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Abstract
Clone-and-own research focuses on assisting developers in managing variant-rich systems
through better tools and automation. The shortage of publicly available clone-and-own
projects led researchers to use variants generated from software product lines instead.
In contrast to clone-and-own variants, product line variants lack variant drift. This is a
problem, as research results might be biased and not generalizable. In this study, we
investigate the feasibility to simulate variant drift in product line variants generated
with VEVOS, by using Clang-tidy to apply AST-based refactoring. We found that
there exists a variety of challenges to be tackled before the mentioned approach might
be considered feasible. The rationales have to do with technical challenges of automated
refactoring, as well as restrictions imposed by the architecture of VEVOS.
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1 Introduction
Software is everywhere. It is part of a multitude of different products being sold today.
The rapid developments in the industry are accompanied by moves towards more
business-centric approaches. The necessity to provide mass customization in order to
satisfy customer requirements, as well as staying competitive with other companies
have demanded for new ways of developing software.
Software product line engineering is a strategic approach towards developing software
which impacts business, organization and technology alike [Van der Linden et al., 2007].
At its core it is a platform encompassing every reusable asset (e.g. requirements or
architecture) used throughout the development life cycle. While the use of this approach
heavily promotes reusability, thereby lowering cost and time to market, the introduction
involves high-upfront investments [Pohl et al., 2005]. That is because before new prod-
ucts (i.e., variants) can be derived from a common code base, the overall set of features
and possible ways to combine them have to be specified and documented. The other
predominantly used practice besides software product line engineering is known as
clone-and-own. It works by copying (cloning) and modifying (owning) existing variants
to generate new ones. Despite its short-term advantages like decrease of time to market,
it leads to higher maintenance costs in the long run.
A recent line of research set out to explore the continuum between clone-and-own
and software product lines [Kehrer et al., 2021]. This line of research usually focuses
on better automation through techniques like variability mining [Fischer et al., 2014]
and feature trace recording [Bittner et al., 2021]. To counteract the shortage of pub-
licly available clone-and-own projects which could be used as experimental subjects
[Schultheiß et al., 2020], Schultheiß et al. introduced the tool VEVOS, which enables
researchers to generate benchmarks and simulate the evolution of cloned variants. Using
VEVOS in combination with techniques based on document patching, the potential to
automate the synchronization of clone-and-own variants has been researched. By using
lightweight domain knowledge about which features are affected by a change and which
variants implement affected features, variants can be synchronized with an accuracy of
up to 93% [Schultheiß et al., 2022b].
However, while VEVOS is able to generate benchmarks for clone-and-own research,
these benchmarks lack variant drift. Variant drift is the introduction of unintentional
divergences of semantically equivalent software fragments. As most real variants to-
day evolve independently, they inevitably drift away from each other over time. To
provide more realistic variants, we are thus interested in simulating such variant drift too.

In this work, we investigate the feasibility to introduce variant drift in variants simulated
with VEVOS. We do so by applying refactoring operations based on the abstract
syntax tree (AST) of variants generated with VEVOS. After the necessary background
knowledge was introduced in Section 2, we take a look at the tool in charge of performing
the refactoring, called clang-tidy, in Section 3. Research goals introduced in Section 4.1
guide our exploration on the feasibility and challenges of such approach. Results are
then discussed in Section 5.
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2 Background
2.1 Software Reuse
Software reuse is the process of creating software systems from existing software rather
than building them from scratch [Krueger, 1992]. While the idea exists since the
beginning of software development, many of the methodologies and tools in use today
emerged since the 1970s. There is a reason for that - the software crisis.

“[...] machines have become several orders of magnitude more powerful!
To put it quite bluntly: as long as there were no machines, programming
was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers,
programming had become an equally gigantic problem.”

Edsger W. Dijkstra [Dijkstra, 1972]

The term software crisis originates from the first NATO Software Engineering Confer-
ence in Garmisch-Partenkirchen, Germany. It alludes to the fact that computers have
become more and more performant, yet previous techniques could not keep up with
this rapid progress. Nowadays, not only source code is reused but any reusable asset -
be it requirements, design or documentation.
The advantages of reuse are obvious - something that can be reused reduces time-to-
market and therefore costs; tremendously important characteristics for any company
competing in today’s software market.

There exist two commonly used paradigms for deriving new variants (i.e., products) in
use today - Software Product Line Engineering (cf. Sec. 2.1.1) and Clone-and-Own
Development (cf. Sec. 2.1.3). Both allow for mass customization; that is the large-scale
production of goods tailored to individual customers’ needs [Pohl et al., 2005] and
requirements. Ideally, we would like the best of both (cf. Sec. 2.2). How they work and
a weighing of the pros and cons of each is illustrated in the following subsections.

2.1.1 Software Product Line Engineering

Software product line (SPL) engineering is a paradigm for developing software ap-
plications using platforms and mass customization [Pohl et al., 2005]. In contrast to
creating variants ad hoc like with clone-and-own, this approach takes an inherently
different path and view of business. Its reuse strategy is based on the insight that most
companies specialize within a particular problem domain. Furthermore, the software
systems developed in that domains are not new. Rather they are new variants with ever
increasing functionality and improvements; trying to keep up with customers needs,
but also competition.
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Software development using this approach is typically split into two consecutive phases:
Domain Engineering and Application Engineering (see Fig. 1). One way to think about
them is development for reuse and development with reuse [Van der Linden et al., 2007].

