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Abstract
Localizing bugs in software can be difficult and time-consuming. To make this task easier,
software fault localization (SFL) tools are developed and used to support developers
in finding the causes of bugs. Today, most SFL tools use their own output format and
possibly their own tools for presenting results. This makes the use of multiple SLF tools
and integration of new SFL tools in development environments difficult. It also means
that for each new SFL tools being developed, it is often required to also create some way
to display the results in a readable way.

With this work I will try to lessen some of these issues by implementing a framework
that provides a generalized interface for SFL results and an IDE plugin that allows
extensions to process and present these SFL results.
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1 Introduction
Fixing bugs in software uses a significant share of the working time of programmers[7, 6].
Reducing the time spent finding and correcting software faults thus will reduce the
economical cost of software. Additionally, fixing bugs that appear in production quickly
can save significant amounts of money[8]. To reduce the time spent on bug fixing, a
number of tools have been developed, such as debuggers that can trace and change the
flow of computer programs (e.g., GDB[2]), static code analysis tools (e.g, the Clang Static
Analyzer[1]), runtime sanitizer, or software fault localization (SFL) tools. Creating a
universal framework for the latter will be the focus of this thesis.

1.1 Software fault localization techniques
SFL tools are intended to help the programmer finding the location of code that causes
faulty behavior, which can otherwise be a lengthy process, especially in bigger code bases.
Usually these tools use a combination of failing and successful test cases to infer likely
causes. The exact way this is done depends on the concrete algorithm used. To give an
idea how these work and what kind of in- and output they work with (especially this is
relevant for this thesis), I will provide a quick overview over a few of these techniques.

1.1.1 Spectrum-based fault localization

Spectrum-based fault localization methods assign a suspiciousness score to elements of the
program (ines or functions, for example). The score for a program element is calculated
based on how often this element happens to be executed in failed or successful tests[10].
Typically, the more often this program element is involved in faulty tests compared to
its involvement in successful tests, the higher its suspiciousness score is. The expected
output of SFL tools based on this technique is a list of program elements (lines, functions,
etc.) each with a score indicating the suspiciousness of it.

1.1.2 Program slicing

A program slice is a set of statements that have an effect on some kind of criterion. In
the context of debugging, such a criterion could, for example, be the execution of a
program statement, that (we know) will cause the program to be in a faulty state (e.g.,
“assert x > 0” with “x <= 0”). The idea is that the cause for the faulty behavior (i.e.
the criterion) will be in one or more of the statements in the program slice. Knowing
these statements may help the programmer to find the bug more quickly[9]. There are
different ways on how to create a program slice. One could generate a very inclusive
slice by analyzing the program statically to build a program data/control dependency
graph. Slices generated like this will most likely contain statements that are irrelevant to
the slice criterion in real scenarios. Another way to generate program slices is dynamic
slicing, which executes the program with concrete inputs and then generates the slice
based on these executions. This may reduce the number of irrelevant statements in a
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slice. A typical output of a slicing based SFL tool would be the slice associated with a
slice criterion for failing tests (e.g., “assert test() != FAIL”).

1.1.3 Delta debugging

The idea behind delta debugging is to compare a failed test with a minimally different
successful test at different states of program execution to find the cause-effect chain that
leads to the failure of the failed test[14]. Thus, the typical output of a tool based on this
method would be an ordered list of statements with the relevant assignment of variables
with the implicit meaning that the next element in the list was (partly) caused by the
current element.

1.1.4 Learning based fault localization

There exist different machine learning based approaches. One example is to train the
model with coverage data of test cases of the program that we want to test, to classify
whether a test case will fail or not. Using artificial test cases that only cover very specific
parts of the program, the trained model then rates the probability of this specific part of
the program causing the test to fail[13]. The output could be a list of program statements
linked with a likelihood for being the cause of a bug. While I don’t know of any tools
that do this, I can also imagine that an SFL tool using this ML method could allow a
programmer to interactively invoke the classification model on a selected part of the code.

1.2 Motivation for a unified framework
Usually each SFL tool has its own specifications how the inputs are provided and in which
format the results are returned. This comes with the problem that tools for presenting the
results to the programmer in a helpful way (instead of potentially long lists of numbers
and raw text), or for integrating the SFL tool in a development environment, need to
be developed from scratch for each new SFL tool. This makes the development of SFL
tools unnecessarily expensive. Additionally, this will make it difficult for the user to
integrate multiple SFL tools into a single development environment. When introducing
new SFL tools, potentially existing frameworks for SLF tools can’t be reused, resulting
in additional configuration work.

