
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Evaluating and Improving the Test Coverage
of scientific Python Software

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Jonas Trappe
geboren am: 16.05.1997
geboren in: Berlin

Gutachter/innen: Prof. Dr. Lars Grunske
Prof. Dr. Timo Kehrer

eingereicht am: verteidigt am:

Contents
1 Introduction 5

2 Preliminaries 7
2.1 Test Coverage . 7
2.2 Test Case Generation Algorithms . 8
2.3 Test Case Generation in Python . 10
2.4 Tool: Pynguin . 10
2.5 Tool: Hypothesis . 11
2.6 Other tools . 12
2.7 Mock Testing . 12
2.8 System under test: elastic2 . 13

3 Development and Experiment 15
3.1 The gold standard . 15
3.2 Test suite using the Hypothesis framework 15
3.3 Experiment: Automated test case generation with Pynguin 16

4 Evaluation 19
4.1 Evaluation methodology . 19
4.2 Results and Analysis . 20
4.3 Challenges for automated test case generation 26
4.4 Threats to validity . 27

5 Conclusion and Future Work 29

3

1 Introduction
For modern software, testing is one of the most crucial parts of the development process.
In addition to classic unit testing done manually, developers can resort to automated
approaches. Powerful tools exist both as mature research prototypes, such as EvoSuite[1]
or Randoop[2] for Java, or even as commercial applications, like TASMO1 for C/C++.
However, few of such tools exist for Python. To the best of our knowledge, the only
real unit test generation tool for Python is Pynguin[3]. This is interesting, because
Python is one of the most popular programming languages used today. As of writing,
Python holds the first place on the IEEE spectrum rating2.

This raises a number of questions:

• What problems does automated test case generation face in Python?

• Do performance expectations established in other languages hold for the same
techniques in Python?

• How do established automated test case generation algorithms for other languages
perform compared to each other in Python?

Due to its syntactic simplicity, Python is popular among scientists and people with
no direct computer science background. Improvements towards automated testing
could greatly help anyone using the language to increase their code’s quality. Python’s
flexibility also comes with challenges for testing, which we would like to explore and
discuss.

The authors of the aforementioned Pynguin name dynamic typing as a core issue
for automated test case generation in Python. As types of variables are typically not
known before runtime, a test case generator has more options to choose from. This issue
is discussed more in-depth in section 2.3. A comparison between different techniques
has only been done to a limited extent by Lukasczyk et al.[3].

Apart from test case generation, we want to examine the usefulness of other testing
practices in Python, such as the usage of mock testing[4]. Mock testing means replacing
an object or component of the system under test (SUT) with a less capable but also
less resource intense object with predefined behavior. This is typically done to test the
context of said component, but mocks can also be used to save runtime during testing.

Open challenges addressed by the thesis project In this thesis, we want to examine
how testing in Python can be made more efficient. We therefore want to compare
different automated test generation techniques in regard to the test coverage they
achieve. We also want to explore the usefulness of mock objects in a Python pipeline
in order to save time in the testing process.

1Piketec: Automatic test case genration in TPT, https://piketec.com/tpt/
testcase-generation/

2IEEE Spectrum: Top Programming Languages 2021 https://spectrum.ieee.org/
top-programming-languages/

5

https://piketec.com/tpt/testcase-generation/
https://piketec.com/tpt/testcase-generation/
https://spectrum.ieee.org/top-programming-languages/
https://spectrum.ieee.org/top-programming-languages/

• RQ1: How do different test generation techniques compare to each other on a
Python program?

• RQ2: To what extent can mock objects be used in a Python testing pipeline?

To accomplish our goals, we evaluate testing techniques on the material science
program elastic2. We have selected the tools Hypothesis3 and Pynguin[3] for test
case generation. To answer RQ1, we compare the selected automated test generation
techniques to a gold standard test suite for elastic2. We evaluate if assumptions made
for other programming languages hold in Python. For example, random test case
generation usually performs worse than genetic algorithms. We also implement mock
objects in the elastic2 test suite to skip expensive calculations during testing.

3HypothesisWorks: Hypothesis testing framework, https://hypothesis.readthedocs.io/en/
latest/

6

https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/

2 Preliminaries
This section contains information about concepts mentioned in the thesis. It also show
descriptions for the tools used in this project and reviews of other research done on
the topic of testing Python software.

2.1 Test Coverage
Test coverage is a term that describes how much of a program’s source code is tested
by its test suite. Test coverage is usually given in percent or a value between 0 and
1. A low value can generally be interpreted as worse. There are different metrics to
measure test coverage.

Definition 1 (line coverage). One of the most simple metrics is line coverage[1], which
is the percentage of lines that are executed by the test suite. It can take values between
0 and 1, with 1 meaning all lines of the program are covered. When CoveredLines is
the number of lines reached by a test suite and TotalLines the number of executable
lines in a program, then line coverage Cline is defined as:

Cline := CoveredLines
T otalLines

Line coverage is useful to determine the completeness of a test suite. A lower line
coverage means a larger portion of the SUT is not reached by test cases at all.

Definition 2 (mutation coverage). Another metric is mutation coverage[5], for which
randomly modified variants of the program under test are created. These mutants then
have to be “killed“ by the test suite, meaning that for each mutant, at least one test
case needs to be able to distinguish between the original program and the mutant.

There are different criteria for when a mutant is viewed as “killed“. To “kill“ a mutant
under weak mutation coverage, the mutated program p′ must differ in its state from
the original program p when tested, e.g., by different values being assigned to variables.
Strong mutation coverage additionally requires the the difference between p and p′

to be visible in the tests output. Mutation coverage Cmut is generally defined as

Cmut := KilledMutants
T otalMutants

with KilledMutants being the number of mutants detected by the test suite under
the weak or strong definition and TotalMutants being the total number of available
mutants for p. Again, Cmut can take values between 0 and 1, with 1 meaning the
program’s test suite “killed“ all mutants.