Figure 1: The two-life-cycle model of software product line engineering.
Taken from [Van der Linden et al., 2007].

Domain Engineering. Software product line engineering begins with domain engineer-
ing. In this phase the reusable platform is defined. Compared to other reuse approaches,
the platform encompasses every reusable artifact (e.g. requirements, design and tests)
used throughout the software development [Van der Linden et al., 2007]. The platform
thereby contains both commonality (i.e., the parts that are shared between different
products) and variability (i.e., the parts that distinguish different products). This phase
is crucial, as it explicitly defines the set of applications to be generated by the product
line, their constraints and feasibility. Typically, a feature model describes the set of
features1 and their valid combinations (a.k.a. configurations) [Schultheiß et al., 2022a].
Employing traceability management allows reasoning, whether the properties of the
SPL are reflected in a given product and linking between artifacts [Lago et al., 2009].

Application Engineering. Following domain engineering is application engineering.
This phase is responsible for deriving (e.g. defining and developing) the product line
variants. This is done by binding the variability according to the application needs
from requirements over architecture, to components, and test cases [Pohl et al., 2005].
Specifically, new products are generated by gathering requirements, categorizing them

1Prominent or distinctive user-visible aspect, quality, or characteristic of a software system or systems
[Kang et al., 1990].
Unit of functionality that satisfies a requirement, represents a design decision, and provides a
potential configuration option [Apel et al., 2011].
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as commonality or variability and instantiating artifacts [Van der Linden et al., 2007].
According to Van der Linden et al. up to 90% of the product may be available from reuse.

The cost of developing single systems and product lines is compared in Figure 2.
Accumulated effort increases with the number of different systems (resp. variants); the
rate of which differs significantly though. The break-even point - the point where costs
of deploying single systems and product lines intersect - is reached after about three
variants [Van der Linden et al., 2007].

Accumulated
effort

Number of
different Systems

Up-front
investment

Break-even
point

approx. 3 Systems

Single systems
Product line

Figure 2: Economics of single system development versus using a software product line.
Slightly modified version taken from [Van der Linden et al., 2007].

2.1.2 Annotation-Based Software Product Lines

In this study we focus on software product line projects exposing variability through
annotations in implementation artifacts (i.e., its source code files). To illustrate
this approach we show how this is done in the C/C++ programming language.
Other variation mechanisms exist [Ye et al., 2009]. Examples include but are not
limited to parametrization / templates, the use of dynamic link libraries (DLLs)
[Gacek and Anastasopoules, 2001] or deploying a service-oriented architecture (SOA)
via plug-ins [Cohen and Krut, 2010].

C and C++ allow for conditional inclusion, i.e., compilation by use of preprocessor
directives like #ifdef or #ifndef . The preprocessor is a program that supports text
macro replacements. It is executed before compilation and also resolves #include -
directives; essentially copying that files content into the source file. We can use GCC2 -

2https://gcc.gnu.org/
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a compiler collection - to show the output of the preprocessor. Suppose we have the
following C++ source code file:

#include <cstdio>
void f() {

#ifdef DEBUG
dumpFullContext();
calculate();

#else
calculate();

#endif
}

We invoke gcc; instructing it to only run the preprocessor and not compile, assemble or
link by passing the -E flag. Looking at the output for function f() only and stripping
empty lines, we get:

void f() {
calculate();

}

Had we instead #define -d the flag DEBUG or passed it to gcc via the command line
(by passing -DDEBUG), the output would be the following:

void f() {
dumpFullContext();
calculate();

}

Note that all # -directives have been resolved and therefore removed.
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By nesting these directives, thus forming propositional formulas, we can control which
code is included, i.e., excluded. To illustrate, see Listing 1:

1 #ifdef USE_MODULE_A
2 #if FEATURE_B_SUPPORTED || FEATURE_C_SUPPORTED
3 // ...
4 #endif
5 #endif

Listing 1: C/C++ source code snippet containing preprocessor directives.

Line 3 in listing 1 is only processed (i.e., parsed and resolved) if both directives above
evaluate to true, i.e., module A is used and at least one of features B or C is supported.

2.1.3 Clone-and-Own Development

The practice used most often for developing software systems is Clone-and-Own. You
start by making an exact copy of an already existing project or product, i.e., using
forking or branching in version control systems. This is the clone part. Modifications
and changes necessary to derive a new variant, that satisfies certain requirements,
are what is referred to by the owning part. Clone-and-own is straightforward. No
up-front investment (cf. Fig. 2) like domain analysis is needed and you have a working
prototype right away. There is also the independence of developers to make any
necessary modifications that is stated [Dubinsky et al., 2013] as a result of using this
approach. There is a major drawback however - it does not scale well with the number
of variants.

int sum(int a, int b) { return a + b; }

Clone:

Features:
sum
sub
mul

int sub(int a, int b) { return a - b; }
int mul(int a, int b) { return a * b; }

int sum(int lhs, int rhs) { return lhs + rhs; }

int sum(int lhs, int rhs) { return lhs + rhs; }
int sub(int lhs, int rhs) { return lhs + rhs; }

int sum(int a, int b) { return a + b; }
int sub(int a, int b) { return a + b; }

int sub(int a, int b) { return a + b; }
int mul(int a, int b) { return a * b; }

v0

v0 v1 v2

Figure 3: Evolution of a clone-and-own project.
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Figure 3 shows the history of a clone-and-own project implementing a heavily simplified
math library. Altogether, it implements the three features sum, sub and mul. Lines
going from one rectangle down to another depict the history of these variants; with
orange dot-dashed ones indicating a clone taking place. Differences in the content of
upper and lower rectangle constitute the changes introduced as part of this evolution
step. Suppose that variant v0 is some kind of basic model or library; whereas variants v1
and v2 are more sophisticated ones implementing additional, but different functionality.

At first, there is only variant v0 implementing the feature sum. Later on the project
was cloned and extended by feature sub; forming variant v1. After that, variant v0
was modified. Since v0 − v2 are developed independently (cf. Sec. 2.1.3), there is no
propagation of bug-fixes or tracking of similar features already implemented in other
variants of the code base. The copy-and-paste bug of feature sub in v1 - returning
the sum instead of the difference - was only spotted and fixed in the latest update to
variant v2.

The challenging part begins when bugs like the one seen in Figure 3 should also be fixed
in other variants. This is hard because functions and variables might have been renamed
or the code otherwise transformed; making it difficult to know if other variants are
affected. If so, problems continue trying to locate the matching piece of code. Obviously
this maintenance problem only gets worse, the more variants there are in total. This is
in contrast to software product line engineering (cf. Section 2.1.1), where a common
base and thereby all variants containing the refactored artifacts are changed.

2.1.4 Variant Drift

Variant Drift. The case study and hypotheses formulated as part of it presented by
Schultheiß et al. indicate a difference in evaluation results between techniques that use
SPL variants and those done on clone-and-own variants. The authors argue that the
reason for this difference is a phenomenon called variant drift [Schultheiß et al., 2020].

Variant drift is a property of cloned variants. These drift apart from each other over
time. The definition introduced by Schultheiß et al., whereby variant drift is the in-
troduction of unintentional divergences in semantically equivalent software artifacts
[Schultheiß et al., 2020] is adopted and extended here. It is useful to distinguish be-
tween the intentional and unintentional introduction of divergence.

Intentional divergences are all divergences which are introduced as part of what
differentiates this variant from others. The implementation or modification of a specific
feature is an example that falls under this category.

Unintentional divergences are changes to software artifacts, though they are not
propagated to other variants. The modifications are usually intentional. Examples
include refactoring efforts or the fixing of a bug in only a single variant.
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2.2 SPL Variants for Clone-and-Own Research
2.2.1 Motivation

Managing the evolution of variant-rich systems is challenging. A more recent line
of research thus focuses on assisting developers through the proposal of new meth-
ods, tools and better automation [Lapeña et al., 2016, Schmorleiz and Lämmel, 2014,
Bittner et al., 2021]. A problem encountered in that field of research is the fact that
there is a “[...] substantial lack of publicly available clone-and-own projects which
could be used as experimental subjects” [Schultheiß et al., 2020]. Consequently, variants
derived from software product lines are frequently used in studies and research instead.
As the maturity of a research field depends on the availability of commonly accepted
benchmarks [Strüber et al., 2019], Schultheiß et al. introduced the tool suite VEVOS
(Variant EVOlution Simulation) [Schultheiß et al., 2022a].

VEVOS is a benchmark generation framework which allows simulating the evolution of
multi-variant software systems; specifically clone-and-own projects. It is part of the
research project called VariantSync3 that aims at bridging the gap between clone-and-
own development and software product lines [Kehrer et al., 2021]. Given the history,
i.e., version control of a software product line, VEVOS enables the user to generate
clone-and-own variants for use in research. This works by first extracting a ground truth -
knowledge about existing features, their relationships, and traces to their implementation
- and using this information to generate clone-and-own variants. VEVOS is thus divided
into two main components: the ground truth extraction, called VEVOS_Extraction (cf.
Section 2.2.2) and the variant simulation called VEVOS_Simulation (cf. Section 2.2.3).

The benchmarks (i.e., variants) generated with VEVOS form the basis regarding our
investigational study. To reiterate: The shortage of publicly available clone-and-own
projects led to the quest of generating suitable benchmarks [Schultheiß et al., 2022a].
However, the generated variants do not expose characteristics introduced to real clone-
and-owns variants like variant drift (cf. Section 2.1.4). They might be biased, not
generalizable and pose threats to validity [Schultheiß et al., 2020]. It is this viewpoint
which motivates us to apply automated refactoring in an effort towards simulating
variant drift (cf. Section 4).