To deal with some of these issues, Simon Heiden proposes to create a language that
could be used by a large range of SLF tools to describe the results of the automatic fault
localization processes. Having such a universal format, SFL tool developers can focus on
targeting that, while tools using the SFL results (e.g., visualizing the result, letting the
programmer explore the results interactively in the IDE, or describing them in natural
language) can be developed and used independently of the SFL tool. Integrating different
SFL tools that implement this proposed language will be also much easier, as processing
the results would be nearly identical no matter the SFL tool that produced the result.
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1.3 Fault describing transition systems
The fundamental idea of how to encode numerous possible bug descriptions is to use
a transition system to describe classes of program flows. Such a transition system has
predicates on each node and edge. These predicates describe the conditions of the
program at different times, for example, “Program is at line 5 and x == 5”. Nodes
stand for singular states of a program, while edges describe any number of states that
happen between two states/nodes. Thus edges use temporal logic formulas as predicates,
while predicates associated with nodes use traditional non-temporal logic. Using these
predicates on transitions systems, bugs then are described by creating transition systems
that are as close as possible to describing the class of program flows that include a specific
bug. An example of a fault describing transition system (FDTS) can be seen in Figure 1.

Figure 1: An exemplary FDTS. Each box stands for a node in the graph and thus
for some class of program state. The very left node, for example, requires
that “a.length < 100”, and additionally “@17” (which stands for the program
being in a state that corresponds to the source code line 17). The top left edge
also has a requirement, namely that for all program states that happen during
the start and end node of that edge (that is what “Globally(...)” stands for)
x must be neither 5 nor 7. Because an FDTS describes a class of transition
systems, it needs at least one entry and exit point. Here, these so-called “start
nodes”/“end nodes” are depicted by double box border/thick box border. This
FDTS describes program flows of the code example Listing 2 that end in the
function “main2()” returning 1.

1.4 Scope
Implementing the proposed SFL result language in form of fault describing transition
systems and using the resulting framework to create an IDE plugin for the JetBrains
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IntelliJ family, that can be used to load SFL results and process them using additional
tools/extensions, will be the work of this thesis.

2 Requirement analysis
The fundamental motivation and thus requirement for the system I will develop, is to
mitigate the problems described in subsection 1.2.

Rough system overview The system should consist of a framework that provides a
universal interface for loading and working with SFL results (based on FDTS), and an
IDE plugin, based on the previously mentioned framework, that allows the installation
and usage of extensions over a graphical interface.

User types The users of this system can be grouped into three different types:

• End user: Someone who wants to use the plugin together with extensions and
SFL tools to help them to locate bug causes.

• Plugin extension developer: Someone who develops extensions for the IDE
plugin, that process and possibly present the SFL results to the end user.

• SFL tool developer: Someone who develops an SFL tool and wants to target the
FDTS framework.

Each of these types of users will have different requirements for the system, so I will
consider them separately.

2.1 End user requirements
1. The end user wants to load the results of SFL tools into the plugin. This should be

a very similar procedure for each kind of SFL tool.

2. The end user wants to organize loaded SFL results. This could include sorting SFL
results (for example by suspiciousness score), or grouping SFL results into different
tabs. The general criterion is that the lack of organization features shouldn’t hinder
the usage of the plugin.

3. The end user wants to easily install new 3rd party extensions. Again, this process
shouldn’t differ significantly across extensions.

4. The end user wants to run selected extensions on selected loaded SFL results.

The end user also has demands for potential extensions, which aren’t directly require-
ments for the system, but they indirectly add constraints to what kind of API the system
should at least provide the plugin extensions with.

7



5. The end user wants to view the SFL results in the internally used, raw format
(FDTS).

6. The end user wants to use one or more SFL results to generate one or more new
SFL results. A concrete example where this could be useful, is an extension that
transforms a very complex SFL result into a smaller, easier to understand SFL
result (for example, by only reasoning about program flow at function level, instead
of line level).

7. The end user wants to read an SFL result described in natural language

8. The end user wants to retrace the SFL result, possibly interactively, alongside the
source code in the IDE.

9. The end user wants to select elements in an extension that displays an SFL result
in a raw format, and have the selected element highlighted in the extension that
describes the SFL result in natural language. This rather concrete example should
be seen as reason for why communication between different extension could be
necessary (see also subsubsection 2.2.2).

