. To illustrate how we realized this, we will discuss an
example.

Figure [2| shows a function inside Zest’s JavaScript generator that is responsible for gen-
erating identifiers for functions and variables. The function gets a SourceOfRandomness
object as a parameter (line 1). In particular, that SourceOfRandomness is an object that
reads bytes from a parameter sequence. The generator keeps track of already generated
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private String generateldentNode(SourceOfRandomness random) {
String identifier;
if (identifiers.isEmpty() || (identifiers.size() < MAX_IDENTIFIERS &&

< random.nextBoolean())) {

identifier = random.nextChar('a', (char) 123) + " " +
« identifiers.size();
} else {

identifier = random.choose(identifiers);

return identifier;

Figure 2: Function to generate a JavaScript identifier in Zest’s generator.

protected String generateldentNode(String[] stateArr) {
stateArr = updateState(stateArr, "node=ident");
if (identifiers.isEmpty()){
return generateldentifier(stateArr);
} else if (identifiers.size() < MAX_IDENTIFIERS) {
if ((Boolean) guide.select(stateArr, boolId)){
ParameterSequenceUtils.appendBoolean(true,parameterSequence) ;
return generateldentifier(stateArr);

} else {
ParameterSequenceUtils.appendBoolean(false, parameterSequence);

return chooseldentifier(stateArr);

}
} else {
return chooseldentifier(stateArr);

Figure 3: Function to generate a JavaScript identifier in our new generator.

identifiers using the "identifiers" container that we will assume to be a list for simplicity
(in reality it is a linked hash set). A new identifier is generated if no identifier has been
generated so far (lines 3-4). Additionally, if the number of identifiers already generated
is lower than the maximum number of allowed identifiers and a byte representing "true"
is read from the parameter sequence, a new identifier is created (lines 3-4). If none of
these conditions are true, an existing identifier is selected (lines 5-6). Boolean values
are determined using a single byte read from the parameter sequence (line 3). When
an existing identifier is chosen (line 6), four bytes representing an integer are read from
the parameter sequence to determine an index. Moreover, when a new identifier is
generated (line 4), four bytes are read from the parameter sequence to generate a single
character (the identifier is made unique through the concatenation of the current size of
"identifiers"). Overall, there are three occasions where the generator could read bytes
from the parameter sequence (lines 3,4,6). Concertizing our previous explanations, we
can derive the following four distinct behaviours and respective reads from the parameter
sequence in the function in figure [2}

case 1: "identifiers" is empty — four bytes read from the parameter sequence in line 4 for

a character
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case 2: "identifiers" has more entries than the maximum allowed number of entries —
four bytes read from the parameter sequence in line 6 for an index (the read for a
boolean value in line 3 does not happen because of the evaluation order of logical
expressions in Java)

case 3: "identifiers" has less or equally many entries then the maximum allowed number of
entries and a read from the parameter sequence represents the value "true" — one
byte read in line 3 for a boolean value and four bytes read in line 4 for a character

case 4: "identifiers" has less or equally many entries then the maximum allowed number of
entries and a read from the parameter sequence represents the value "false" — one
byte read in line 3 for a boolean value and four bytes read in line 6 for an index

Remember that our goal is to enforce the generation of a specific input. To archive this,
we need to control which bytes are read at a given state in the generator. Constructing
bytes that represent a boolean value (for line 3) is archived by either creating a byte
representing the value 0 for "false" or by creating any other byte for "true". Indices (for
line 6) are generated by reading four bytes from the parameter sequence, interpreting
them as an integer and possibly bringing the integer in the correct range by applying a
modulo operation with the current size of "identifiers". Therefore, bytes for an index can
be constructed by simply using the bytes that make up the index. Characters (for line 4)
are a bit different. Zest applies JQF’s FastSourceOfRandomness Object that aims to
randomly generate certain objects fast but with less statistical guarantees than classical
random number generators. In particular, an integer is read from the parameter sequence
and some quick calculations are performed with it to create the character. To construct
the four bytes to generate a particular character, we had to reverse those calculations
to derive the integer that can be read from the parameter sequence. Constructing the
bytes for boolean values, characters and indices is rather easy. The real challenge is to
determine which bytes need to be present in a parameter sequence to strictly enforce a
particular behaviour in the generator. Specifically, the required bytes are dependent on
the state of the generator. For example, the read of a boolean value on line 4 depends on
the size of "identifiers" (i.e. the read only happens if "identifiers" is not empty and has
fewer entries than the maximal allowed number of entries).

Figure [3| shows the function in our new JavaScript generator that is also responsible for
generating identifiers. Moreover, the function is constructing parameter sequences on
the fly to enforce equivalent generational behaviour in the function in figure [2 First,
the function gets an array of strings as an input and appends the string that signals the
generation of an identifier (figure [3|line 1-2). This array is the current choice sequence of
RLCheck (see section 3| for details) and the processing and updating of choice sequences
is left untouched by our approach. As in RLCheck, our generators take choices based on
previously learned choice sequences (i.e. RLCheck’s reinforcement learning). Therefore,
our generator and has to update and propagate choice sequences through the generation
process to allow RLCheck to learn its choice policies. In lines 8,11 and 14 in figure
functions for either generating or choosing an identifier are called. These functions
append the bytes for indices or characters to the parameter sequence as we described
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above, they also update the current choice sequence. We omit the implementation of
these functions. Instead, we focus on how we construct parameter sequences to reflect
the behaviour required for the cases [I] to [4]

Case[l]is handled in figure 3| lines 3-4 where "identifiers" is checked for emptiness. If that’s
the case, only four bytes representing a character are appended to the parameter sequence.
We should mention that it is crucial that no more bytes are appended. Moreover, if
"identifiers" is empty and the function in figure [2| is called, then only four bytes are read
(i.e. for a character). If we would still add more bytes to the parameter sequence it would
be read in a different component of the generator causing a deviation from the desired
flow through the generator.

Cases |3 and [4] are both handled in lines 5-12. First, it is checked if the number of already
generated identifiers is less than the limit (line 5). Only if this is true, line 6 is entered.
This step is crucial since the function in figure 2] only reads a byte for a boolean value on
line 3 if "identifiers" has fewer entries than the limit. Furthermore, in line 6 in figure [3]
RLCheck’s guide is asked to emit a boolean value which corresponds to the read from a
parameter sequence in line 3 in figure 2] The guide’s answer is then appended to the
parameter sequence (lines 7,10 figure |3| and an identifier is either generated or chosen
(lines 8,11). Specifically, in both cases, the corresponding bytes for either a character or
an index are appended to the parameter sequence.

Finally, case [2| is handled in lines 13 and 14. In this case, only bytes for an index are
appended to the parameter sequence. Notably, we don’t append a byte for a boolean
value for the if condition in figure |2, That is, because case |2l implicates that identifiers has
more entries than the limit. Therefore, the conjunction is falsified by its first component
and the second component (i.e. read from the parameter sequence for a boolean value) is
never evaluated.