3https://github.com/VariantSync
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2.2.2 VEVOS’ Ground Truth Extraction

SPL
Repository

Code extractor

Build extractor

Model extractor

VCS
service

Artifacts at 
revision r0

c0

c-1

c-2

Dataset 
service

KernelHaven

KernelHaven
service

Presence 
conditions

Feature 
model

0

-1
Ground

truth

Ground
truth

Ground truth dataset

Ground truth
of r0

manages

executes
reads from

writes to

File system

Docker container
Data �ow Action

Legend

(1)

(2)

(4)

(5)

<< prepares environment (0) >> << analyzes artifacts (3) >>

r

r

Presence 
condition
analysis

Figure 4: Overview of VEVOS’ ground truth extraction library.
Taken from [Schultheiß et al., 2022a].

VEVOS extends the functionality provided by KernelHaven; a tool for performing
different analyses on product lines4. Additional I/O-functionality and a KernelHaven
plugin that analyzes presence conditions form the extraction framework. The version
control service (VCS) checks out commits of the SPL repository one by one (1); restoring
that commits’ artifacts. For each commit, the KernelHaven service configures and
executes KernelHaven itself (2). A series of extractor plugins are now run; performing
the actual extraction (3):

Extractor plugin Analyzes Output
Code extractor Variability in source code files Code blocks and their respec-

tive block conditions
Build extractor Product line’s build files Presence condition of each

source file
Model extractor Build system Features and constraints

Outputs of the code and build extractor plugins are fed into the presence condition
analysis plugin; yielding the entire code’s presence conditions. Together with the feature
model they form the final ground truth for that commit. Eventually, the dataset service
collects (4) and packages (5) the ground truth. The progress then starts at (1) with
the next commit.

Part of the ground truth extracted by VEVOS are presence conditions of code. These
are a combination of file and block conditions. The condition under which a file is
included (or excluded) into compilation is known as file condition. This information
is usually undocumented in projects and buried behind build systems such as Make5.
The condition under which specific lines of code are included (or excluded) is called
block condition.

4https://github.com/KernelHaven/KernelHaven
5https://www.gnu.org/software/make/
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2.2.3 VEVOS’ Variant Simulation

Ground truth
dataset

Con�guration
sampling

Variant 
generation

Dataset 
loading

File 
utility Source

�les
Con�guration

Presence conditions

Code 
matching

foo/bar, 1, 15, CONFIG_CT
foo/bar, 3, 7, CONFIG_DESK
...

foo/bar, 1, 1
foo/bar, 2, 5
...

Ground truth

Feature-aware variant 1

...

Variant simulation library

Your research prototype
Data �ow API call Feature-aware variant 2

SPL
Repository

Artifacts at 
revision r0

c0

c-1

c-2

Figure 5: Overview of VEVOS’ variant simulation library.
Taken from [Schultheiß et al., 2022a].

The second core module of VEVOS’ tool suite is the variant simulation library. An
overview of its components is shown in Figure 5. Once a ground truth has been extracted
using VEVOS_Extraction, the resulting dataset may be loaded and parsed by the
dataset loading component. The simulation module implements two sampling strategies
within the configuration sampling component. Constant sampling uses a predefined
set of configurations, while random sampling offers the creation of random, but valid
configurations from the extracted feature model. Additionally, custom samplers may
be added. Finally, the variant generation component is responsible for deriving feature-
aware variants. Schultheiß et. al define this term to be a property of individual variants.
Specifically, it refers to the availability of both configuration and presence conditions for
the code [Schultheiß et al., 2022a]. Each feature-aware variant generated by VEVOS
thus comprises source files, configuration, presence conditions mapped to code, block
and file conditions and a code matching; mapping variant code to product line code
via line numbers (cf. Figure 5).
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2.3 Introduction to Compilers
Before taking a look at how refactoring can be applied technically (cf. Section 3.2),
a rough understanding of the workings of a compiler is helpful. This section aims
at providing the necessary overview while working towards the key component of
AST-based refactoring - the AST (i.e., abstract syntax tree) itself.

source program

modified source program

target assembly program

Preprocessor

Compiler

Assembler

Figure 6: A language-processing system. Modified version taken from [Aho et al., 2007]

A compiler is a kind of language processor. It is “[...] a program that can read a program
in one language - the source language - and translate it into an equivalent program
in another language - the target language.”[Aho et al., 2007] As can be seen from
Figure 6, a compiler sits right in between preprocessor and assembler. The preprocessor
performs macro expansion and file inclusion; indicated by its output modified source
program. The language most often associated with having a preprocessor is C. Other
languages implement different technologies capable of performing similar functionality.
In a pipeline fashion, the output of a previous phase is the input of the next. Once the
compiler did its job, the target machine/assembly program is ready to be consumed by
the assembler.

Syntax AnalyzerLexical Analyzer Semantic Analyzer

symbol
table

Figure 7: The first three phases of a compiler.

Providing an overview of every phase a compiler goes through from start to finish is
beyond the scope of this study. Instead, we will focus only on the first three (depicted
in Figure 7) by examining a running example. For an introduction or more information
in general, the interested reader might check out the Dragon Book6. The symbol table
(top box in Fig. 7) is a data structure in which each symbol (i.e., identifier) is mapped
to information like the location it appears in the source code or its type. The symbol
table is used by every phase.