2.2 Plugin extension developer requirements
In this case, I will differentiate between requirements for the FDTS framework (i.e. the
interface for loading and working with SFL results), and the requirements for the interface
that the IDE plugin should provide for extensions. Generally the FDTS framework should
also be usable for usage in different environments (for example, other IDEs, such as
Eclipse), to ensure that the libraries (which, for example, allow the description of FDTSs
in natural language) that are used by plugin extensions are not bound to this specific
IDE plugin.

2.2.1 Requirements for the framework

1. The extension developer wants to have access to the entire content of an SFL result.
In the context of an FDTS this means access to the general graph properties (nodes,
edges, neighbors, etc.), access to predicates at nodes and edges, being able to access
and understand the meaning of predicates.

2. The extension developer wants to modify and create new SFL results.

3. The extension developer wants to use a custom implementation of the FDTS
interface (for example for application specific performance reasons).

2.2.2 Requirements for the IDE plugin

1. The extension developer wants access to the IDE functions, for example, to be able
to see the source code, or to have access to the debugging functions of the IDE.
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2. The extension developer wants an interface to allow end user interaction with the
extension. See items 4–9 in subsection 2.1.

3. As an implicit requirement of item 9 of subsection 2.1 and for similar applications,
the extension developer wants an interface to communicate with other plugin
extensions.

2.3 SFL tool developer requirements
The SFL tool developer wants to be able to completely and without too many expenses
represent the results of their SFL tool using the FDTS language. While it is not yet
clear if FDTS are powerful enough to fulfill this criterion for most existing and potential
SFL tools, for this work it is assumed that the FDTS language is good enough, and the
analysis in this direction will be left for future work.

The requirement for the framework is mainly to make sure that the full potential of
the FDTS scheme is used. This means that the implementation of predicates at nodes
and edges should be powerful enough that either all with FDTS compatible SFL tools
can represent their results out-of-the-box or that it is possible to add new predicate types
using framework extensions.

3 Architecture
Designing a capable architecture will be key to ensure a high extensibility of the system.
The extensibility is important to allow many potential approaches for presenting SFL
results to be implemented for the IDE plugin (which is directly and indirectly part of the
end user and extension developer requirements).

As the plugin will be developed for the IntelliJ IDEA IDE[4], which has a Java plugin
API, Java has been selected to be the language in which the system will be implemented.
The IntelliJ IDE has been chosen because it is a widely used IDE family with similar
plugin interfaces for IDEs for different languages (Java, Python, C++, etc.), which in the
future would make it easier to make this plugin ready for other programming languages.

3.1 FDTS framework
The FDTS framework consists of four main parts: The FDTS interface, the FDTS loader,
a default implementation for the FDTS interface, and a small predicate library.

3.1.1 Predicate Library

As described in subsection 1.3, an FDTS has predicates at its nodes and edges. These are
supposed to describe parts of the program state, for example, by having constraints for
variable values, or requiring that the program is at a state, that corresponds to a specific
line in the source code. Statements like these (“x == 1”, “a.length > 0”, or “at line
350”) are considered to be atomics, as they don’t contain any sub-predicates. Predicates
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with sub-predicates are functions like And, Not, Or (logical operators) Globally, or
Future (temporal logic operators). This way, multiple atomics can be logically combined.

The concrete implementation uses types to describe which kind a given predicate is
(the Java function instanceof can be used to determine the type at runtime). While this
will potentially require a long list of “if(v instanceof SomePredicate)” statements,
it would be necessary in any case, as each predicate will need to be handled differently,
simply because of their different semantics. Consequentially, SFL results that require
additional predicates (that come not installed with the predicate library) can only be
used either by programs/extensions that don’t require the knowledge of the semantics
of all predicates, or by programs/extensions that have knowledge of these additional
predicates.

See Figure 2 for a specific explanation of the predicate class architecture.

Figure 2: Every predicate implements the interface Predicate. Atomic types should
be inheriting from Atomic. Temporal operators and Not are all unary logic
operators and thus implement UnaryOperator, which provides a function to
retrieve the single sub-predicate. Similarly, And, Or, and the temporal operators
implement BinaryOperator which provides functionality to access the sub-
predicates. The current framework comes with five default atomic predicate
types: AtLine, BiggerThan, Equality, True, StartOfProgram. New atomic
types can be easily added to the framework.