Correctness of Parameter Sequences The core challenge of the example we presented
above is to analyse the nested if-else conditions to derive a counterpart in our new generator
that can reliability append the correct bytes to the parameter sequence. Analysing
nested conditional statements that incorporate reads from parameter sequences in Zest’s
generators proved to be an error-prone and tedious task. Furthermore, we want to
emphasize again that any incorrectly appended byte in a parameter sequence can lead
to a completely different behaviour in Zest’s generators. To undermine this, we present
another example. Consider the functions in figures [2| and [3] and suppose a generator state
where "identifiers" has reached its limit. Thus, the first component of the conjunction
in figure [2| line 3 would be false. According to our implementation in figure [3| we would
only append one index to the parameter sequence in line 14. Let’s say the chosen index
is 42 resulting in the parameter sequence (...,42,...). To clarify, for readability we
present the integer value of the index inside the sequence, in reality it would be four
bytes representing an integer. Additionally, we indicate that the parameter sequence
may have more bytes added by other functions (i.e. with "..."). Now consider a small
change to our implementation in figure [3 regarding case [2 Precisely, we assume that
we ignore the evaluation order of logical expressions and thus add a boolean value to
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the parameter sequence even if "identifiers" has reached its limit. Let’s also assume that
we would add "false" and that the addition to the parameter sequence would happen
before line 14 in figure 3l According to those assumptions, we would get the parameter
sequence (..., false,42,...). We should also mention that in reality, a boolean value is
represented by a single byte in parameter sequences. Now let’s have a look how this
parameter sequence would be used in the function in figure [2| for the generation of one
identifier. First, since "identifiers" has maximal entries, the conditional statement in
line 3 would be false, leading us to line 5 without a read from the parameter sequence.
Afterwards, in line 6 four bytes would be read from the parameter sequence to choose an
index. Concretely, the single byte representing "false" would be read alongside three bytes
from the index of 42, leaving one byte of this index unread. This will lead to an index
that is different from 42 and might dramatically change the semantic of the resulting
JavaScript code. Even more problematic is that there is on byte left in the sequence
that will be used somewhere else in Zest’s generator. This byte was only supposed to
be used in generation of identifiers. Instead, it could now be incorrectly read to decide
on the structure of the following JavaScript code. Additionally, this single incorrectly
appended byte shifts every following byte in the parameter sequence by one. Thus, this
shift affects the generation of every following part in the generation of the JavaScript
code. Moreover, it is highly likely that multiple identifiers are chosen following case
and thus many more bytes are incorrectly injected in the parameter sequence. Judging
from our experience, even one incorrectly appended byte leads to a completely different
input generated in Zest’s generator to the actual result of our generator.

Adapting Generators Looking at the two example above, it becomes obvious that in
order to create the parameter sequences, we need our new generator to be similar to the
generator used by Zest. We extended the generators of RLCheck as describe in our first
example. Although the RLCheck generators are clearly derivatives from Zest’s generators,
we still had to assign a lot of effort to bring both generators in line with each other. A
simple example for the adaptation is the "MAX_ INDETIFIERS" value in figures [3| and
[2l This value has to be the same in our new generator as in Zest’s generator to correctly
construct parameter sequences. An observation we made during implementation is that
generators themselves had logical errors. Those errors were sometimes shared between
both generators, while sometimes being exclusive to one generator. An example for this
is line 4 in figure 2l where a character is generated. In this example, we had to change the
right border to "(char) 123)" that was previously just "z". We had to change that because
the right border of the "nextChar" function is exclusive, meaning that the generator was
not able to generate the character "z". On the other hand, RLCheck’s generator was
able to generate the character 'z". Without fixing the function in figure [2] it would have
generated the character "a" whenever RLCheck generated "z". Such divergent identifiers
can lead to semantically different JavaScript code, especially considering that the method
can generate identifiers for functions. We made the observation that ranges of allowed
values were particularly error-prone in both generators. In particular, upper value bounds
imposed the most problems due to their (non-)exclusiveness.
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We already discussed how bytes for boolean values, integers and characters can be
constructed, which represent almost all possible data types constructed using bytes from
parameter sequences. The last type are strings (i.e. sequences of characters) that proved
to require additional adaptation of the generators. Specifically, Zest’s generators created
strings by first sampling the length of the string from a geometric distribution and
afterward generating individual characters. The problem with this approach is the length
of the string being generated by applying floating point number arithmetic to four bytes
read from the parameter sequence. This process is subject to a loss of precision, which
makes it impossible to accurately generate a parameter sequence to enforce a specific
string length. This is a great problem for our approach, since an imprecise length implies
an imprecise number of reads from the parameter sequence to generate the individual
characters. We already described the problems with appending an incorrect number
of bytes in our second example. According to these observations, we simplified the
generation of Strings in Zest to read the length of a string from four bytes, representing
an integer. Moreover, we also modified the way characters are generated for those strings.
Each character in a string is generated by reading a single byte from the parameter
sequence and directly interpreting it as a character. Furthermore, when constructing
a parameter sequences for string generation, it will contain four bytes containing the
length of the string followed by a number of bytes each representing a character. We
should mention that we did not change the process of generating character for identifier
as in figure 2] line 4.

4.2 Filtering Techniques

Now that we have described how we generate parameter sequence, we will describe the
filtering process. To motivate this part, we can take a look at the numbers of inputs
generated by RLCheck [53] and Zest [45]. As an example, in our evaluation of the Rhino
benchmark our RLCheck-based generators generates around 70000 inputs in one minute
while Zest generates around 700 inputs in the same amount of time. Additionally, in
one hour of fuzzing Zest can generate around 150000 inputs. So if we were to hand
every parameter sequence created in our generator to Zest for a campaign that runs
for one hour, it would spent roughly half of its resources on fuzzing the seeds. This
would hinder Zest’s ability to discover deep program states. Moreover, the authors of
RLCheck described that their approach is too exploitative of valid inputs. Thus, our
RLCheck-based generators will generate many similar inputs. To alleviate those problems,
we want to minimize the set of inputs and their respective parameter sequences produced
by our generators. Currently used techniques like afl-cmin [67] would execute the PUT
with all seeds to determine which seeds can be dropped from the seed corpora. This
process is time-consuming and ignores information that we can easily extract from the
generation process. Specifically, our generators already emit parameter sequences that
have embedded information about the generation process. Additionally, we can extract
the choice sequences that RLCheck uses to learn its choice policies. Another idea that
we want to apply is that we can instrument our generator instead of the PUT to reason
about coverage gains inside the generator. Using this data allows us to define quick
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filtering techniques that don’t need to execute the PUT with the seeds. In short, our
filtering techniques get all parameter sequences created inside our new generators, filter
them using different sources of information and write a set of parameter sequence to seed
files. In this section, we will describe how we extract and exploit different sources of
data inside the generation process of inputs. Specifically, we describe how we filter seed
corpora, resulting in a small set of seeds. Three out of four filtering techniques require
the specification of the amount of seeds that the filtering technique should emit, we will
call this parameter output size from now on.

Random Filtering Random filtering will be the baseline for our filtering techniques. It
randomly selects parameter sequences until the output size is reached. Although this
approach is simple, it still may be able to deliver solid result. That is, the unfiltered seeds
corpora will contain many similar inputs. If we consider similar inputs to form clusters,
random filtering with the right output size might be able to select only a few inputs
each a cluster. Furthermore, this technique does not require any expensive computations,
which might give it a time advantage over the other approaches.

Parameter Sequence Filtering Parameter sequences are always emitted by our gener-
ators because they are required as seeds for Zest [44]. Additionally, parameter sequences
contain information about the flow through the generator that created them. Parameter
sequence filtering tries to leverage this information to determine whether two inputs are
similar. So instead of comparing inputs directly, we will compare parameter sequences
created alongside the inputs.