6https://suif.stanford.edu/dragonbook/
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Running Example7. We will look at how a typical compiler would parse the
following assignment statement composed of two binary operators + and *:

position = initial + rate * 60 // comment

Listing 2: Our running example - An assignment statement.

Lexical Analysis. The first phase of a compiler is called lexical analysis and is
responsible for tokenizing, i.e., splitting or grouping the input character stream into
tokens. That is, for every meaningful sequence - also known as lexeme - the lexical
analyzer transforms it into a token. What constitutes a token is usually defined by
regular expressions. Extra white spaces separating the lexemes and comments are
removed. For our example, the output would look like this:

<ident,1> <=> <ident,2> <+> <ident,3> <*> <60>

Constructs of the form <token> and <token-name,token-value> are tokens. For ex-
ample, the equal sign (=) is a lexeme and is mapped to the token <=>. position is also
a lexeme and is mapped to <ident,1>. This indicates that position is an identifier.
Its second component (1) points to an entry representing it in the symbol table.

Syntax Analysis. The second phase of a compiler is syntax analysis. In this phase, the
parser takes the tokens produced by the previous phase and constructs a parse-tree; that
is, an intermediate representation in tree-like form. It does so using the formal grammar
of the language. Most programming languages are defined both in terms of their
semantics and syntax. The latter is defined by (context free) grammars. Syntactically
correct language constructs can then be derived from this grammar, i.e., the production
rules that represent it. A typical parse-tree representation is an abstract syntax tree
(AST), or just syntax tree. In this tree, each interior node represents an operation.
Children of a node represent the arguments to that operation [Aho et al., 2007]. A
syntax tree for the statement in Listing 2 is shown below:

=

<ident,1> +

<ident,2> *

<ident,3> 60

Figure 8: Abstract syntax tree for statement in Listing 2.

This tree also reveals the precedence of operators - nodes deeper in the tree have a
higher precedence compared to nodes further up. Thus multiplication (*) is performed
prior to addition (+).

7This example (the assignment statement) is taken from [Aho et al., 2007].
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Semantic Analysis. The third phase of a compiler (and last one we are going to
look at) is the semantic analyzer. It uses the syntax tree constructed in the previous
phase, plus information stored in the symbol table, to check the source programs
compliance with the semantics imposed by the language. During its work, it might also
add additional information to both syntax tree and symbol table. It is also this phase,
in which type checking is performed. Up to this point, we might have a syntactically
well-formed program, but that does not mean that it does what it should or does not
have undefined behavior (UB). In C++, undefined behavior is defined as: “Renders
the entire program meaningless if certain rules of the language are violated.”8 which
translates to “anything could happen”. Examples of UB include signed overflow and
null pointer dereference. Types help us to prevent many of these undefined behaviors. If
objects and expressions have an associated type, we can enforce, i.e., check operations
permitted for these entities.

=

<ident,1> +

<ident,2> *

<ident,3> IntToFloat

60

Figure 9: AST of statement in listing 2.
IntToFloat depicts an implicit type conversion.

Recall that <ident,3> represents identifier rate from Listing 2. If we assume, rate
was declared as a floating-point type, say double, a language might perform an implicit
conversion of the integer literal 60 to a floating-point type. The syntax tree in Figure 9
contains an additional node indicating such conversion.

8https://en.cppreference.com/w/cpp/language/ub
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3 Software Refactoring
Refactoring is the process of improving existing code without creating new functionalities
[Fowler, 2018, Vassallo et al., 2019].

3.1 Research on Software Refactoring
Research implies that refactoring is done for a multitude of reasons. Kataoka et al.
showed that refactoring can lead to improved code metrics; specifically focusing on the
aspect of maintainability, i.e., coupling, cohesion and complexity [Kataoka et al., 2002].
This aligns with “[...] the major part of the total software development cost is devoted to
software maintenance.” [Mens and Tourwé, 2004]. Moser et al. seem to agree with the
narrative that refactoring has “long-term benefits on the quality of a software product
[...]” and that “refactoring rather increases than decreases development productivity
[...].” [Moser et al., 2007] Wang et al. shine a different light on the matter by looking
into the human behavior domain. They found that besides intrinsic motivators which
include Responsibility with Code Authorship and Unconscious Habit, there are also
external motivators like Recognitions from Others [Wang, 2009].

The large-scale empirical exploration on refactoring activities in open source software
projects done by Vassallo et al. considers a list of 11 refactoring operations taken from
[Fowler, 2018]. All of them aim at improving the design of the code from different
perspectives [Vassallo et al., 2019]. This was done by choosing a variety of refactorings
which move or rename parts of the code. Table 1 comprises a subset of these operations
relevant later in this study:

Refactoring operation Description
Extract-Method Extract a fragment of a method into a new method whose

name explains its purpose.
Move-Field Create a new field in the target class, and change all its

users.
Rename-Method Replace the name of a method with a new one.

Table 1: Subset of refactoring operations used in [Vassallo et al., 2019].