Java’s generic type feature is used to provide a compile-time check, that predicates
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in a temporal context are temporal predicates, and predicates in a singular state (i.e.
non-temporal) context are non-temporal predicates. Atomics are assumed to always be
non-temporal, so they always only describe a single program state. Temporal operators
(Future, Globally) are always considered to be temporal predicates. Their sub-predicates
can be both temporal predicates, or non-temporal predicates. The logical operators Not,
And, and Or can also be temporal and non-temporal, however with the condition, that
their sub-predicates are also temporal exactly if they themselves are temporal, or the
other way around, that they themselves are non-temporal exactly if their sub-predicates
are also non-temporal.

Concretely, this can be achieved having a generic parameter for the interface Predicate,
and then applying the mentioned restrictions in the implementations, e.g., Atomic only in-
herits from Predicate<NonTemporal> while And can inherit from both Predicate<NonTemporal>
and from Predicate<Temporal>.

This guarantee only holds during compile time, and because generic type information
gets erased during runtime, there also exists functionality to check during runtime,
whether a predicate is temporal on non-temporal. The alternative would have been
to have concrete types for each scenario, (e.g., having PredicateTemporal and also
PredicateNonTemporal). However, this would introduce a lot of code duplication which
lead me to decide against this approach.
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3.1.2 FDTS interface

As the FDTS is fundamentally a directed graph, the FDTS interface needs the usual
graph features: Getting a list of all nodes/edges, getting neighbors of nodes, getting
out-/incoming edges of nodes, creating/removing nodes/edges. Nodes are indexed by a
wrapper class (NodeID) around an integer. An implementation of the FDTS interface
can use this integer in any preferred way. A single integer should generally be enough to
implement any kind of technical indexing scheme. Edges are indexed using a wrapper
class (EdgeID) around two NodeIDs which stand for the start/end node of the given edge.
This means, that a function to retrieve the start and end nodes of an edge is not needed
in the FDTS interface, as one can just look directly at the EdgeID in question to get that
information.

Furthermore, the FDTS interface has a number of functions to set and get predicates
connected to nodes and edges. There are also functions to set, unset, get, and check for
start/end nodes.

The FDTS interface provides a method to transform one FDTS instance into another
semantically identical FDTS instance of another FDTS implementation. This will be
useful in case that an extension needs to use an FDTS implementation different from the
default implementation (which will be described in subsubsection 3.1.3), for example, to
improve performance for a specific edge case.

A complete depiction of the FDTS interface can be seen in Figure 3.
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Figure 3: An overview over all methods of the FDTS interface.

3.1.3 FDTS default implementation

The provided default implementation of the FDTS interface stores nodes in an
ArrayList<Predicate<NonTemporal> object (see Figure 4). Elements of value null are
considered to be non-existent. The indexing integer of NodeID is then simply used to
point at the position in this list. Edge predicates are stored in an
ArrayList<ArrayList<Predicate<Temporal>>> object, where the edge from node a to
node b is located at edges[a][b] (a and b stand for the internal integer value of the
NodeIDs that describe the edge). Start and end nodes are stored in two lists of NodeIDs.
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Figure 4: The important fields of the default FDTS implementation.

The implementation hasn’t been designed to be fast or memory efficient. The main
goal was to create a simple, easy to understand data structure. This is important, as this
default implementation (converted to the JSON format) is intended to be the primary
communication format with SFL tools.

The framework comes additionally with an FDTS decorator class and an FDTSMeta
implementation based on this FDTS decorator and the default implementation, with a
dictionary which can be used to capture all additional information an SFL tool might
want to provide. This is mainly meant to be used to communicate with SFL tools.
Extensions that want to use additional meta information of an FDTS should probably
convert a given FDTSMeta type into their own data structure, as it is quite difficult to
work with a map/dictionary of strings, instead of proper statically typed structures.

3.1.4 FDTS loader

The FDTSLoader is a wrapper around the Gson[3] library. Gson allows (de)serialization
of JSON and Java Objects. The FDTSLoader is necessary to manage the otherwise
ambiguous subtypes of FDTS and Predicate. It allows converting a JSON formatted
string into any FDTS implementation, or into a list of FDTSMeta instances. Restricting
the loading of lists of FDTSs to only FDTSMeta is not intended but currently the only
workaround for some technical issues.