Mutation coverage can be used to determine the sensitivity of a test suite, meaning
that a test suite with a high mutation coverage is more likely to detect errors. We use
the Python package mutmut4 in this thesis to perform mutation testing.

4mutmut - python mutation tester https://mutmut.readthedocs.io/en/latest/

7

https://mutmut.readthedocs.io/en/latest/

Different metrics can produce different results. Consider the example taken from
Medium5 in Listing 1.

1 # returns False if temp is smaller than 1000
2 def isDangerous(temp):
3 if(temp <= 1000): # bug: <= instead of <
4 return False
5 else:
6 return True
7

8 def isDangerous_test():
9 assert isDangerous(1500) == True

10 assert isDangerous(200) == False

Listing 1: An example with a line coverage of 1 which contains an undiscovered error

In the test function, all lines of isDangerous are executed at least once, the line
coverage is 1. However, the edge case of temp = 1000 is not tested. This leads to the
bug not being detected when the input is temp = 1000. Mutation testing might have
replaced the <= in isDangerous with <, creating a mutant that does change the
functionality of the program. As this is not detected by the test suite, the mutation
coverage would not be 1.

However, using only mutation coverage could lead to other issues. Generating every
possible mutant gets increasingly expensive with program size. And even if a large
number of mutants is available, the risk of ”equivalent mutants” exists. They are
syntactically different but semantically equal to the original program, meaning they
cannot be ”killed” by any test case. This highlights the importance of not relying on a
single coverage metric.

2.2 Test Case Generation Algorithms
Coverage metrics are not only useful to assess how good a test suite is, but can also
provide guidance for automated test case generation techniques. These techniques
often use a genetic algorithm[6] to generate tests. Genetic algorithms are based on
evolutionary principles found in nature but applied to computer science. Such algorithms
”evolve” a population by applying mutations, random alterations performed to a single
candidate, and crossovers, building a new candidate from two existing ones. How good
a candidate is for the task it is supposed to fulfill is assessed by a so-called fitness
function.

For test case generation, the candidates are either test cases or entire test suites. The
fitness function calculates how close a candidate is to reaching given coverage goals.

5Medium: Tests Coverage is Dead — Long Live Mutation Testing https://medium.com/appsflyer/
tests-coverage-is-dead-long-live-mutation-testing-7fd61020330e

8

https://medium.com/appsflyer/tests-coverage-is-dead-long-live-mutation-testing-7fd61020330e
https://medium.com/appsflyer/tests-coverage-is-dead-long-live-mutation-testing-7fd61020330e

Whole test suite generation [7] is the name of an algorithm pioneered by Fraser
et al. for the tool EvoSuite[1]. Its genetic algorithm optimizes for multiple objectives
at the same time, which was not done by others before. Their goal was to develop an
algorithm that focuses on a given coverage metric, for example branch coverage, and
at the same time provides a minimal test suite. The fitness function takes into account
both of these objectives. For the context of this thesis, we refer to the whole test suite
generation implementation used in Pynguin[3]. This implementation targets branch
coverage and has a fitness function adapted to the way Python code is compiled. We
will refer to the algorithm as whole suite.

DynaMOSA [8] (Dynamic Many Objective Sorting Algorithm) is a genetic algorithm
that considers a coverage goal as a multi-objective problem. When optimizing for
branch coverage for example, it uses one variable in the fitness function for each branch
in the SUT. The search for new test cases is then only directed towards objectives that
are not covered yet. Unlike in whole suite, the population which is evolved consists
of test cases rather than test suites. Once an objective is achieved (e.g., a branch
is reached), the corresponding test case is archived. This means that already found
solutions are preserved and only discarded if better ones are found, for example a
shorter test case with the same coverage. All these features are already present in
MOSA, the predecessor to DynaMOSA. DynaMOSA adds dynamic target selection.
This means that targets will only be taken into account if they can be reached by the
current test population. In the example of two nested if statements, DynaMOSA will
only try to cover the inner statement if the outer one has already been covered.

MIO [9] (Many Independent Objectives) is another multi-objective algorithm that uses
evolutionary techniques. As in (Dyna)MOSA, it assigns a fitness value to each objective
and uses an archive to store test cases for covered targets. MIO also keeps a population
of test cases rather than test suites. The population size scales with the number of
objectives. Additionally, MIO will start a ”focus phase” after a certain amount of the
search budget is consumed. This means MIO will focus on fewer objectives at a time
later in the test case generation process. The implementation in Pynguin[3] which we
use in this thesis will by default start the focus phase after 50% of the testing time has
elapsed. From then on, MIO will apply more modifications to already discovered test
cases before creating a new one. This is done to cover more objectives that are already
close to being covered, rather then finding new objectives, which are less likely to be
covered before the testing time elapses.

Feedback-Directed Random Testing does not rely on test coverage metrics for
guidance or any sort of genetic selection. Originally created for the tool RANDOOP[2]
in Java, such a strategy was also implemented in Pynguin, which we will refer to as
FD-random in this thesis. It is relatively simple: test generation starts with two empty
sets of test cases, one for passing and one for failing tests. Test cases are created by
generating random statements using the SUT, or by randomly altering test cases that

9

passed previously.

Test generation algorithms in comparison Campos et al. conducted a study[10]
on 117 Java programs, ranging from 14 to 16.624 statements, to compare different
test case generation techniques using EvoSuite[1]. They found DynaMOSA to clearly
outperform any other algorithm. Whole suite did perform better than MIO in their
experiment, while all mentioned algorithms outperformed the random approach.