Algorithm [2] shows pseudocode for parameter sequence filtering. The technique receives
a set of parameter sequences as its input. First, it chooses a first parameter sequence
randomly and saves it to the output set (lines 1-3). Next, until the desired output size
is reached a candidate set is randomly selected from all given parameter sequences, a
candidate that has minimal similarity to the currently selected parameter sequences is
chosen and added to the output set (lines 4-7). This procedure is an implementation of
the select-test-from-candidates strategy explained in section [3.6]

The computation of similarity is show in the procedure starting at line 11. It takes a
single candidate and the set of already selected parameter sequences. Intuitively, we
compute similarity as a form of prefix matching in parameter sequences. The key idea is
that an equal prefix in a parameter sequence represents an equal flow through a generator.
Thus, a long matching prefix implies that both parameter sequences were generated
similarly. When computing similarity, we loop over all inputs in the set of already
selected parameter sequences to compute the similarity with the candidate (line 13). The
similarity between the candidate and single parameter sequence is initialized to zero and
incremented for each matching byte (lines 12-20). A different byte implies a divergence
in the control flow through the generators. But this also has exceptions. Concretely,
similar to the idea of value choices in [42], a number of diverging bytes in the parameter
sequence may be used to make a choice that does not influence the structure of an input.
For example, two diverging sequences of four bytes used to choose an integer that is
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Algorithm 2 Parameter Sequence Filtering

Input: S > &S initial unfiltered set of parameter sequences
Output: O > O filtered set of parameter sequences

1. O« 0

2: choose c¢; randomly from &

3: O+ 00U {Cl}

4: while |O| < output__size do

5: randomly choose candidate set C from S

6: select ¢ = arg min.ec compute ParaSeqSimilarity(c, O)
7 O+ 0u {Cmm}

8: end while

9: return O

10:

11: procedure computeParaSeqSimilarity(c, O)

12: totalSimilarity < 0

13: for p € O do

14: similarity < 0

15: minLength <— min(|p|, |c|)

16: 1+ 0

17: while i < minLength do

18: if p[i] == c[i] then

19: similarity < similarity + 1

20: 1 1+1

21: else if p[i + 1] == ¢[i + 1] then

22: similarity < similarity + 0.5

23: 141+ 2

24: else if p[i + 4] == ¢[i + 4] then

25: similarity <— similarity + 2

26: 14 1+5

27 else

28: break

29: end if
30: end while
31: totalSimilarity <— totalSimilarity + S”mf%”y
32: end for
33: return totalSimilarity

34: end procedure

assigned to an identifier will probably not influence the semantics of the resulting inputs.
Inspired by this observation, we extended the prefix matching to allow inequalities under
certain conditions. In particular, if we encounter an unequal byte at index ¢ we check
the bytes at positions i + 1 and i + 4 for equality (algorithm [2| lines 21, 24). If any of
those bytes are equal, we continue regular prefix matching behind these new matching
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indexes (lines 21-26). Additionally, if bytes were skipped, we increase the similarity by
0.5 or 2 for one or four skipped bytes respectively (lines 22, 25). The idea here is that
parameter sequence that differ in a value choice and continue equal afterwards are still
similar, but less similar than two sequences sharing the same values. This exception to
prefix matching may lead to false positives, but we argue that if the control flow of the
generator diverged, then following bytes will be highly likely to differ shortly after the
divergence. The similarities of the candidate and each parameter sequence is divided
by the size of the candidate for normalization and all similarities are summed up to get
the total similarity (line 31). The candidate with the least such total similarity is then
selected as a seed.

This process includes many comparisons and continuously increasing size of the set of
parameter sequence for similarity computation. Still, we observed that this approach
is competitive with random filtering in regard to time consumption. We explain this
observation with a combination of random selection of candidates and quick termination
of prefix matching for dissimilar sequences. First, the randomness in selecting parameter
sequence candidates appears to pick diverse sequences. Therefore, many prefix comparis-
ons will end after only a small fraction of bytes considered, possibly even at the first byte.
To illustrate this approach, we will present an example. Consider the following three
parameter sequences that can created by our JavaScript generator:

1. (0,6,0,0,0,2,0,0,0,1,1,0,0,0,1,1,0,0,0,153,1,6,0,0,0)
2. (1,3,0,0,0,1)
3. (0,6,0,0,0,2,0,0,0,1,1,0,0,0,1,1,0,0,0,160,1,6,0,0,0)

For simplicity we used integers to represent byte values. Sequence 2| generates code that
just contains a single "return" statement. Both parameter sequences [T] and [3] create a new
identifier followed by an empty statement. Consider parameter sequence (1| as the only
currently selected sequence (i.e. sequence [1|is the only element in set O in algorithm .
Moreover, consider parameter sequences [2| and |3| as two candidates, and we want to select
one of them. To do so, we will compute the similarity for both candidates to parameter
sequence [I] using the procedure in algorithm [2] that starts at line 11. As described in
line 6 of algorithm [2| we will select the candidate with the smaller similarity. When
comparing sequences [l| and [2 the approach would find the first index unmatched (line
18). Next, it would look ahead one position (line 21), which is still not equal. Then, our
approach would look ahead four positions (line 24) and find that both bytes at index 4
(indexing started with 0) are "0", resulting in a similarity score of 2 (line 25). Finally, the
last index of parameter sequence [2| is reached and is not equal to the byte at the same
index in [} Since the end of sequence [I] is reached, no more comparisons are preformed
and the current similarity value, which is 2, is divided by the length of the candidate
The length of sequence |1|is 5 resulting in a similarity score of % = 0.4 (line 31).

Looking at sequences [I] and [3] we can observe that they share the first 19 bytes, resulting
in an initial similarity of 19 (lines 18,19). The bytes at index 19 differ and thus the
techniques looks at index 20 (line 21) where it finds a match again. This increases the
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similarity to 19.5 (line 22). The other remaining six bytes match, leading to a similarity
score of 25.5 (lines 18,19). Divided by the length of parameter sequence [3| we get a
similarity of roughly 0.98 (line 31). Thus, according to our approach, sequences [2| and
are nearly the same while [If and [2 are more different from one another. Specifically, in
line 6 of algorithm [2| parameter sequence |3 is selected.

It is important to note that in reality, most parameter sequences will have hundreds or
even thousands of bytes.

Choice Sequence Filtering In the previous approach, we used information embedded
in parameter sequences to determine similarity. The problem with that approach is
that information inside the parameter sequence are encoded with knowledge about the
generator they are created for. In other words, to determine where a specific byte is
being used, one would need to run the targeted generator with the parameter sequence
until the specific byte is being read. In choice sequence filtering, we want to exploit
more accessible information on the inputs. Furthermore, we want to utilize the choice
sequences that RLCheck [53] uses to learn its choice policies. A choice sequence from
RLCheck’s JavaScript generator could look like this:

[node=statement, node=throw, node=expression, node=ident].

Single choice points are separate by a comma. The sequence can be interpreted as follows:
First, a statement should be generated, RLCheck decides to generate a throw statement,
within this throw node RLCheck decided to throw something that is an expression,
lastly, RLCheck decides to generate an identifier as the expression. In other words, the
generated input will be a throw statement that contains a single identifier. We also want
to emphasize the importance of the auxiliary nodes expression and statement. Those
nodes represent a choice point where the generator can generate different structures
within the input. So to determine structural similarity of inputs, it would be a great
idea to look at the elements that follow after expression and statement nodes. More
general, we can observe similarity of inputs by looking at transitions between different
entries in the choice sequences used to generate these inputs. Another shortcoming of the
parameter sequence filtering is that similar structures in the input can only be detected
when they appear in the same position. Using transitions between different elements of
choice sequences allows us to determine similar structures anywhere in the input. Using
these observations, we designed choice sequence filtering.

Before we present the details of this approach, we will need to discuss the availability of
choice sequences. In particular, RLCheck trims the choice sequences to a fixed size to
maintain efficiency in its reinforcement learning process. We leave RLCheck’s handling
of choice sequences untouched, but additionally create a duplicate choice sequence that
contains all elements. We activate the collection of complete choice sequences process
through our generator interface described in [4.1] Moreover, we also obtain all choice
sequences through this interface.

Algorithm [3] shows pseudocode for this approach. The approach gets a set of parameter
sequences and a set of choice sequences. Notably, each parameter sequence has exactly
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Algorithm 3 Choice Sequence Filtering

Input: S > S Unfiltered set of parameter sequences
Input: C > C Set of choice sequences of same size as S
Input: 5:C—S > 8 Maps each element of C to its corresponding element in S
Output: O > O Filtered set of parameter sequences

1: O« 0

2: Coyrr 0 > Set of currently selected choice sequences

3: choose ¢; randomly from Cey;..