At runtime the FDTSLoader can be configured to accept 3rd party FDTS and Predicate
implementations.

FDTS JSON format Listing 1 is an example, how a JSON formatted FDTS could
look like. As described previously, the FDTSLoader could load any kind of FDTS
implementation, but in practice it will be likely easiest to use the provided FDTSMeta
implementation, as the later described IDE plugin will be able to only load this type for
the time being.
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Listing 1: An example of an FDTS in a JSON format based on the FDTSMeta implemen-
tation.

1 {
2 // the "info" object can hold all kinds of meta data about the FDTS
3 "info": {
4 "sus": 0.8164965809277261 ,
5 "tool": "Some␣SFL␣tool",
6 "test_module": "src/test/java/Testing.java"
7 },
8 // this is the FDTS itself , which will be translated by the
9 // FDTSLoader into the FDTS implementation that is specified under

10 // "type" (in this case " FDTSImpl ")
11 "fdts": {
12 "type": "FDTSImpl",
13 // list of nodes , contains the predicates at each node
14 "nodes": [
15 {
16 "type": "Not",
17 "subPredicate": {
18 "type": "AtLine",
19 "line": 59,
20 "path": "./src/main/java/TestcaseForTracer.java"
21 }
22 },
23 ...
24 ],
25 // list of edges , an edge at position [x][y] in this array
26 // stands for an edge from node x to node y, contains the
27 // predicates at each edge
28 "edges": [
29 [
30 {
31 "type": "Globally",
32 "subPredicate": {
33 "type": "True"
34 }
35 },
36 null ,
37 ...
38 ],
39 ...
40 ],
41 // start and end nodes are simply an array of nodeID objects
42 "startNodes": [{"id": 0}],
43 "endNodes": [...]
44 }
45 }
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3.2 IDE plugin
The purpose of the IDE plugin is to give extensions the possibility to directly interact
with the for the SFL results relevant development environment (e.g., the source code and
build system), and secondly to provide the end user with a graphical interface to load
SFL results and extensions, and use them together.

The user interface is implemented using the Java Swing library, and the entire man-
agement of FDTS objects and extensions is done very close to the data structures the
Swing API provides.

Figure 5: A rough overview of the IDE plugin. It uses the interfaces for plugins of the
IntelliJ IDE. The plugin provides an API for extensions to work with SFL
results, as well as functionality for reading and loading SFL results using the
FDTS framework. It can be seen as a server that provides clients (extensions)
with FDTSs as data.

3.2.1 API for extensions

The central part of the API for extensions are two Java interfaces: Consumer and
Transformer. Extensions that want to use one or more FDTSs to present them to
the user, or use them in some other way (possibly using the IDEs functionality), can
implement the Consumer interface (see Figure 6). The single function of that interface
(void run(...)) will be called when this Consumer is selected by the user to be run on
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a selected FDTS. Through the arguments of that function, the Consumer will receive the
list of input FDTSs and access to the IDE (e.g., window creation, source code access).
Transformer works the same, except that its function returns a list of (new) FDTSs.
Extensions can use the Transformer interface for applications, that convert one or more
FDTSs into one or more new FDTSs. An example would be, as previously mentioned,
the intention to transform a very complex FDTS into a simpler FDTS that only reasons
about program flow at the function level. In section 4 I will describe in more detail
how the end user can create a new custom Consumer type by combining a number of
transformers and consumers.

For Consumer types there is additionally the choice of implementation Connectable,
which allows communication between jointly executed Consumers, similar to a simple
observer pattern. At the moment, the only option for messages is to send/receive the
currently “activated” part of the FDTS (see the requirement item 9 of subsection 2.1).
In future this could be extended to be a more universal messaging system. For example
instead of sending (and receiving) and FDTS and an element ID, extensions could simply
communicate using Object and then use instanceof to decide how to act on a message.

Figure 6: The structure of the extension API. CopyTransformer(Factory) and
PrintJsonFDTS(Factory) are exemplary extensions.