2.3 Test Case Generation in Python
Test case generation is an established part of software engineering, with prominent
tools such as EvoSuite[1] for Java. However, test case generation techniques usually
rely on type information, which is absent in Python. In order to generate tests, a test
generator has to create objects or call functions from the system under test. This is
done either randomly or guided by a fitness function to achieve a higher coverage under
one or more metrics. As soon as an object constructor or function has parameters, the
test generator has to decide what to pass to it. With type information, this is relatively
easy: the generator can just take an object or a variable in the current scope that
matches the parameter type and pass the object to the function. If such an object does
not exist, the generator will create one by calling the constructor and creating necessary
parameters for it if needed. Without type information, the generator can theoretically
pass any object to a function. This includes any primitive type, as everything is an
object in Python. That means a generator has to guess which objects are to be passed
to a function, which drastically increases the decision space for the generator.

Lukasczyk et al.[3] have shown that including type information can positively affect
the achieved coverage by test case generators. They tested their FD-random and whole
suite algorithms on ten Python modules that had between 85 and 1715 lines of code
using Pynguin 2.4 The whole suite approach performed better across the board. Its
average line coverage was around 5% higher than that of the FD-random approach
for any runtime up to 600 seconds. They also found that the availability of type
information at compile time did generally increase the performance of both techniques.
However, the degree of improvement was dependent on the system under test. Modules
that required specific types had larger increases in test coverage when adding type
information compared to those using mostly primitive types.

2.4 Tool: Pynguin
The framework Pynguin[3] was developed at the University Passau for automated unit
test generation in Python. It is generally comparable to the Java tool EvoSuite[1]. Pyn-
guin implements a range of test generation algorithms which have already successfully
been used in other languages. These include the previously mentioned (section 2.2)
FD-random, whole suite, MIO, and (Dyna)MOSA. Apart from the implementations of
those algorithms, Pynguin offers a number of utility features. The test coverage, either
as line or branch coverage on a bytecode level, can be evaluated during testing. Test

10

generation can be executed with or without regards for type information. Pynguin can
also generate assertions for test cases.

Pynguin is built to take a single module, usually the contents of one Python file, and
generate units tests for it. It will run either a given time or until a certain test coverage
is achieved. The resulting test cases are saved, divided into successful and failed tests.
A test is considered as failed if it raises an exception or breaks an assertion.

2.5 Tool: Hypothesis

Hypothesis6 is a property-based testing framework for Python. It can automatically
generate input values for test cases according to some specification. This addresses the
problem of dynamic typing in Python, as the user decides which types and even which
values an input variable can take. For example, a test function can be told to only use
positive integer values in as inputs for testing. Hypothesis will then generate positive
integers, trying to find examples that either lead to exceptions or break the assertion
made in the test case.

This approach however still requires the developer to not only write test cases, but
also decide which types its variables have. The automatic input generation is not guided
by test coverage metrics. Instead, the tool generates input data arbitrarily for the given
specification, in order to find bugs. A bug in the context of Hypothesis is an exception
being thrown, an assertion being violated or some other basic assumption is being
broken. For example an object that does not have the same value anymore after being
serialized and then deserialized.

Hypothesis is used with Python decorators. The keyword @given followed by a
function specifying the type of argument to be used is placed before the function as
shown in Listing 2.

6HypothesisWorks: Hypothesis testing framework, https://hypothesis.readthedocs.io/en/
latest/

11

https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/

1 # returns False if temp is smaller than 1000
2 def isDangerous(temp):
3 if(temp <= 1000): # bug: <= instead of <
4 return False
5 else:
6 return True
7

8 # this decorator tells Hypothesis to use integer values as parameters
9 @given(integers())

10 def isDangerous_test(temp):
11 if(temp < 1000):
12 assert isDangerous(temp) == False
13 else:
14 assert isDangerous(temp) == True

Listing 2: An example of how Hypothesis should be used

Hypothesis will now generate random test inputs according to the specification,
integers in case of this example. If failing input is found, it is stored in a local database.
This way, the falsifying example can be reused in future runs to rule out bugs that
were already found earlier.

2.6 Other tools
We used the tool coverage.py7 mainly to find out which lines are not covered by a
test suite. As Pynguin incorporates its own line coverage measurement tool, we only
used coverage.py to evaluate line coverage of manually written test suites.

Our test runner for manual test suites and Hypothesis is unittest8. We use unittest
over pytest9 as the original test suite for our SUT uses unittest, which we built our
test suite upon. We still use pytest to run Pynguin-generated test suites.

For mutation testing, we use mutmut10. The tool can generate mutations to a given
program and will evaluate whether the test suite can kill them. mutmut thus implements
strong mutation coverage.

2.7 Mock Testing
Testing software can be a time-consuming process. This is particularly the case if the
testing process involves software artifacts that are not supposed to be tested. A possible
way to reduce testing times in such cases is mock testing[4], which means replacing

7Documentation of Coverage.py, https://coverage.readthedocs.io/en/6.2/
8unittest — Unit testing framework — Python 3.10.2 documentation, https://docs.python.org/

3/library/unittest.html
9pytest documantation, https://docs.pytest.org/en/6.2.x/

10mutmut - python mutation tester https://mutmut.readthedocs.io/en/latest/

12

https://coverage.readthedocs.io/en/6.2/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/en/6.2.x/
https://mutmut.readthedocs.io/en/latest/

certain parts of the system under test with so-called mock objects. A mock object has
the same API as the object or artifact it replaces, but no actual functionality that
needs to be tested. This is useful for reducing testing time, but also for locating faults
by taking a part of the system under test out of the testing process.

In more detail, a mock object Obj′ replaces an element Obj in the system during
testing. Obj has functions f1, ..., fn which can be called by other objects. These do not
know that Obj was replaced and will interact with Obj′ as if it was the original object,
for example by calling a function fi. Rather than checking if fi works correctly, Obj′

can now check if fi was called with the correct arguments, or if it was even called at
all. The mock object does not test the component it replaces, but the context in which
it is used.

Mock testing allows faults to be distinguished between ones inside Obj and ones in
the way Obj is used. It can however also save testing time. Any expensive calculations
that would run in Obj are skipped during testing with Obj′. This is for example useful
if Obj is tested separately.