Incidentally, these three refactoring operations are also among those used most often
in the considered ecosystems in [Fowler, 2018]. Research conducted by Tsantalis and
Chatzigeorgiou focuses solely on the Extract-Method operation. Specifically, they
propose an approach for automatically identifying refactoring opportunities related with
the complete computation of a variable [Tsantalis and Chatzigeorgiou, 2011]. Their
work includes rules governing behavior preservation and usefulness of the extraction. It
serves as a good example of the conceptual complexity and considerations involved
when implementing a seemingly simple refactoring operation.
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3.2 AST-Based Refactoring Using Clang-tidy
In Section 2.3, we ended up with an intermediate representation of the source program;
the abstract syntax tree or AST for short. In this section we will see how we can use
the AST. While Clang offers the ability to create standalone tools based on Clang’s
LibTooling9, we deem the already existing tool clang-tidy capable of aiding us in
simulating variant drift.

According to its online documentation10, clang-tidy is a clang-based C++ “linter” tool.

The term linter dates back to the 1980s when Stephen C. Johnson, working at Bell
Labs at the time, created the unix utility Lint. In a paper published in 1978, Johnson
describes it as a command that "[...] examines C source programs, detecting a number
of bugs and obscurities."[Johnson, 1977]. Today we think of a linter as a static analysis
tool, assisting the programmer by flagging violations regarding formatting style, guide-
lines and error-prone or otherwise suspicious constructs. Examples include the use of
undeclared identifiers, suggestions to use more modern/safer language features and
performance considerations. Many of such tools, clang-tidy included, offer automatic
fixes when possible.

Clang-based refers to Clang - a C/C++/Objective-C compiler. It is part of the Clang
project, which provides a language front-end (left-most box in Figure 10) and tooling
infrastructure for languages in the C language family. It is one of the primary sub-
projects of the LLVM project - a collection of compiler and toolchain technologies.

llvm
optimizer

llvm
compilerLLVM IR LLVM IR

Clang

Gollvm

gnat-llvm

rustc

...

C C++

Go

Rust

x86

MIPS

RISC-V

ARM

...

Ada

Front-end Back-end

Figure 10: Overview of the LLVM compiler pipeline.

Fig. 10 is inspired by the graphic in this11 blog article (Accessed 30 October 2022).

9https://clang.llvm.org/docs/LibTooling.html
10https://clang.llvm.org/extra/clang-tidy/
11https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go/
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LLVM supports multiple source languages and target architectures. While the front-end
is concerned with parsing and error checking (cf. Sec. 2.3), the back-end (right-most
box in Fig. 10) is responsible for the generation of target platform-specific code. The
optimizers job is it to apply a multitude of different optimizations regarding loops or
dataflow.
Using clang-tidy large-scale refactorings are possible. Since the tool has semantic
understanding of the C/C++ code, it knows what a pointer is, when something is
called or a variable is referenced. This works by using a technique called AST-matching,
where AST matchers are predicates on AST-nodes. Nested matchers are used to make a
matching more precise. Aforementioned technique is further explained in the following
subsection.
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3.2.1 Clang-tidy Demonstration

Clang-tidy calls the set of static analyses checks. Each of them focuses on a single
suspicious construct like the violation of some guideline or use of bugprone code (a.k.a.
code smell). These checks are organized in modules (i.e., categories of checks). Clang-
tidy comes with a number of checks already implemented12. At the time of writing there
exist 470 checks; although many of them are vendor specific or enforce developer policies
of libraries. The command line options --list-checks and --checks=<string> can
be used to determine the currently enabled checks:

# show checks enabled by default
$ clang-tidy --list-checks
# no checks enabled
$ clang-tidy --list-checks --checks=-*
# show only checks in module/category readability
$ clang-tidy --list-checks --checks=-*,readability-*

Let us assume, there exists the following C++ file named main.cpp:

1 #include <iostream>
2 #include <vector>
3 #include <iostream>
4

5 int main() {
6 int number;
7 std::cin >> number;
8 if (number % 2 == 0)
9 std::cout << "number is even" << std::endl;

10

11 return 0;
12 }

Listing 3: Sample code before using clang-tidy.

Running clang-tidy using the following command will flag problems with above code:

$ clang-tidy \
--checks=-*,readability-*,bugprone-*,cppcoreguidelines-* \
main.cpp --

Listing 4: Invocation of the clang-tidy tool.

Note the -- after specifying the source file main.cpp. This option signals to clang-tidy,
that no compiler-flags are passed.
12https://clang.llvm.org/extra/clang-tidy/checks/list.html
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We get the following diagnostics:

/path/to/file/main.cpp:3:1: warning: duplicate include [readability-duplicate-include]
#include <iostream>
^~~~~~~~~~~~~~~~~~~
/path/to/file/main.cpp:6:7: warning: variable 'number' is not initialized [cppcoreguidelines-init-variables]
int number;

^
= 0

/path/to/file/main.cpp:8:23: warning: statement should be inside braces [readability-braces-around-statements]
if (number % 2 == 0)

^
{

These warnings are self-explanatory. When appending the --fix option to above
command in listing 4, clang-tidy will apply the suggested fixes to the file - in our
example resulting in:

1 #include <iostream>
2 #include <vector>
3

4 int main() {
5 int number = 0;
6 std::cin >> number;
7 if (number % 2 == 0) {
8 std::cout << "number is even" << std::endl;
9 }

10

11 return 0;
12 }

Listing 5: Sample code after using clang-tidy.