Extensions are loaded using a class loader, that looks for TransformerFactory and
ConsumerFactory implementations among the libraries in the IDE plugin package. In
future this might be extended to load classes in JARs in a specific folder. The reason
for having factories for Consumer and Transformer is to make sure that the end user
selecting a consumer to be run on an FDTS, shouldn’t need to worry about the state of
the consumer that may be influenced by previous usages of this consumer. Each time the
end-user selects a consumer, in the background the plugin creates a new Consumer using
the according factory. To allow the end user to change properties of a consumer (e.g.,
setting up the preferred way some graph is displayed), without being required to do this
each time the consumer is newly executed, both factory types allow the implementation
of a settings function, which provides access to the IDE, such that the extension can
create a settings dialog. The plugin provides the end user with a graphical interface
from which they can select to run this settings function of a selected ConsumerFactory
or TransformerFactory.
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3.2.2 Extensions

The plugin comes with a few extension out-of-the-box. These are mostly written with
the intention to test and demonstrate the (required) capabilities of the system, and thus
aren’t focused on providing a good debugging experience to the user.

Tracer extension This extension takes an FDTS and, as long as this extension is active,
uses it during debugging sessions (i.e. when the end user executes the program with the
debugger) to stop at moments where the current program state matches a node of the
FDTS under the constraints of the previously traversed program states. This can be
useful for the programmer to get a better understanding of the behavior of a program
that is (possibly) the reason for faulty test cases.

Each time a new debugging session is started, the extension sets breakpoints for each
node, that contains an AtLine atomic (to be evaluated to true, this atomic requires the
program being in a state corresponding to the given line in a source code file). Using
an IDE breakpoint feature, additional constraints that the predicate at the given node
expresses, are added to the breakpoints. These constraints in form of a Java expression
evaluating to a boolean, must be true so that the associated breakpoints get activated.

Now, every time a breakpoint gets reached, the extension considers it and all previously
encountered breakpoints, and tries to find a path from any start node of the FDTS to
the node that is associated with the current breakpoint, with the restriction, that only
FDTS nodes can be visited, that have already been visited previously during the program
execution.

This means that at breakpoints where it can be proven, that the current state of the
program cannot be part of any FDTS node (which to recapitulate describe a class of
program states), are skipped. However, this leaves a number of program states that
won’t be skipped, but will contradict the FDTS at a later state. Additionally, predicates
on edges are completely ignored. Improving on this is left for future work.

Print active FDTS element This extension displays the JSON representation of the
selected FDTS graph in a new tab window. If it is run together with another extension
that uses the messaging system between extensions, it will print the JSON representation
of the currently selected node/edge.

Display FDTS as graph This extension uses JGraphX, a simple graph visualization
library[5] to display the FDTS graph. It allows the end user to select nodes and edges.
When this happens, this extension uses the messaging system to broadcast the selected
element to each extension, that has been executed together with this one.

Copy transformer The copy transformer is a Transformer that can be set up by the
user to return any number of copies of the incoming FDTS. This has no practical
application so far. It is merely supposed to demonstrate how transformers and extension
settings work.
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4 User interface
The user interface of the IDE plugin consists of two main panels: The FDTS manager
window, and the consumer manager window. The FDTS manager window allows the
programmer to load FDTS from JSON formatted text files and organize the loaded FDTS
in different tabs. Not yet implemented is a sort function, that allows ordering FDTSs in
a tab after some meta criterion, for example the suspiciousness score or filename. The
consumer manager window allows the selection of extensions (in the form of consumer).
The user can also create custom consumers by chaining multiple transformer together
with a single consumer at the end.

Figure 7, Figure 8, and Figure 9 demonstrate the main user interface features.

Figure 7: The FDTS manager window (left panel) can be seen with a number of FDTSs
already loaded. On the right is the consumer manager window. When selecting
one or more consumers in the consumer manager window and at the same
time one or more FDTS in the FDTS manager window, the “Run” button
in the consumer manager window can be clicked to execute the extensions.
Starting multiple extension at the same time this way will let these extensions
communicate using the message system.
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Figure 8: The panel on the right appears after clicking on the “Create” button in the
consumer manager window. In this window the user can combine transformers
and consumers to a new consumer type. This way, transformer extensions can
be used.

Figure 9: An example of a running consumer. It displays the previously selected FDTS
using a graph visualization library.
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5 Evaluation
To evaluate to what extent the FDTS framework and the IDE plugin satisfy the goal
of removing barriers in SFL tool development and making the usage of SFL tools more
accessible, ideally a user survey (among SLF developers and users) would need to be
done. However, this validation isn’t feasible for the scope of this thesis. Instead, I will
systematically examine if the requirements set in section 2 are satisfied.

Additionally, as a proof-of-concept, the SFL tool FLACOCO[12] has been customized
to target the plugin.