It should however be noted that for integration testing, mock objects should not be
used liberally. Integration testing is the practice of testing that different components
of a system work together as intended. For that purpose, it is important for individual
components to actually react to input they receive and not just return predefined
behavior as mock objects do.

2.8 System under test: elastic2
Elastic2 is a part of the ASE (Atomic Simulation Environment)[11] material science
framework. It calculates the elasticity of materials, and can determine if a material
will break under a certain deformation. Elastic2 is being developed by Daniel Thomas
Speckhard at the Fritz Haber Institute of the Max Planck Society.

Elastic2 is a tool for density-functional theory (DFT) and uses calculators, which
are also called DFT codes. These are programs that run the actual simulations on
an atomic level. Currently, elastic2 supports three calculators aims[12], exiting[13],
and Quantum ESPRESSO[14]. Calculators are usually written in FORTRAN to allow
greater efficiency in parallelized computations. DFT calculations aim at investigating
material properties on an atomic level. Mathematically, these calculations mostly come
down to eigenvalue problems.

An ASE Atoms object is required as an input variable for elastic2. It represents
a number of atoms and their position relative to each other. It contains additional
information, such as if the structure is a cell that repeats itself indefinitely in a certain
direction. Elements in an Atoms object can be represented by ordinal numbers (e.g.,
6 for carbon) or symbols (e.g., C for carbon). The minimum required to construct a
non-empty Atoms object is a string with symbols or an array of numbers. Optional
arguments like positions can be provided as well and are required by many functions
in elastic2.

Elastic2 is written in Python and can be run via the command line. The workflow
for the full release version will look as follows: The user inputs a structure of atoms, a

13

 calculator elastic2

ASE Atoms
configuration

and
calculator
selection

Classification by elastic2,
Setup of Simulation

environment with selected
calculator

elastic2
object

Simulation using calculator

Simulation
results

Parsing results using ASE,
Plotting data and calculation

of Polynomial Fit

Elasticity
curve

parameters

ASE calculator object as an
interface to the actual
calculator programm

Input files
for

simulation

User

Figure 1: The basic structure of elastic2

deformation which should be simulated, and a calculator name. When run, elastic2
will prepare the input for the simulation in the module setup_runs. The calculator is
abstracted by an ”ASE calculator” object inside elastic2. This interface creates input
files for the actual calculator, which then simulates the energy of the material at certain
points during the deformation. Once the simulation is finished, the results are parsed
by elastic2 using ASE in the module analyze_runs. A polynomial curve is formed
from the points that were simulated. It represents how energy between the atoms in
the structure changes while being deformed. The structure of elastic2 is visualized in
figure 1.

We use a slightly altered version11 of elastic2 for the context of this thesis. It
represents the current state of development, however unfinished parts were omitted. In
our version, the DFT-code simulation is prepared but not actually run. Also, we created
a copy of the module setup_runs.py, which does most of the work. This copy is called
setup_runs_safe.py and has all operations which alter hard drive contents replaced
with print statements. This is mainly done for safety reasons, to keep the program
from writing files at unwanted locations when given random inputs. We also replaced
the custom exceptions used by elastic2 with standard exceptions such as ValueError
or RuntimeError, as raising a custom exception would cause a crash in Pynguin.

11elastic2 in thesis repository on HU gitlab, https://scm.cms.hu-berlin.de/trappejo/
elast2tstcov/Software/elastic2/

14

https://scm.cms.hu-berlin.de/trappejo/elast2tstcov/Software/elastic2/
https://scm.cms.hu-berlin.de/trappejo/elast2tstcov/Software/elastic2/

3 Development and Experiment
In order to answer RQ1, we evaluated automatic test generation with different algo-
rithms provided by Pynguin, which are Pynguin’s FD-random, whole suite, DynaMOSA,
and MIO. They are run on the elastic2 module setup_runs. We use line coverage as
our main metric. Additionally, we use mutation coverage to examine the generated test
suites.

We also developed two test suites for elastic2.setup_runs. The first one is a
”traditional” test suite using Python unittest. We incorporated mock functionality
into this test suite in order to answer RQ2. The second test suite uses the Hypothesis
framework, which was introduced in section 2.5.

3.1 The gold standard
In order to assess potential difficulties for test case generation, we developed a test
suite for elastic2 with a line coverage of almost 1.0. The only parts it does not cover are
running the actual simulation, which is mocked during testing, and lines that cannot
be executed successfully currently due to missing dependencies. This test suite is built
upon the original test suite developed for elastic2 by its author. The original test suite
uses unittest and incorporates pytest elements, such as parameterized tests. We
used the tool coverage.py to find lines not covered by the current test suite and we
wrote test cases covering those. During the creation of this test suite, we inserted
error handling into the system under test in locations that otherwise could have led to
crashes during test case generation.

This gold standard integrates mocking. Not an entire object is replaced during
testing, but a single function. In our case, this is setup_runs.run_simulation, which
would start the computationally expensive calculations made by the DFT code. This
is trivially the best performing test suite regarding line coverage out of all the ones
created in this project. However, the gold standard is also most costly in terms of
working hours.

3.2 Test suite using the Hypothesis framework
The Hypothesis-based test suite is essentially a hybrid approach between manual
testing and automated test case generation. Hypothesis randomly generates inputs
for hand-written tests according to a given specification. This allows more effective
random testing, since the developer has direct control over the input that is generated.

Several examples can be found in our SUT where a more precise description of a
function argument could greatly reduce testing time. One such example is the name of
the DFT code, which is passed to functions as a string. Even with a type hint, other
test case generation strategies would of course generate a variety of random strings, of
which very few were actually viable DFT code names. In our Hypothesis test suite, we
can just tell the tool to pick one of the available DFT code names or use an invalid
string to test error handling functionality.

15

Hypothesis however does not try to achieve a certain coverage, but rather to find
inputs that raise errors or break assumptions. The test suite is thus not directly
comparable to the ones generated by automated test case generation techniques.