4: Ccurr — Ccurr U {Cl}

5. while [Coyr| < output size do

6: randomly choose candidate set C.,, from C

7 select ¢ = argmineec,,, computeChoiceSeqSimilarity(c, Ceurr)

8: Ccurr — Ccurr U {Cm'm}

9: end while

10: for c € C.y,, do

11: O+ OUp(c)

12: end for

13: return O

14:

15: procedure computeChoiceSeqSimilarity(c, Ceyrr)

16: totalSimilarity < 0

17: for ¢ € C.,,r do

18: transitions <— get All PossibleTransitions(c, ')

19: transition counts, <— getTransitionCounts(transitions, c)

20: transition__countsy < getTransitionCounts(transitions, c)

21: totalSimilarity < totalSimilarity + cosineSimilarity(transition_counts.,transition_counts.)

22: end for

23: return totalSimilarity

24: end procedure

one corresponding choice sequence, which we visualize with the bijective function .
Additionally, it is important to remember that we want to write parameter sequences
to seed files, but we use their corresponding choice sequences for filtering. For ease of
understanding, we will talk about filtering choice sequences instead of filtering parameter
sequences based on their corresponding choice sequences in this section.

First, we initialize a set of choice sequences to keep track of already selected sequences
(line 2). A first choice sequences is selected randomly and added to this set (lines 3,4).
Next, we perform a loop representing the select-test-from-candidates strategy as de-
scribed in Concretely, until the output size is reached, a set of random candidates is
selected, the similarity of the candidate with the set of already selected choice sequences
is computed, and the candidate with minimal similarity is selected (lines 5-8).

So far, this has been similar to parameter sequence filtering. The difference lies in the
computation of similarity that is visualized in the procedure starting at line 15. Similarity
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computation for choice sequence filtering is based on two pillars, namely transition counts
in choice sequences and cosine similarity. The general idea is to compare choice sequences
based on frequency of transition between entries in the choice sequences. In other words,
for each ordered pair of entries, we count the frequency of the pair in the choice sequence
and call this transition counts. We also call ordered pairs of entries in choice sequences
transitions. Notably, we increase the transition count of a transition both items of the
transition appear in the choice sequences in the correct order. To compute the similarity
score, we decided to use the cosine similarity, which is a well-known method to compute
the similarity of documents [3].

Definition 4.1 (Cosine similarity). Let x,y be vectors with values in Z.
The cosine similarity is defined as:

. o xey
S, 0) = Tl @

Where ||z|| is the euclidean norm of vector .

Definition shows how the cosine similarity is computed. Mathematically, this
formula computes the cosine of the angle between two vectors. More intuitively, if the
cosine similarity of two vectors is high, then both vectors point in a similar direction.
Therefore, we encode the transition counts of choice sequences as vectors. Concretely,
we first derive all transitions that are present in any of the two in choice sequences we
want to compare (algorithm 3 line 18), compute the transition counts for each of those
transitions in both choice sequences (lines 19,20) and compute the cosine similarity of
both vectors of transition counts (line 21). This comparison is repeated with each already
selected choice sequence for a single candidate (line 17). Furthermore, the similarities
of the selected choice sequences and the candidate are added up to obtain the total
similarity of the candidate (line 21). This total similarity is used in line 7 to select the
candidate with minimal similarity.

In our implementation, we make heavy use of caching to avoid recomputing transition
counts and euclidean norms. Still, we observed filtering times of up to ten minutes in
preliminary experiments. The problem of the approach is that we compare each candidate
with each already selected choice sequence, while also increasing the size of the set of
selected sequences continuously (line 8). Therefore, we decide to compare the candidate
only to a fixed size of already selected choice sequences. Concretely, we compare the
candidate to the last hundred selected sequences.

To illustrate this filtering approach, we will present an example. Consider the following
three choice sequences from our JavaScript generator:

1. [node=statement, node=expression, node=literal, index=0, node=expression,
node=binary, binary=-, node=expression, node=ident, node=expression, node=litera
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2. [node=statement, node=expression, node=literal, index=0, node=expression,
node=ident]

3. [node=statement, node=expression, node=binary, binary=-, node=expression,
node=ident, node=expression, node=ident]

Choice sequence (1] is used to generate a literal with one element inside itself (index=0
means that the literal is some container that has an entry at index 0). This element is a
binary expression using the subtraction operator. Furthermore, the first element of the
binary operator is an identifier and the second element is another literal. Choice sequence
is responsible for generating another literal with one element. This time, the element
in the literal is an identifier. Choice sequence [3]is used to generate a binary expression
using the subtraction operator. Both arguments of the binary expressions are identifiers.
Although the inputs generated by these choice sequences seem different, they still share
some properties that are likely to be treated similarly by the PUT. For example, choice
sequences [I] and [3] both contain a subtraction expression, while sequences [I] and [2] share a
literal that is some container holding one item. It is also worth mentioning that some of
these shared properties could not be detected by parameter sequence filtering since they
appear in different locations in the different choice sequences (e.g. the binary expression in
sequences [1f and . Continuing our example, let’s assume choice sequence |1| as the set of
already selected choice sequences and let’s consider that sequences [2| and [3| are candidates.
Furthermore, we want to select one of those candidates that has minimal similarity to the
already selected choice sequence . We will use the procedure in algorithm [3| lines 15-23
to compute the similarities. The set of already selected choice sequences only contains
sequence [I] Thus, we only need to compare both choice sequences [2] and [3] to [ and select
the one with the smaller similarity (algorithm [3[line 7). Table [1| presents the transitions

Transition Transition Count 1 | Transition Count 2 | Transition Count 3
statement, expression
expression, literal
literal, index=0
index=0, expression
expression, binary
binary, binary=-
binary=-, expression
expression, identifier
identifier, expression

—_
—_
—_

e e e e
O = OO O = = =
el e e e M e R o)

Table 1: Transitions and their counts for choice sequences , and

and their counts for the three choice sequences. The first column presents all transition
present in the choice sequences (we omitted "node=" for readability). Column two to
four presents the transition counts of choice sequences [T} [2 and [3] for the transition in the
first column. In other words, column one presents the result of line 18 in algorithm |3| and
columns two to four present the results of lines 19 and 20. We can now use columns two
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to four as vectors and use them in definition to compute similarity (algorithm (3| line
21). After performing those computations, we get a similarity of roughly 0.78 for choice
sequences [1] 2] and roughly 0.67 for sequences [I], [3] respectively. Consequently, choice
sequence |3 would be selected in line 7 in algorithm [3| as it has the smaller similarity to
the already selected sequence.

We should mention that the example we presented is kept short for readability. In reality,
most choice sequences have hundreds of entries. Furthermore, the set of already selected
choice sequences usually contains more than one choice sequence, resulting in many more
similarity computations.

Generator Coverage Filtering Our last filtering approach, generator coverage filtering,
is based on the ideas of coverage-guided fuzzing. Instead of collecting coverage from the
PUT, we gather coverage from the generator. We will call this coverage data generator
coverage. Equipped with the generator coverage, we can reason about the control flow
through a generator that led to the generation of an input. Moreover, we can use this
information to determine if a run through the generator archived new generator coverage.
Inputs that increased generator coverage can be considered interesting in accordance
to the terminology of coverage-guided fuzzing. For such inputs, we want to write their
corresponding parameter sequences to seed files.