5.1 Verification: End user requirements
(see subsection 2.1)

1. The end user can load any conforming SFL result.

2. ( ) The end user can organize SFL results using tabs. Sorting is not implemented,
but there are no barriers doing so in the future. Whether the plugin is easy to use
in this respect would need to be validated using user surveys.

3. ( ) Installing 3rd party extensions is possible. It is not yet user-friendly, as it
is required to copy new extension packages directly into the IDE plugin package.
However, it is possible to make this process significantly easier without any redesign,
by using a different class loader to load classes from a specified directory.

4. The end user can select any extension to be executed on any loaded SFL result.

5. The end user can view the internal representation of an SFL result, by using the
extension “Print active FDTS element” described in paragraph 3.2.2.

6. ( ) Applying suitable transformer extension, the end user can send newly created
SFL results to a selected consumer. However, more complex transformers have not
been implemented yet.

7. ( ) It is not clear if it is possible to describe an FDTS in natural language. However,
in case that it is in principle achievable, it should be possible to implement the
approach using an extension for the IDE plugin, as all information inside an FDTS
is provided to extensions through the FDTS interface.

8. Interactive retracing of an SFL result alongside the source code in the IDE is
possible, as the “Tracer extension” concept shows.

9. ( ) Primitive communication between selected extension is possible using the
Connectable interface, as shown with the extensions “Print active FDTS element”
and “Display FDTS as graph”. The implementation of a more general messaging
system is left for future work. It can likely be based upon the existing implementation
without many changes.
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5.2 Verification: Plugin extension developer requirements
(see subsection 2.2)

5.2.1 Requirements for the framework

1. The FDTS interface provides functions to access any part of an FDTS (including
predicates)

2. The FDTS interface allows creating and modification of nodes, edges, start/end
nodes, predicates.

3. Extension developers can easily transform a given FDTS into an FDTS of their
own implementation.

5.2.2 Requirements for the IDE plugin

1. The IDE plugin provides access to the IDE project and the IDE tool windows,
which can be used to access most of the IDE functionality.

2. Using the Consumer and Transformer interfaces, extensions can provide their
functionality to the end user.

3. As described in item 9 of subsection 5.1, the IDE plugin provides a system that
extensions can use to communicate with other extensions.

5.3 Verification: SFL tool developer requirements
(see subsection 2.3)

While it is possible to extend the FDTS definition of the FDTS framework by adding
predicate extensions (and thus being able to theoretically represent any kind of FDTS),
it is not clear how practical this approach is. To test this, more advanced SFL tools and
IDE plugin extension would need to be developed, which isn’t in the scope of this work.

5.4 Using FLACOCO with the IDE plugin
To show that the FDTS framework is usable in practice, I developed a small application
that translates the result of the FLACOCO[12] SFL tool into the FDTS JSON format
that the FDTS framework (and thus also the IDE plugin) understands. FLACOCO
is a spectrum-based tool based on the coverage Java library JaCoCo. The choice fell
on FLACOCO, as, while possibly not being a very mature project, it seemed to work
well with modern Java. I also considered using GZoltar[11], but there have been a few
technical problems that would have made the development of the translator application
unnecessarily time-consuming.

FLACOCO provides a Java API to run the spectrum-based fault localization algorithm
and for then retrieving the results. These results in form of a map/dictionary from source
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code location to suspiciousness score can be used to create a simple FDTS in JSON
format, looking, for example, like this:

1 {
2 "info": {
3 "sus": 0.8164965809277261
4 },
5 "fdts": {
6 "type": "FDTSImpl",
7 "nodes": [
8 {
9 "type": "AtLine",

10 "line": 59,
11 "path": "./src/main/java/TestcaseForTracer.java"
12 }
13 ],
14 "edges": [
15 [
16 null
17 ]
18 ],
19 "startNodes": [
20 {
21 "id": 0
22 }
23 ],
24 "endNodes": [
25 {
26 "id": 0
27 }
28 ]
29 }
30 }

Each suggestion by FLACOCO (for where to look for a bug) consists only of a source
code line with a floating point number describing how likely FLACOCO thinks that this
line is connected to a bug. Thus, the FDTS only has a single node, being start and end
node, that has as predicate only the requirement of being at the respective source code
line.