3.3 Experiment: Automated test case generation with Pynguin
We applied four automated test case generation techniques on the elastic2 module
setup_runs_safe.py. These are FD-random, whole suite, DynaMOSA, and MIO. Each
of them was given a runtime of 900 seconds, while each algorithm was run 40 times. We
chose 40 runs to ensure stability in our results. While we initially opted for a runtime
of 600 seconds like in the similar experiment by Lukasczyk et al.[3], we observed
unexpected results for the MIO algorithm. We wanted to test whether these result
would remain the same with a longer run time, which they did. Except for the runtime
and the algorithm to use on each run, Pynguin was executed with default parameters.

We used a parallelized configuration with slurm to run the experiments. Our ex-
periments were run on a Dell R740xd server with 756GB and two Xeon 6254 CPUs,
each with 36 cores and 72 threads, operating at 3.1GHz. It the time of running the
experiments, the server ran on openSUSE Leap 15.3 with the kernel version 5.3.18-
59.40-preempt. The tools we used and their respective versions are listed in table 1.
Detailed instructions on how to reproduce our results can be found in the README
file12 of the thesis repository.

12README.md in thesis repository on HU gitlab, https://scm.cms.hu-berlin.de/trappejo/
elast2tstcov/-/blob/main/README.md

16

https://scm.cms.hu-berlin.de/trappejo/elast2tstcov/-/blob/main/README.md
https://scm.cms.hu-berlin.de/trappejo/elast2tstcov/-/blob/main/README.md

Tool or module version

ase 3.22.1
attrs 21.4.0
coverage 6.2
file_read_backwards 2.0.0
hypothesis 6.31.6
matid 0.6.2
mock 3.0.5
mutmut 2.2.0
numpy 1.19.4
openpyxl 3.0.9
packaging 21.3
pandas 1.4.0
pynguin 0.11.0
pytest 6.2.5
python 3.8.8
typing-extensions 4.0.1

Table 1: Tool and modules used in this work and their respective versions.

17

4 Evaluation
4.1 Evaluation methodology
Individual line coverage We displayed the results of our Pynguin test case generation
runs as box plots, representing how the line coverage for each generation strategy
developed over time. The coverage data collected during generation is aggregated in one
box plot for all runs of a single algorithm. The box represents the IQR (interquartile
range) whereas the whiskers extend up to the highest or down to the lowest value that
is inside a 1.5x IQR range from the respective edge of the box. Any results outside
the whisker boundaries are represented by dots. A line inside the box represents the
median of all measurements for the respective algorithm. Coverage data is displayed
in 30 second intervals. As all box plots are about line coverage, higher values can be
interpreted as better.

Comparison of the mean line coverage Additionally, we included a line plot com-
paring the mean line coverage for all test generation strategies in one plot. Each line
corresponds to one algorithm, with the coverage data of all runs being used. For this
plot, we used measurements from one second intervals. Again, higher values in line
coverage are to be interpreted as better.

Statistical evaluation Based on the results of Campos et al.[10], we made assumptions
regarding the performance of test case generation strategies, which we would then try
to validate. We compared the line coverage after the testing time elapsed. We created
the following set of null hypotheses H0:

• The test suites generated with whole suite have an equivalent or lower line coverage
than those generated by FD-random

• The test suites generated with DynaMOSA have an equivalent or lower line
coverage than those generated by any other strategy

• The test suites generated with MIO have an equivalent or lower line coverage
than those generated FD-random

• The test suites generated with MIO have a lower line coverage than those
generated with whole suite

Our evaluation aims to reject these null hypotheses in favor of the following set of
alternative hypotheses H1:

• The test suites generated with whole suite should have a higher line coverage
than those generated by FD-random

• The test suites generated with DynaMOSA should have a higher line coverage
than those generated by any other strategy

19

• The test suites generated with MIO should have a higher line coverage than those
generated FD-random

• The test suites generated with MIO should not have a lower line coverage than
those generated with whole suite

We used the non-parametric Mann-Whitney U test for evaluations. We choose this
method as we cannot assume a normal distribution among our data. We examined some
resulting samples and found that they were not normally distributed. The sample for
each test case generation algorithm is made up of the final line coverage measurements
for each run. This gives us a sample size of 40 per algorithm. We calculate the results
using the scipy package13. We consider a null hypothesis to be rejected if its associated
p-values is smaller than 0.05.

Missing lines Aside from the raw performance of the algorithms, we were interested
in specific properties of the SUT that might interfere with test case generation. For
that purpose, we analyzed which parts of the SUT were covered by the smallest number
of test suites. The percentage of executable statements in elastic2.setup_runs not
covered by any test suite for each algorithm is displayed in table 3. These information
greatly helped us to analyze potential problems the test generators were facing.

Mutation analysis In order to assess the sensitivity of our test suites to errors, we
use mutation coverage measured by the package mutmut. We let the tool analyze each
generated test suite and accumulate the data in one box plot per algorithm. It is
configured the same way the box plot for line coverage, with the box representing the
IQR while the whiskers cover a 1,5x IQR-range each. A higher mutation coverage is
regarded as better.

It is to be noted that the test suites generated by the FD-random strategy are
exceptionally large, with sizes of around 10.000 test cases each. This is because in
contrast to the other algorithms we examined, FD-random does not take any measures
to minimize the test suites. The immense size of the test suites means a comparably
long execution time, usually over 60 seconds per mutant for one test suite. For this
reason, we decided not to examine mutation coverage on the test suites generated by
FD-random, as the test suite would have to run once per mutation. If we applied 100
mutations, this would already take at least 100 minutes, and we would have to run
this for every of the 40 generated test suites, which we deemed unreasonable.