Algorithm [] shows how generator coverage filtering works. The algorithm gets the

Algorithm 4 Generator Coverage Filtering

Input: Generator G > G generator that is used
Output: O > O filtered set of parameter sequences
Instrument ¢
totalCoverage < () > current generator coverage of O
O«
while !timeout do
coverage, parameterSeq < G.generate()
if |totalCoverage U coverage | > | totalCoverage | then
totalCoverage < |totalCoverage U coverage|
O < O U {parameterSeq}
end if
end while
: return O

—_ =
_= O

targeted generator as an input and should return a set of filtered parameter sequences.
First, the generator is instrumented so that we can collect coverage data from it (line
1). In the previous approaches, we filtered after the generation process was finished.
Contrary, for generator coverage filtering, we filter during the generation process and thus
are bound to the timeout given to the generator (line 4). Until the timeout is reached,
the generator generates inputs, emitting generator coverage data and the resulting para-
meter sequence (line 5). The generator coverage is then compared to the already known
generator coverage from previous generation runs (line 6). If the new input increased the
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generator coverage, its corresponding parameter sequence gets selected as a seed and its
new coverage gets added to currently known generator coverage (lines 7,8).
Instrumentation of the generator is conducted using JQF’s [44] implementation of in-
strumentation that is based on the ASM byte code manipulation tool for Java [I].
Furthermore, we excluded every class from instrumentation except for our generators.
The concrete coverage we collect is branch coverage, meaning that executed branches
characterize the coverage data.

4.3 Integration into RLCheck

QFIASF_RLDriver| _ _ _ _ _ _ _ _ __ uses _ _ _ _ _ _ - RLGuidance
— —
—————— —————

invokes uses
v y

<<abstract >> <<interface>> <<interface>>

QFI4SFFiltering QFl4SFGenerator RLGenerator
+<<abstract>> filter() +initQFI4SF() B +init()
+putParameterSequences() +returnFilteringInformation() +generate()
+writeToSeedFile() +getParameterSequences () +update()
+putFilteringInformation() A A

T I T

1
| XmIRLGeneratorl |]ava5criptRLGenerator
I 1 | |
L 1t

|CoverageFIItering | | ParameterSeqFiltering |

: { | i XmIQFI4SFGenerator [JavascriptQFiasFGenerator |
— I |
————————— I |

ChoiceSeqFiltering RandomFiltering

Figure 4: Model of our implementation. Grey classes and interfaces are novel parts, white
classes and interfaces are part of RLCheck. The model only contains classes
relevant to our approach and omits many methods for readability.

A conceptual overview of our implementation is given in figure [dl Grey boxes indicate
units developed as part of our work, white box are part of RLCheck [53]. The model is
incomplete and only depicts parts relevant to our implementations and its understanding.
Our implementation is tightly integrated into RLCheck which itself extends JQF [44].
Following section we developed a novel interface for generators. The interface itself
extends RLCheck’s own interface for generators to enable communication of parameter
sequences and filtering information. Additionally, we implemented two novel generators
for the two file formats XML and JavaScript. Both generators possess equal generational
behaviour as their counterparts in RLCheck. However, they have additional functionality
to construct parameter sequences as described in section
We extended JQF to be able to filter parameter sequences as described in section [4.2]
Moreover, we developed an abstract class for filtering techniques and extended that class
with four concrete implementations.

Our approach is stitched together by the novel driver for our approach. The driver
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gets arguments specifying the filtering approach, test method and target program. It
then initializes the generator to capture filtering-specific information. The generator is
passed to RLCheck’s standard guidance that starts the fuzzing process. During fuzzing,
the generators collect parameter sequences and filtering information. When fuzzing is
finished, the driver extracts parameter sequences and filtering information, transmits
them to the filtering technique and invokes filtering. Whenever the filtering technique
selects a parameter sequence as a seed, it writes the parameter sequence to a new seed
file.

Our approach uses the same property based tests as RLCheck. Moreover, as we use
RLCheck’s guidance, we also leverage JQF’s test runners and instrumentation to run the
PUT and collect coverage and execution results.

5 Evaluation

In this section, we describe how we empirically evaluated our new approach. We compare
Zest [45] without seeds to Zest that uses seed corpora generated by our new approaches.
In particular, we aim to answer the following research questions:

RQ1 Can our new seed corpora generation approach improve the efficiency of a state-of-
the-art fuzzer to discover new coverage? (section |5.2)

RQ2 Can our new seed corpora generation approach improve the fault-finding capability
of a state-of-the-art fuzzer? (section

RQ3 Is any particular filtering technique superior to the other techniques in terms of
coverage discovery or fault-finding capability? (section

5.1 Study Design

Techniques for Comparison We compare five approaches to answer our research
questions. The first approach is Zest [45] without any seeds, which is the baseline we
seek to improve. The other four techniques consist of Zest with a seed corpora generated
by using one of our four new filtering approaches. Concretely, we refer to the four new
techniques as CHO (choice sequence filtering and Zest), RND (random filtering and Zest),
PAR (parameter sequence filtering and Zest), and COV (generator coverage filtering and
Zest).

Subjects The subjects to our evaluation are the four real-world Java programs Apache
Ant, Apache Maven, Google Closure Compiler and Mozilla Rhino. We use these bench-
marks because they were used in the original evaluation of Zest [45] and RLCheck [53].
Moreover, each of these programs is widely used, making them a good representation of
real-world software. Ant and Maven use XML files as inputs, while Closure and Rhino
make use of JavaScript files.
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Configuration For generation of initial seeds, we use the latest version of RLCheck
[53] (from the 20th September 2021). For Zest, we use the latest version of JQF [44]
available when conducting the experiments (from the 7th June 2022). In RLCheck we
use the configuration files delivered with RLCheck for all benchmarks. However, for
each trial of our experiment, we changed the "seed" entry in the configuration file to a
random value. This entry is used to seed the souce of randomness used by RLCheck.
XML generators in RLCheck and Zest make use of dictionaries to obtain strings. We use
the dictionaries that come with RLCheck and Zest for both Maven and Ant (both have
their own dictionaries). We use the default configuration for each subject.

When generating initial seeds, we use a timeout of one minute for RLCheck. We choose
this value because the coverage archived by RLCheck starts to plateau after around one
minute in RLCheck’s evaluation. CHO, RND and PAR require an output size to be
defined (see section . We decide to set the output size to roughly five percent of the
amount of inputs that Zest can generate in the timeout for the experiment. We made this
choice for the output size to allow Zest to build on top of the seeds we supplied instead
of being stuck with evaluating seeds for the majority of the experiment. Concretely,
for timeouts of one hour this resulted in output sizes of 3500, 7600, 7800 and 3400 for
Ant, Maven, Rhino and Closure respectively. Contrary, COV does not require an output
size, since the number of seeds is dependent on the number of unique branches in the
generators of RLCheck. We observe that COV always generates around 50 seeds for
JavaScript generators and around 25 seeds for XML generators.

Experimental Design We don’t change Zest’s mutation strategy or other parts of
its fuzzing loop. Therefore, our new approach won’t uncover coverage or failures that
Zest without seeds can’t eventually find, given enough time. Consequently, we focus on
investigating if our approach can increase Zest’s efficiency of finding new failures and
coverage. Hence, we choose a timeout of one hour for a single trial. For Zest, a trial is
simply executing Zest for one hour with one of the subjects as the target program. A
trial for our new approaches consists of executing RLCheck with the subject to obtain
initial parameter sequences, invoke filtering to produce seed files, and hand the seed files
to Zest to start its fuzzing campaign. Moreover, for a fair comparison, we record the time
used for generating the seed corpus(i.e. RLCheck and filtering), subtract the recorded
time from the timeout and let Zest fuzz until the new timeout is reached. We include the
generation of seed corpora in trials because it involves non-deterministic choices both
in RLCheck and in the filtering process. However, in practice, seed corpora generation
has to be conducted only once. To account for statistical validity in experiments with
non-determinism, we repeated each trial twenty times (as suggested in [31]). In total, we
ran each of the five techniques with each of the four benchmarks with twenty repetitions,
which results in 400 trials in total.