Using a constructed code example (see Listing 2) and corresponding unit test (see
Listing 3), the extended FLACOCO tool creates an array of such FDTS JSON objects.
These can be loaded by the IDE plugin and successfully used with the various existing
extensions such as the tracer.
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6 Conclusion
In this work I described the design and implementation of an SFL result framework and
an IDE plugin that serve as an interface between different SFL tools and a programmer
who is trying to locate bugs. The system is constructed to allow for high flexibility in
the usage of different SFL tools and additional tools that process SFL results. Multiple
extensions for the IDE plugin have been developed to demonstrate the features and
interfaces provided by the system.

The framework and IDE plugin satisfy a number of self-set requirements that have
been deemed necessary to address the issues that plague the practical application of
SFL tools, such as missing standardization. The approach has been to a certain extent
validated by using the IDE plugin together with spectrum-based fault localization tool
results.

6.1 Future Work
While the framework is mature enough to be targeted by SFL tools and extensions,
some minor requirements are still to be fully implemented before the system can be
used in a real development environment, such as the communication system between
extensions in the IDE plugin. Additionally left for future work are the development
of more extensions/improvement of existing ones and testing them for usefulness in a
development environment, as well as extending more SFL tools to be compatible with
the FDTS framework.

The current framework and IDE plugin only cover processing of the results that SFL
tools produce. Still open is the question of how the setup and execution of SFL tools can
be standardized and integrated into this or another system.

As mentioned in subsection 2.3, it is not clear if the FDTS language is powerful enough
to be a good format for most SFL tools, including existing ones but also potentially
future SFL tools. For example, representing the x-causes-y relationships that the delta
debugging approach (subsubsection 1.1.3) produces as output, doesn’t seem to be trivial
without modifying the FDTS definition or adding special predicates.
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7 Appendix

Listing 2: A constructed program to test the IDE plugin. It is assumed that a bug
happens when the function main2 returns 1.

1 import static java.lang. Integer . parseInt ;
2

3 public class TestcaseForTracer {
4

5 public static void main( String [] args ){
6 System .out. println (main2(args ));
7 }
8

9 public static int main2( String [] args) {
10 if(args. length < 2)
11 return 0;
12

13 var x = parseInt (args [0]);
14 var a = args [1];
15 int i = x + a. length ();
16

17 if(a. length () > 100)
18 return 0;
19

20 var c = false;
21

22 for(; i >0; i/=2){
23 if(i == 7)
24 c = true;
25 if(i == 5)
26 c = true;
27 }
28

29 boolean maybeBug ;
30

31 if(c) {
32 for (var ch : a. toCharArray ()) {
33 if (x == parseInt ("" + ch)) {
34 x = -1;
35 }
36 }
37

38 x = x * 3;
39 }
40 maybeBug = x != -3;
41 if(!c){
42 maybeBug = false;
43 while (true){
44 if(x == 1)
45 return 0;
46 if(x == 0){
47 maybeBug = true;
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48 break;
49 }
50 if(x <0)
51 x += 1;
52 else
53 x -= 1;
54 }
55 }
56

57 if( maybeBug )
58 {
59 var z = x % 2;
60 if(z == 0)
61 return 1;
62 }
63

64 return 0;
65 }
66 }

Listing 3: The JUnit 5 test case code for Listing 2. test3 und test will fail (i.e. the
tested function will return 1 instead of 0).

1 public class Testing {
2 @Test
3 public void test0 (){
4 assertEquals (
5 TestcaseForTracer .main2(new String []{"5", "12"}),
6 0
7 );
8 }
9 @Test

10 public void test1 (){
11 assertEquals (
12 TestcaseForTracer .main2(new String []{"7", "072"}),
13 0
14 );
15 }
16 @Test
17 public void test2 (){
18 assertEquals (
19 TestcaseForTracer .main2(new String []{"12", "4472"}),
20 0
21 );
22 }
23 @Test
24 public void test3 (){
25 assertEquals (
26 TestcaseForTracer .main2(new String []{"10", "1234"}),
27 0
28 );
29 }
30 @Test
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31 public void test4 (){
32 assertEquals (
33 TestcaseForTracer .main2(new String []{" -12", "1234"}),
34 0
35 );
36 }
37 }

7.1 IDE plugin code
The code of the FDTS framework and the IDE plugin can be found here: https:
//gitlab.com/tsoj/sfl_server.

7.2 FLACOCO converter code
The code for the FLACOCO converter can be found here: https://gitlab.com/tsoj/
flacoco_fdts_converter.
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