The duplicate inclusion of header <iostream> in line 3 in Listing 3 was removed. The
variable number was initialized with a value of zero in line 5 in Listing 5 and braces
were inserted around the body of the if-statement in line 7 in Listing 5.
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3.2.2 Workflow for Extending Clang-tidy

Now that we understand what clang-tidy can do, let us take a look at a basic workflow
presented by Stephen Kelly13 to implement our own checks simulating variant drift.
We are about to create a new check called alternative-operator-and inside the
module or category of checks readability. The goal of this check is to detect uses of
the binary logical operator && (as in true && false) and to replace them with their
alternative operator representation14 and (as in true and false).

Prototype

Matcher

Query

Examine

AST

Create New Check Identify Code to Port

Finished
Implement

FIXIT 
Replacement

Figure 11: Basic workflow - the steps involved in creating a clang-tidy check.
Recreated version of graphic in blog article referenced by Footnote 13.

We start by making sure a check like the one we want to add does not already exist. A
typical way to do that would be to check the website (referenced by footnote 12 on
page 17) listing all built-in checks or to use the --list-checks option with clang-tidy
and piping its output to grep.

13https://devblogs.microsoft.com/cppblog/exploring-clang-tooling-part-1-extending-clang-tidy/
14https://en.cppreference.com/w/cpp/language/operator_alternative
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Create New Check. There exists a python script add_new_check.py inside the
llvm-project/clang-tools-extra/clang-tidy/ directory to assist in creating the necessary
new files and editing existing build files to include our check. We invoke this script by
passing the name of the module under which the check will get included and the name
of the check itself. Rebuilding and repeating the query described above inside LLVM’s
build directory should now list our check:

$ ./clang-tidy --list-checks --checks=* | grep alternative

cppcoreguidelines-alternative-operator-and

Taking a look at Fig. 11 reveals, we enter the loop of Identify Code to Port, Examine
AST, Prototype Matcher Query, and Implement FIXIT Replacement. All of these steps
will be illustrated briefly.

Writing a clang-tidy check is similar to writing a regular expression - the goal is
to match what you want and only what you want. With each iteration you might
discover cases, which your current matcher does not handle yet, but which it should,
and vice versa.

Identify Code to Port. We want to match uses of the binary logical operator&&.
We do not want to match rvalue references and forwarding references. In C++ it is
also possible to overload operator&& - we want to match such overloads as well.

In particular, we want to match on code like this:

void f() {
bool b = true && false; // match
bool lhs = true, rhs = false;
bool res = lhs && rhs; // match
if (false && false || true && true) {} // match twice

}

struct BoolWrapper { bool b; };
bool operator&&(const BoolWrapper& lhs, const BoolWrapper& rhs) {

return lhs.b && rhs.b; // match
}

Listing 6: Examples of code usages we want to match on.
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We do not want to match on code like the following:

1 bool b = true and true; // no match
2 int&& rValueRef = 5; // no match
3 template<class T>
4 void my_func(T&& x) {} // no match

Listing 7: Examples of code usages we do not want to match on.

Examples like those in Listing 7 also demonstrate, how a naive search and replace
approach - with the help of an IDE or the use of tools like sed15 - would not produce a
desired result a lot of times. That is, simply replacing the string "&&" of the statement
int&& rValueRef = 5; in Listing 7 (line 2) would result in "intand rValueRef = 5;".
This however is non-compiling C++ code because of an unknown type intand.

Examine AST. Once we have a better idea of the code we want to match, we
can use Clang to dump the AST. We invoke the Clang compiler, passing it flags that
control the behavior during compilation. In particular, we instruct Clang to print the
AST using -ast-dump and to run only the preprocessor, parser and semantic analysis
stages using -fsyntax-only.

| |-DeclStmt 0x55faf25888b8 <line:2:3, col:25>
| | `-VarDecl 0x55faf2588810 <col:3, col:20> col:8 b 'bool' cinit
| | `-BinaryOperator 0x55faf2588898 <col:12, col:20> 'bool' '&&'
| | |-CXXBoolLiteralExpr 0x55faf2588878 <col:12> 'bool' true
| | `-CXXBoolLiteralExpr 0x55faf2588888 <col:20> 'bool' false

Listing 8: AST output for statement bool b = true && false;.

From the output shown in Listing 8 we can see that variable b is represented in
the AST as a DeclStmt (statement that declares something) or more precisely a
VarDecl (declaration of a variable). Furthermore, we know the type of the variable
being declared is bool and it is initialized using constant initialization (an initialization
with assignment, cinit). This initialization is the result of a BinaryOperator called
&&. The arguments of BinaryOperator are boolean literals which are decoded by
CXXBoolLiteralExpr AST nodes and have values true and false respectively.

15A stream editor used for basic text transformations.
https://www.gnu.org/software/sed/manual/sed.html
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Using Clang’s AST Matcher Reference16 and another tool which comes as part of LLVM
called clang-query, we can write the matcher now. clang-query allows to quickly
write, debug and iterate matchers, that can be easily transformed into a clang-tidy
check later.