4.2 Results and Analysis
An overview comparing the median development of line coverage by algorithm is
provided by figure 2. The development of line coverage over time for all test suites of
each algorithm is displayed in figure 3.
13scipy.stats.mannwhitneyu https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.mannwhitneyu.html

20

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html

0 300 600 900
Runtime in seconds

0.1

0.2

0.3

0.4

0.5

0.6

Lin
e

Co
ve

ra
ge

Random
Whole Suite
DynaMOSA
MIO

Figure 2: Median line coverage over time in a direct comparison for a runtime of 900
seconds

FD-random The FD-random test case generation manages to achieve a comparably
good coverage early on. After 30 seconds, it has a higher median coverage than any
of the genetic approaches. This can possibly be explained by the overhead which
other algorithms have to deal with, for example minimizing their test suites or keeping
archives.

The FD-random strategy soon loses its lead in median line coverage to DynaMOSA.
It can be observed that the increase in coverage for FD-random gets significantly slower
after about 120 seconds. At that point, the median line coverage is at 0.29. In the
remaining 780 seconds of runtime, the median will only rise to 0.32. The box plot in
figure 3 shows how the measurements for FD-random get less diverse towards the end
of the generation run, indicating that most generated test suites have achieved a line
coverage close to the median value.

As discussed previously, we did not perform a mutation coverage analysis for FD-
random.

Whole suite The whole suite approach slowly but steadily increases its line coverage
over time. The median line coverage rises almost in every 30 second step. However,

21

0 150 300 450 600 750 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Random

0 150 300 450 600 750 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Whole Suite

0 150 300 450 600 750 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
DynaMOSA

0 150 300 450 600 750 900
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
MIO

Figure 3: Evolution of line coverage over time for different test case generation algo-
rithms

during the first half of the generation runs, the measurements are spread over a wide
range: while some candidates already reached a line coverage of over 0.4 after 120
seconds, at least one test suite was still covering less than 10% of the lines when half
the generation time had elapsed.

After 360 seconds, whole suite surpassed FD-random in median line coverage. At
the end of our run, whole suite had a median line coverage of 0.39. We evaluated the
final measurements of whole suite and FD-random in the Mann-Whitney U test, with
the null hypothesis that the line coverage for FD-random is stochastically the same or
better than that for whole suite. We can reject this hypothesis, as the p-value for it lies
at 3.54002363 · 10−8, which is smaller than our significance level of 0.05.

In regards to mutation coverage however, whole suite performed very poorly as seen
in table 4. To be exact, no test suite generated by the whole suite was able to kill a
single mutant. We first assumed this to be an error, but by looking closer into the test
suites, we uncovered a possible reason for these results.

As previously mentioned, Pynguin generates two files of test cases: one file for test
cases that succeed, and one for failing test cases. For whole suite, the succeeding test
case file was empty on most occasions. If it did contain a test case, it only contained a

22

Whole Suite DynaMOSA MIO

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4: Mutation coverage of the final test suites, by algorithm

call to get_dft_calculator, which is the only static method in our SUT.
How is this related to a bad mutation coverage? First of all, we see that most coverage

whole suite achieves comes from failing test cases. When Pynguin generates a test case
and runs into an error, it might still add the test case to the test suite if it helps to
meet the coverage goals of an algorithm like whole suite. The test case is then wrapped
in a try except statement.

Our mutation coverage tool considers a mutant killed when it gets a non-zero return
value from the test case execution. This will never happen for failing test cases, as
errors are caught in the try except statement without altering the return value of the
testing run. As for why get_dft_calculator was apparently never mutated in a way
that would have been discovered, the explanation could be an issue in mutmut, which
is discussed in section 4.4.

In conclusion, we can say that whole suite was able to achieve a significantly higher line
coverage than FD-random, the generated test suites are however of little practical value
due to them mainly consisting of failing test cases. While those can be investigated
individually to find potential faults, they are not sensitive to new errors as proven by
the non-existent mutation coverage.

23

H0 H1 p-value for H0

FD-random ≥ Whole Suite FD-random < Whole Suite 3.54002363 · 10−8

FD-random ≥ DynaMOSA FD-random < DynaMOSA 1.6317291 · 10−14

Whole suite ≥ DynaMOSA Whole suite < DynaMOSA 5.73774652 · 10−12

MIO ≥ DynaMOSA MIO < DynaMOSA 9.71077652 · 10−15

FD-random ≥ MIO FD-random < MIO 0.9984576
Whole suite ≥ MIO Whole suite < MIO 1.0

Table 2: Statistical evaluations of our assumptions regarding line coverage. The values
that are small enough to reject H0 are marked in bold.

algorithm number of missed lines miss rate

FD-random 53/195 27.18%
Whole Suite 48/195 24.62%
DynaMOSA 26/195 13.33%
MIO 57/195 29.23%
Combined 25/195 12.82%

Table 3: How many lines were missed by each test case generator, meaning how many
executable statements were not covered by any test suite for the respective
algorithm. The row ”Combined” shows the number of lines not covered by
any of the automatically generated test suites.

DynaMOSA DynaMOSA vastly outperformed any other strategy we examined. From
the 90 second mark, its median line coverage exceeded that of all other algorithms.
At the end of the generation run, the median line coverage of DynaMOSA was at
0.59, which is higher than the maximum line coverage achieved by any run an another
algorithm over the entire runtime.

The Mann-Whitney U test supports the assumption we made earlier, that DynaMOSA
test suites would have a higher line coverage than any other algorithm. Detailed results
can be found in table 2. It is also no surprise that DynaMOSA has the lowest amount
of missed lines out of all algorithms, as shown in table 3. A single line of the SUT
(line 237) is not covered by DynaMOSA, but is covered by FD-random. All other lines
executed by any generated test suite are also covered by at least one DynaMOSA test
suite.

DynaMOSA also generated more failing than passing test cases. It did however
achieve a higher mutation coverage than the other two genetic algorithms, with a median
mutation coverage of 0.14. Based on this, we conclude that DynaMOSA generated test
suites would be the most sensitive created in this experiment.