During each execution of Zest (including executions with seeds) we collect branch coverage
to answer [RQI] and [RQ3] Moreover, for the techniques with seeds, we also record the
timestamp and coverage level when Zest finished using the seeds. When Zest is initialized
with seeds, it first runs all seeds with the subject to determine which it should keep for
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further mutation. In that way, we can observe the coverage archived by only executing
the seeds. We collect coverage archived by valid inputs (i.e. valid coverage) and coverage
archived by all inputs. However, we found that both coverage measures lead to the same
observations and omit non-valid coverage from our discussions. Additionally, we decided
to choose valid coverage, because Zest’s primary goal is to create valid inputs.

To answer [RQ2] and [RQ3| we collect failures triggered during the executions of Zest
(including executions with seeds). As suggested by Klees et al. [31], unique failures should
be used to evaluate fuzzing techniques. Identifying unique failures requires deduplication
of stack traces obtained alongside the failures. To do so, we leverage the technique
described in [I3]. Concretely, for every two failures from the same subject, we compare
the root cause of the failures (i.e. the exception) and the following three stack frames.
If these four elements match, we discard one of the failures. Repeating this process for
all failures leaves us with the set of unique failures. To determine efficiency of failure
discovery, we also record the time-to-error for each unique failure. Time-to-error describes
the timestamp of the first encounter of a specific failure in a given trial. We also determine
reliability of detecting failures by counting the number of trials that can find a given
failure.

To detect statistical significance, we use the Mann-Whitney-U-Test with a significance
level of a = 0.01.

We conducted our experiments using a server with an Intel(R) Xeon(R) E7-4880 2.5GHz
CPU and 1 TB of RAM running openSUSE Leap 15.

5.2 RQ1: Coverage

To answer we present the coverage archived by the five approaches. Figure [5] shows
the mean of the total number of branches covered by valid inputs over twenty runs,
including the standard deviation. The graphs show the coverage of executions of Zest
including the runs with seeds (for CHO, RND, PAR and COV). We note that the
different length of plots is a result of the timeout reduction for CHO, RND, PAR and
COV according to the time they needed to create the seed corpora.

Looking at valid coverage archived after one hour, we can’t claim a clear advantage
of our filtering approaches against Zest. In particular, for Ant, we observe a similar
coverage level for all approaches after one hour and also report that none of the differences
between coverage levels after one hour is statistically significant. Moreover, for Rhino
we make a very similar observation but report a statistical significance of differences in
valid coverage levels for Zest and CHO (p-value ~ 0.002), for Zest and RND (p-value
~ 0.009), and for Zest and COV (p-value ~ 0.001). After one hour CHO, RND and COV
can achieve a small advantage over Zest, which is significant due to low deviations for
Rhino. Hence, for Rhino and Ant, we can’t claim an advantage of our new techniques
in regard to total valid coverage after one hour when compared to Zest. However, we
make different observations for Closure and Maven. In particular, for Closure every
single filtering technique (CHO, RND, PAR and COV) archives significantly more valid
coverage than Zest after one hour (with p-values of 0,0002 and smaller). Moreover, the
differences in levels of valid coverage are in the range of 700 to 1000. For Maven, we
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Figure 5: Mean of total number of branches covered by valid inputs (i.e. valid branches)
over time for twenty trials. Markers on the lines of CHO, RND, PAR and COV
show the time and coverage level when their instances of Zest stopped using
seeds. Higher is better.

observe a diverse picture. Concretely, PAR and COV fail to archive significantly more
coverage after one hour, ending up with tiny advantages over Zest. However, RND and
CHO can archive significantly more coverage than Zest after one hour (with p-values of
~ 0.0009 and =~ 0.009 respectively). Wrapping up the observations regarding total valid
coverage after one hour, we observe a mixed picture. For two subjects (Ant and Rhino)
our new filtering techniques can’t record an improvement of Zest, while for the other
subjects (Maven and Closure) at least some of our approaches can outperform Zest in
regard to total valid coverage after one hour.

However, our new approaches focus on the starting point of Zest (i.e. the seeds) not its
internal mechanics. Therefore, we expect a gain of efficiency in uncovering valid coverage
instead of advantages in regard to total valid coverage. Looking at the graphs in figure
we observe that our filtering techniques can drastically increase coverage in the first
few minutes. In particular, for Ant, Closure and Maven we observe a clear advantage of
our filtering approaches as compared with Zest. However, for Rhino we can’t observe
mayor advantages of our techniques over Zest. We believe that our approaches perform
similar to Zest for Rhino because Rhino has the weakest validity constraints. Therefore,
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even randomly generated initial inputs can archive high coverage in the core program
logic, which limits the impact of initial seeds. We claim that the advantage in early
coverage can be attributed to the coverage archived by the initial seeds. To present
evidence for this claim, we added a marker to the graphs in figure |5| to indicate the mean
time and levels of valid coverage that are recorded when Zest finished using the seeds. A
common observation is that the peak in coverage begins to plateau right after the seeds
have been executed. This suggests that the seeds are responsible for the initial peak of
branches covered. However, we should note that after Zest finished running the seeds, it
can still increase coverage itself, suggesting that Zest’s mechanics are still necessary to
cover certain parts of the PUT. To further discover the increase in efficiency, we present
table 21

In table [2] we present the average time that Zest without seeds took to reach the same

Technique | Subject | Seed Coverage | Seeds finished | Zest catch up
CHO Ant 4187.3 0.40 6.27

CHO Maven 2165.75 0.46 24.00

CHO Closure | 13414.3 2.09 37.93

CHO Rhino 5344.85 1.70 5.30

RND Ant 4216.9 0.41 6.27

RND Maven 2178.7 0.54 26.17

RND Closure | 13378.8 2.31 36.20

RND Rhino 5340.25 1.82 4.98

PAR Ant 4160.6 0.57 6.27

PAR Maven 2079.5 1.25 10.65

PAR Closure | 14041.05 3.21 Never reached
PAR Rhino 5372.8 4.12 6.13

COV Ant 552.45 0.68 2.72

COvV Maven 1915.05 1.95 5.93

COV Closure | 12305.05 2.16 10.28

CcOV Rhino 5315.6 2.50 4.32

Table 2: The time that Zest takes to get to the same valid coverage as the seeds archived
in CHO, RND, PAR and COV. Column one and two present the filtering
technique and the subject. Column three presents the mean number of branches
discovered by valid seed inputs. Column four presents the mean time in minutes
that Zest spent to run the subjects with the seeds for the technique and subject
in columns one and two. Column five presents the mean time in minutes that
Zest without seeds took to get to the valid coverage presented in column three
for the subject in column two. Cells in column two are coloured corresponding
to their benchmark to aid comparability.

level of valid coverage as archived by the seeds generated by our new techniques. Looking
at a single row in table [2| we present the filtering technique F' in column one. The second
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column represents the subject S being executed. In column three, we present the mean
number of branches C' discovered by valid seeds generated by technique F' for subject
S. Column four presents the mean time that Zest executed S with seeds obtained from
F'. The last column presents the mean time Zest without seeds spent to archive valid
coverage C' when fuzzing S. In other words, the last column presents the time Zest
without seeds required to archive the same coverage as the seeds. Time data is always
presented in minutes. The key observation from this table is that the seeds can reach a
certain level of coverage in less time than Zest. Concretely, for Ant CHO, RND and PAR
can get to the seed coverage between 12x and 15x faster when Zest. The data for Maven
and Closure reveals even bigger advantages of our approach. For Maven, we observe that
Zest takes between around 8x and 50x longer to reach the valid seed coverage compared
against CHO, RND and PAR. We observe similar advantages of CHO, RND and PAR
for closure. Notably, Zest without seeds is never able to reach the valid seed coverage
archived by PAR for closure and takes more than 35 minutes to reach the seed coverage
of for CHO and RND. For Rhino, we observe a smaller advantage. In particular, for
Rhino, Zest takes between around 1.5x (for PAR) to around 3x (for CHO) to reach
the seed coverage. The worse performance on Rhino can be explained with the weak
validity constraints it poses on inputs. Concretely, randomly generated inputs to Rhino
will quickly explore its core logic, which limits the impact of seeds. We also observe
that COV usually generates less seed coverage than other approaches, and Zest without
seeds needs less time to reach the seed coverage of COV. We will discuss the difference
between our filtering techniques in section [5.4] Overall, we observe an advantage of our
new techniques in efficiently discovering new coverage. This suggests that our approach
is especially useful in situations with limit resources, where quickly fuzzing an PUT is
required.