24

By all metrics we used, DynaMOSA outperformed other automated test case generation
techniques. It had the highest median line coverage, the highest absolute line coverage,
the lowest amount of missed lines, and the best mutation coverage. This aligns with
results of previous experiments.

MIO The greatest surprise to us when seeing the results was the bad performance of
MIO-generated test suites. Not only were they consistently outperformed by the other
genetic algorithms, they were not even able to compete with test suites generated by
FD-random.

In a previous run, our experiment was given a runtime budget of 600 seconds. After
seeing the poor performance of MIO, we decided to increase the time by 50%, which
however did not change our results.

MIO has performed better in other studies, such as the one conducted by Campos
et al.[10] or the evaluation by the authors of MIO[9]. We can only speculate why it
performed so poorly in our evaluation. The SUT might inhibit specific properties that
prevent MIO from functioning as intended. MIO in Pynguin is configured to start its
focus phase after 50% of the testing time has elapsed. This could be too early.

Even though it has a lower line coverage than whole suite, MIO does have a higher
mutation coverage. With a median of 0.02 and a maximum of 0.07, it is still far worse
than DynaMOSA, but that is to be expected with the much lower line coverage it
achieves. If a line is not executed by a test suite, a change to it is certainly not detected.

In a recent study[15] conducted by Lukasczyk et al. with Pynguin, more advanced
algorithms were compared, namely MOSA, DynaMOSA, and MIO. Those were tested
on a total of 20 Python projects, ranging from 89 to 3311 lines of code in size. Regarding
median and mean performance, MIO was slightly behind DynaMOSA and MOSA, while
all three performed better than whole suite and FD-random. Simply due to the much
larger code base examined in their study, we do not consider our findings regarding
MIO as universally valid and regard them as an outlier. Why exactly MIO performed
poorly on our SUT is an open question for further research.

MIO performed much worse than we expected regarding line coverage. The MIO test
suites appear to still be more sensitive than those generated by whole suite.

RQ1: We were able to confirm performance expectations in relation to each other for
FD-random, whole suite and DynaMOSA in regards to line coverage. MIO performed
far worse than we had anticipated, but we do not consider this to be universally valid
for test case generation Python.

25

Automated test case generation and safety While running our first experiments with
Pynguin, we noticed lots of obscurely directories that were created while generating tests
for our SUT. This happened because elastic2 has functions that can create directories
and files. The authors of Pynguin are aware of such possibilities, and therefore force
users to set a certain flag before being able to run Pynguin. This flag shall remind
users that the system under test is executed during test generation and can potentially
damage the system it is running on. For the same reason, we created a safe version of
our SUT. To mitigate potentially unsafe behavior, another concept already discussed
in this thesis could be used: mock testing. Python already offers functionality14 to
mock its open function, which is used to open files. An optional future integration of
mocking into test generation might help reduce safety risks.

In the manual test suite, we mitigated safety concerns by incorporating mock testing
to have better control over file writing operations. We also hope to be able to reduce
testing time in future versions of the SUT by using mock testing. We were however
unable to conduct experiments on this, as elastic2 is currently not capable of running
actual simulations.

RQ2: Mock objects helped us to improve safety during testing. We pointed out a
possible use case of mock testing in combination with automated test case generation,
which should be explored in future research.

4.3 Challenges for automated test case generation
In this section, we will discuss possible reasons for problems test case generators
could have faced when trying to generate tests for our SUT. To do this, we analyzed
lines that were missed by all test suites. The function setup_runs() calls a number
of other functions to prepare the inputs for the simulation using a DFT code. At
first, setup_runs() will perform a number of checks to the Atoms object, such as
if the object contains multiple Atoms, which is required. One of them is performed
in determine_xtal_structure(): the Atoms object has to be verified as a valid
three-dimensional structure.

Generating such an object is very difficult, which is why the lines executed after a suc-
cessful classification in determine_xtal_structure() are not reached by any test suite.
However, this also means that any line after the call of determine_xtal_structure()
in setup_runs() will not be reached, even if the test generators have already covered
the bodies of the functions that are called there.

Some functions in the SUT require others to be called before in order to reach
certain parts of the code. These implicit dependencies can be hard to resolve for test
case generators that mainly observe how changes affect the coverage goals they try to
achieve. The lack of type hints in some function arguments can also be challenging for
14mock_open Documentation, https://docs.python.org/3/library/unittest.mock.html#

mock-open

26

https://docs.python.org/3/library/unittest.mock.html#mock-open
https://docs.python.org/3/library/unittest.mock.html#mock-open

test case generation. Two highlight both of these difficulties, consider the example in
Listing 3, which is taken from elastic2 and had comments and empty lines removed.

1 def convert_voigt_to_mat(self, strain_vec):
2 eta_matrix = np.zeros((3, 3))
3 eta_matrix[0, 0] = strain_vec[0]
4 eta_matrix[0, 1] = strain_vec[5] / 2
5 eta_matrix[0, 2] = strain_vec[4] / 2
6 eta_matrix[1, 0] = strain_vec[5] / 2
7 eta_matrix[1, 1] = strain_vec[1]
8 eta_matrix[1, 2] = strain_vec[3] / 2
9 eta_matrix[2, 0] = strain_vec[4] / 2

10 eta_matrix[2, 1] = strain_vec[3] / 2
11 eta_matrix[2, 2] = strain_vec[2]
12

13 return eta_matrix
14

15 def get_deform_matrix(self, strain_coeff: float, strain_vec):
16 distortion_vec = np.multiply(strain_coeff, strain_vec)
17 eta_matrix = self.convert_voigt_to_mat(distortion_vec)
18 ...

Listing 3: elastic2 code fragment which shows the relevance of type information.

The argument strain_vector of get_deform_matrix has no type hint, thus test
case generators can insert any randomly generated variable or object for it. To not
throw an exception, the operation in line 16 requires strain_vector to be a valid input
for numpy.multiply, which 33.3% of our generated test suites managed to achieve.
However, to successfully execute the next line, which calls convert_voigt_to_mat,
strain_vector has to be a vector with at least 6 elements, most of which need be of
a data type that can be divided by an integer. Only 6.9% of our generated test suites
were able to generate an input that would not result in an error at line 17. This is
particularly interesting because 53.5% of all test suites were able to generate valid
inputs for convert_voigt_to_mat, but were apparently unable to put them in the
right place. As a result not only line 17, but the entire rest of the function, which
includes 13 more statements, are covered by only very few test suites.

4.4 Threats to validity
Randomness in test case generation We evaluated test case generation algorithms
which by their nature rely on (pseudo-)randomness. This is especially true for the FD-
random test case generation with Pynguin or Hypothesis, but also for the evolutionary
algorithms whole suite, DynaMOSA, and MIO. The latter ones randomly generate
initial test suites and modifications, like mutation and crossover, are applied based on

27

random numbers. We tried to mitigate this be running 40 runs per generator, but we
cannot fully eliminate the possibility of our results being influenced by randomness.

The SUT Our experiments were carried out on a single module with 241 executable
lines of code. Compared to other experiments, like the ones conducted by Lukasczyk
et al.[3][15], this is not a large code base. Certain properties of the SUT, such as its
reliance on a fairly complex object as an input in form of ASE Atoms, could have
favored some generation techniques while putting others at a disadvantage. The bad
performance of MIO might be a hint for this being the case.

Issue with mutmut The mutation testing tool mutmut used by us identified a total of
238 mutations it would apply on our SUT in one run, according to its console output.
It would however stop generating mutants after it had generated exactly 100. This is
apparently a known issue15 and has to our knowledge not been fixed yet. We decide to
use the achieved results anyway since 100 mutants were consistently generated on each
run, but our results are likely influenced by this issue.

Different tools We used unittest as our test runner for the manual test suite, while
Pynguin uses pytest. Additionally, Pynguin has an own implementation to measure
coverage. We used coverage.py for our manual test suite. Differences in these tools
might have influenced our results, and should be taken into account when comparing
coverage measurements.

15mutmut issues: Mutmut stops running #183, https://github.com/boxed/mutmut/issues/183

28

https://github.com/boxed/mutmut/issues/183

5 Conclusion and Future Work
While there might not be as many testing tools as there are in other languages, there
are still considerable possibilities for testing in Python. In this thesis, we presented
different tools and applied them to a real world program. We implemented a manual
and a semi-automatic test suite for the system under test. Furthermore, we conducted
an experiment to compare different test case generation algorithms in Python. Some
expectations set by other languages could be confirmed by our results, such as the
generally good performance of DynaMOSA. Other findings do not line up with current
research, notably the bad performance of MIO. We took a closer look at the results
of our experiment and analyzed possible challenges our system under test provides to
automated test case generation.

One topic for future research is the unexpectedly bad performance of the MIO
algorithm in our experiment. The possibility of combining concepts discussed in this
thesis, namely test case generation and mock testing, is also a subject of future research.

29

References
[1] Gordon Fraser and Andrea Arcuri. A.: Evosuite: Automatic test suite generation

for object-oriented software. In In: Proc. of ACM SIGSOFT ESEC/FSE, pages
416–419, 2011.

[2] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random testing
for Java. In OOPSLA 2007 Companion, Montreal, Canada. ACM, October 2007.

[3] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. Automated unit test
generation for python. Lecture Notes in Computer Science, page 9–24, 2020.

[4] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing: unit testing with
mock objects. Extreme programming examined, pages 287–301, 2000.

[5] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, 2011.

[6] Melanie Mitchell. An Introduction to Genetic Algorithms. 1996.

[7] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276–291, 2013.

[8] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection of
the targets. IEEE Transactions on Software Engineering, 44(2):122–158, February
2018.

[9] Andrea Arcuri. Many independent objective (mio) algorithm for test suite genera-
tion. Lecture Notes in Computer Science, page 3–17, 2017.

[10] José Campos, Yan Ge, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. An
empirical evaluation of evolutionary algorithms for test suite generation. In Tim
Menzies and Justyna Petke, editors, Proceedings of the 9th International Symposium
Search-Based Software Engineering (SSBSE), pages 33–48. Springer International
Publishing, Cham, 2017.

[11] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli,
Rune Christensen, Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer,
Cory Hargus, et al. The atomic simulation environment—a python library for
working with atoms. Journal of Physics: Condensed Matter, 29(27):273002, 2017.

[12] Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren,
Karsten Reuter, and Matthias Scheffler. Ab initio molecular simulations with
numeric atom-centered orbitals. Computer Physics Communications, 180(11):2175–
2196, 2009.

31

[13] Andris Gulans, Stefan Kontur, Christian Meisenbichler, Dmitrii Nabok, Pasquale
Pavone, Santiago Rigamonti, Stephan Sagmeister, Ute Werner, and Claudia Draxl.
Exciting: A full-potential all-electron package implementing density-functional
theory and many-body perturbation theory. Journal of Physics: Condensed Matter,
26:363202, 08 2014.

[14] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car,
Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila
Dabo, and et al. Quantum espresso: a modular and open-source software project
for quantum simulations of materials. Journal of Physics: Condensed Matter,
21(39):395502, Sep 2009.

[15] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. An empirical study of
automated unit test generation for python, 2021.

32

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den 2. Februar 2022

33

	Introduction
	Preliminaries
	Test Coverage
	Test Case Generation Algorithms
	Test Case Generation in Python
	Tool: Pynguin
	Tool: Hypothesis
	Other tools
	Mock Testing
	System under test: elastic2

	Development and Experiment
	The gold standard
	Test suite using the Hypothesis framework
	Experiment: Automated test case generation with Pynguin

	Evaluation
	Evaluation methodology
	Results and Analysis
	Challenges for automated test case generation
	Threats to validity

	Conclusion and Future Work