5.3 RQ2: Failures

Failure ID | Zest | CHO | RND | PAR | COV
ant 0 20 20 20 20 20
closure 0 20 20 20 20 20
rhino 0 20 20 20 20 20
rhino 1 20 20 20 20 20
rhino 2 20 20 20 20 20

rhino 3 0 2 3 1 1
rhino 4 13 9 6 3 8
rhino 5 1 0 1 0 2

Table 3: Reliability of failure discovery. Integers present the number of trials that found a
particular failure out of twenty trials. Grey cells highlight the highest reliability
for a particular failure.

We want to answer by analysing reliability and time-to-error of each unique failure.
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During our experiments, we found eight unique failures. Concretely, we found one unique
failure in Ant, no failures in Maven, one unique failure in Closure, and six unique failures
in Rhino in our trials of one hour.

In table [3| we present the reliability of failure discovery for every unique failure. We found
that the failures of Ant and closure alongside failures rhino 0, rhino 1 and rhino 2
can be found in each trial, suggesting that they can be triggered easily. Failure rhino 3
cannot be found in any trial of Zest, but can be found at least once for every other
technique. This suggests that the discovery of rhino_ 3 is more likely when seeds are
being used. However, the reliability of finding rhino 3 is at most three out of twenty
trials (for RND) for our filtering techniques, which is a relatively small value. Failure
rhino_ 4 is most reliably found by Zest (thirteen out of twenty trials), followed by CHO
(nine out of twenty trials) and COV (eight out of twenty trials). Therefore, we believe
that the chance of detecting rhino_ 4 is increased if Zest can apply its own exploration of
the program logic without being biased by seeds. However, the good reliability of CHO
and COV suggest that the presence of diverse program structures inside the seed corpora
also benefits the detection of rhino 4. Concretely, CHO and COV are the techniques
that pay the most attention to actual structures inside the inputs. The most unreliably
discovered failure is rhino_ 5. This failure can only be discovered once by Zest, once by
RND and twice by COV. This suggests that rhino 5 is deep inside the program logic,
which makes is unlikely to discover the failure within one hour of fuzzing. Overall, we
can’t argue that any approach has a clear advantages against the other approaches in
regard to fault-finding reliability. Furthermore, in terms of total bugs found for each
technique, there is only one statistically significant difference. In particular, Zest can
statistically significantly find more failures than PAR in the Rhino subject (p-value
~ 0.001).

The previous results on reliability only present half of the picture. Specifically, the

Failure ID | Zest | CHO | RND | PAR | COV
ant_ 0 7.503 3.31* | 5.19 5.278% | 5.946
closure 0 3.313 | 0.15* 0.129* | 0.072* | 0.362
rhino_ 0 1.501 | 0.342* | 0.55%* 0.304* | 0.305*
rhino_1 1.405 | 0.162* | 0.233* | 0.147* | 0.042*
rhino 2 2.507 | 0.121* | 0.158* | 0.486* | 1.646
rhino_ 3 NaN 3.8 32.7 32.967 | 10.133
rhino_4 19.976 | 29.306 | 33.097 | 40.883 | 13.398
rhino_ 5 46.017 | NaN 19.083 | NaN 47.508

Table 4: Mean time-to-error in minutes over twenty trials. "*" behind a number means
that the technique has a statistically significant difference in time-to-error
compared to Zest. Grey cells mark the smallest time-to-error for the failure in
column one.

efficiency of uncovering these failures is important too, especially for our approach that
aims to discover new coverage and failure faster than Zest without seeds. Therefore,
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we present table [d The table shows the mean time-to-error over twenty trials for each
technique and each subject. Grey cells highlight the smallest time-to-error for a particular
failure. Numbers marked with a "*" symbolize that the mean time-to-error is statistically
significantly smaller when Zest’s time-to-error (without seeds). Looking at the five unique
failures with 100% reliability for each technique (i.e. ant 0, closure 0, rhino_ 0, rhino 1
and rhino_ 2), we observe that every mean time-to-error of our new filtering technique is
smaller than Zest’s. This observation suggests that the presence of seeds can increase
the efficiency of discovering these failures. Moreover, for each of the failures with 100%
reliability, CHO and PAR have a significant difference in their time-to-error to Zest
(without seeds) and for four of these failures CHO or PAR archive the smallest mean
time-to-error. Interpreting these result, we attribute the success of CHO and PAR to
their strong similarity criterion, which allows them to supply diverse seeds that can
trigger the failure frequently with each seed corpora. Notably, PAR found closure 0
parameter faster than every other approach, which aligns with PAR’s superior ability to
increase coverage in Closure (see section for details). Another interesting observation
from the failures with 100% reliability is that COV can significantly outperform every
other technique for rhino 1. Concretely, for rhino 1, COV archives the smallest mean
time-to-error of all measurements. This suggests that rhino_ 1 can be quickly triggered
by a type of input that increased coverage in RLCheck’s generator. Time-to-error for
rhino 3 and rhino 5 is hard to interpret, as the reliability for these failures is very small.
Therefore, to reason about the efficiency of triggering these failures, we would need more
data. However, we note that rhino_ 3 is found very quickly by the CHO when compared
to other approaches, which implies that CHO might be able to select seeds that can be
easily be mutated into inputs triggering this failure. Failure rhino 4 is the only case
where Zest can find the failure faster than three of our new techniques. Concretely, Zest
has a smaller time-to-error than CHO, RND and PAR for rhino 4. However, we note
that none of these differences is statistically significant (p-values =~ 0.39 for CHO, ~ 0.18
for RND and = 0.04 for PAR). Another observation for rhino_4 is that COV archives a
smaller mean time-to-error than Zest. However, the difference between Zest and COV is
not statistically significant, with a p-value of ~ 0.28. The success of COV for rhino_4
together with its reliability data (table [3)) leads us to the conclusion that rhino 4 is a
failure that has a higher chance of being discovered when Zest is not biased by seeds.
Concretely, COV supplies a much smaller set of seeds, which gives Zest more freedom.
However, the lower reliability for COV in rhino_ 4 suggest that the seeds in COV are not
directly responsible for the discovery of rhino 4 and require the right mutations to be
made in Zest.

Another interesting observation is that closure 0, rhino 0, rhino 1, and rhino_ 2 have a
smaller time-to-error for all our filtering techniques than the time that Zest executes the
seeds displayed in table [2, which means that these failures are directly discovered using
the seeds.

Concluding our observations for failures, we observe no significant difference in the
reliability of our new techniques compared against Zest. This observation is in line with
our claim that we won’t increase Zest’s effectiveness. However, we observe a significant
advantage in terms of efficiency in failure discovery. This is a shared observation with the
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results of for coverage discovery in section [5.2] which suggest a connection between
both results. In other words, the more efficient discovery of coverage might benefit the
more efficient discover of unique failures.

5.4 RQ3: Comparing Filtering Techniques

In order to answer [RQ3] we will revisit the results presented in sections and [5.3
Concretely, we compare CHO, RND, PAR and COV against each other. First, we present
table[dl In table[5|we present the mean time in minutes that each filtering technique spend

Technique | Subject | Mean time to seed corpous (min) | Standard deviation
CHO Ant 2.24 0.02
CHO Maven | 3.58 0.08
CHO Closure | 2.19 0.05
CHO Rhino 3.89 0.12
RND Ant 2.70 0.07
RND Maven | 4.74 0.11
RND Closure | 2.68 0.02
RND Rhino 4.38 0.24
PAR Ant 2,77 0.02
PAR Maven | 4.74 0.12
PAR Closure | 2.61 0.14
PAR Rhino 5.01 0.09
COV Ant 1.02 0.01
COV Maven | 1.03 0.01
COV Closure | 1.01 0.01
COV Rhino 1.02 0.00

Table 5: Mean duration in minutes, over twenty runs, for generating the seed corpora for
each technique and each subject. Column four presents the standard deviation
for the mean in column three. Cells in column two are coloured according to
their subject to ease comparability.

to run RLCheck and filter the results for each subject. In our experiments, RLCheck is
always run for one minute. Therefore, the time spent for filtering is the value in column
three subtracted by one minute. COV is filtering during the generation process, which
results in the small durations in column three. The other filtering techniques (CHO,
RND and PAR) don’t differ substantially in their filtering durations. We note that the
standard deviation (column four) is small for every technique, suggesting that our filtering
techniques can consistently generate seed corpora in the time presented in column three.
Looking at the valid coverage achieved by our new techniques after one hour, we observe
that for Ant, Closure and Rhino none of our approaches archives statically significantly
different coverage than any of the other filtering techniques. However, for Closure, PAR
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archives statistically significantly more valid coverage after one hour than CHO (p-value
~ 0.007) and COV (p-value ~ 0.008). Looking at table [2| we can also observe that
the seeds generated by PAR archive the highest levels of valid coverage for Closure.
Those observations cement PAR’s advantage for Closure. Further analysing table [2] we
observe that seeds created by COV archive less coverage than the other approaches for
all benchmarks except Rhino. We reiterate the argument that Rhino has the loosest
validity constraints, which allows any input to archive high coverage. The disadvantage
of COV in terms of seed coverage is particularly striking for Ant where it can cover
around 550 branches while all other approaches can cover more than 4000 branches. We
believe that this observation can be explained with the strict validity constraints of Ant.
Moreover, we argue that COV generates too few seeds to solve many of Ant’s validity
constraints, while our other approaches can fulfil the constraints due to the sheer number
of seeds. Another observation from table [2] and figure [5|is that CHO and RND tend to
perform similarly. Moreover, their coverage after one hour is never significantly different,
and their seeds produce similar coverage. This indicates that CHO’s selection criterion
for seeds does not substantially differ from random selection. We believe that this can
be explained with the fixed number of previous seeds considered for similarity in CHO.
Furthermore, we note that RND is competitive with the other approaches in terms of
coverage, which indicates that the sheer number of seeds is relevant for boosting coverage
discovery.

Looking at the reliability of finding unique failures (i.e. table [3]), no filtering technique
can significantly outperform the other techniques. However, we note that PAR performs
worse compared to other approaches in terms of finding the rare failures (i.e. rhino_ 3,
rhino_ 4 and rhino_5). Moreover, all these rare failures are inside the Rhino subject,
where PAR can’t record advantages in coverage.

Comparing our new approaches in terms of mean time-to-error (with table {4f) leads to
a mixed picture. CHO can archive the smallest time-to-error for ant_ 0 and rhino_ 2
where it also archives a statistical difference to all other approaches except for RND.
This observation cements our claim that CHO and RND perform similarly. However,
CHO always archives smaller time-to-error than RND except for rhino_5 (which has
a low reliability for all approaches). Therefore, we argue that while RND and COV
behave similar for coverage, CHO still outperforms RND in terms of efficiency of failure
discovery. Another observation that confirms PAR’s advantage on Closure is the mean
time-to-error of closure 0. Concretely, PAR archives the lowest time-to-error with a
statistically significant difference to CHO (p-value =~ 0.008) and COV (p-value ~ 0.0001).
PAR also archives the smallest time-to-error for rhino_ 0 but without any statistically
significant difference to any other filtering technique and also tiny differences overall.
Failure rhino 1 is an interesting case. Concretely, this is the only subject where COV
outperforms every other technique. Moreover, COV archives statistically significant
differences to every other technique. Therefore, we argue that for some failures, COV
can be a good choice. Concretely, failures linked to unique generator coverage might
benefit from seeds generated by COV. For Failures rhino_ 3, rhino 4 and rhino 5 we
reiterate that these failures archived low reliability, so their analysis would require longer
runs for better soundness. Also, for these three failures we report that no statistically
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significant differences exist between any of the techniques, which we contribute to the
lack of data. However, we note that on rhino_ 3 the two runs of CHO (i.e. table [3)) can
find the failure much faster than any other approach. The same applies to rhino 5 and
the single run of RND.

Wrapping up our observations, we can’t give a clear answer to [RQ3] We observe that
PAR is a particularly good fit for Closure. Moreover, CHO and RND fair similarly, but
for efficiency of failure discover we see small advantage of CHO. COV seems to be a
worse choice than the other techniques, especially for Ant. However, we also discover
that COV can outperform other approaches if the failures are linked to unique generator
coverage.

5.5 Threats to Validity

Internal Validity We try to avoid systematic errors by translating guidelines by Klees
et al. [31] to practice. However, we ran shorted experiments than suggested by Klees et
al., but argue that within the one-hour time limit we can observe gains in efficiency to
support our claims. Additionally, we ran twenty repetitions, which might not be enough.
However, we report small deviations in our data, suggesting that the number of runs
was enough. Another possible threat to internal validity is the lack of a comparison
to other seed corpora generation or minimization techniques. However, to the best of
our knowledge, there is no other approach trying to generate seeds that are parameter
sequences which are required for Zest. Another possible threat to internal validity could
be the choice of the hyperparameters output size and time give to RLCheck. We note
that we didn’t tune these values, allowing for a fair comparison.

External Validity Generalization of our approach might assemble a threat to external
validity as we only use four subjects for our evaluation. However, these four subjects are
matured and widely-used real-world programs. Furthermore, they cover two widely used
file formats (JavaScript and XML). Therefore, we argue that the subjects form a solid
representation of real-world programs.

Construct Validity Our measurement of unique failures might be a threat to construct
validity as it heuristically determines uniqueness based on four elements of the stack
trace. However, we argue that the method has been proposed in [I3] and used to classify
unique failures by other researchers.

6 Conclusion and Future Work

In this paper, we presented a novel technique for the quick generation of seed corpora
that addresses shortcomings of previous techniques. In particular, we extended the
successful greybox fuzzer Zest [45] which uses parameter sequences, instead of inputs to
the PUT, as seeds. Our technique quickly generates inputs using the blackbox fuzzer
RLCheck [53], transforms these inputs into parameter sequences, and quickly filters these
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sequences using information obtained from the generation process of RLCheck. We
develop and compare four filtering techniques that exploit different types of information
from RLCheck’s generators. As a result of this process, we derive a small set of parameter
sequences that can be used as a seed corpus for Zest. We evaluated our approach using
four widely-used real-world programs that use two different types of file formats. The
results of the evaluation suggest that our approach can significantly increase the efficiency
of Zest to uncover failures and increase coverage. We argue that the increase of efficiency
recommends our novel technique in situations with limit resources for fuzzing.

For future work, we want to investigate how the selection of the hyperparameters output
size (i.e. number of seeds emitted by our technique) and time given to RLCheck influence
the performance of our approach. Additionally, we want to improve choice sequence
filtering by comparing candidates more efficiently using techniques like locality sensitive
hashing (proposes in [41]). Moreover, we want to investigate if more fine-grained coverage
measures can improve the performance of generator coverage filtering.
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