Prototype Matcher Query. From our observations made in the previous step,
writing our matcher is not complicated. Matcher expressions on AST nodes are defined
by a combination of basic matchers using a predicate-like language. This allows for the
formulation almost in natural language:

binaryOperator(hasOperatorName("&&"))

Listing 9: Matcher query to match operator&&.

There are three categories of matchers in Clang:

• Node Matcher - matches a specific type of AST node
• Narrowing Matcher - matches attributes on AST nodes
• Traversal Matcher - allows traversal between AST nodes

In above matcher (cf. List. 9) we combine the node matcher binaryOperator(), which
matches binary operator expressions and the narrowing matcher hasOperatorName()
passing it the string "&&" we found out about from the AST representation of the code
(cf. List. 8).

More complex matchers like the following can be built:

callExpr(callee(
functionDecl(hasName("foo"))),
argumentCountIs(1)

)

This matcher reads: “Match calls to a function named foo taking a single argument.”

Implement FIXIT Replacement. All that is left to do is to take our matcher
from the previous step and transform it into a clang-tidy check. We do that by
subclassing ClangTidyCheck - the base class for all clang-tidy checks - and overriding
some of its member functions. Specifically, we are providing overrides for functions
registerMatchers() and check(). In the first function we add one or more AST
matchers, which will be used to find the pattern we specify:
16https://clang.llvm.org/docs/LibASTMatchersReference.html
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1 void AlternativeOperatorAndCheck::registerMatchers(MatchFinder *Finder) {
2 Finder->addMatcher(
3 binaryOperator(hasOperatorName("&&")).bind("logical_and"),
4 this
5 );
6 }

Listing 10: Override of function registerMatchers().

Note the .bind("logical_and") in line 3 in listing 10. Node matchers are actually
the only category that supports the bind("id") call. It binds the matched node to
the given string "id", which allows to retrieve it later (see line 3 in listing 11):

1 void AlternativeOperatorAndCheck::check(const MatchFinder::MatchResult &Result) {
2 const auto *LogicalAnd
3 = Result.Nodes.getNodeAs<BinaryOperator>("logical_and");
4 if (LogicalAnd) {
5 SourceLocation opLoc = LogicalAnd->getOperatorLoc();
6 SourceManager &sm = *Result.SourceManager;
7 SourceLocation opEndLoc
8 = clang::Lexer::getLocForEndOfToken(opLoc, 0, sm, clang::LangOptions());
9 if (opEndLoc.isValid()) {

10 SourceRange opRange(opLoc, opEndLoc);
11 std::string opText = get_source_text_raw(opRange, sm);
12 if (opText == "&&") {
13 diag(opLoc, "consider using 'and' instead of '&&' for better readability")
14 << FixItHint::CreateReplacement(opRange, "and");
15 }
16 }
17 }
18 }

Listing 11: Override of function check().

On each match to one of the registered matchers, clang-tidy will call-back our overriden
check()-function. Details of the exact workings of this function are outside the scope
of this work. In essence, we first retrieve the matched node, i.e., its location using the
"logical_and" identifier that we bound earlier. If the location is valid (the operator
itself is not the result of a macro expansion) we can use clang-tidys diag-API to build
a diagnostic that can be emitted. Additionally we annotate this diagnostic with some
code of interest. In particular, FixItHint allows for insertion, removal, or replacement
of code at a specified location or source code range.
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4 Method

The goal of our study is to assess the feasibility and technical challenges of simulating
variant drift (cf. Sec. 2.1.4) in SPL-variants generated with VEVOS. More specifically,
we are interested in combining VEVOS with automated refactoring based on clang-
tidy. To guide our investigations, we formulate four research goals that focus on the
availability of suitable subject systems, the technical difficulties of simulating variant
drift, and the refactoring strategy with respect to VEVOS’ benchmark generation.

4.1 Research Goals

RG1: Find suitable subject systems.

VEVOS is designed to be applicable to software product lines and has recently
been extended to support any kind of C-preprocessor-based product line. As
pointed out in Section 3.2, clang-tidy is a C++-based linter tool. The purpose of
this research goal is to shine light on the challenges of finding a suitable subject
system and combining VEVOS with C/C++-targeted refactoring.

RG2: Investigate technical difficulties of simulating variant drift with clang-tidy.

With this goal we want to quantify if clang-tidy is suitable for introducing variant
drift in product line variants. This is in question as it is not a common use-case.
With this in mind, we want to explore requirements towards a good refactoring
and possible challenges of connecting tools written in different languages (VEVOS
in Java, clang-tidy in C++).

RG3: Evaluate the feasibility of simulating variant drift by refactoring
generated variants directly.

Intuitively, refactoring variants generated by VEVOS directly seems feasible
as each variant represents a complete piece of software that could have been
implemented independently. However, the build files of product lines are writ-
ten/configured for that product line. Generated variants might therefore not
mirror their dependencies. It is unclear, whether build files remain intact after
extraction, if the generated variants are compilable and to which extent this
impacts the feasibility of automated refactoring.
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RG4: Evaluate the feasibility of simulating variant drift by refactoring
a product line’s source code.

An alternative approach towards simulating variant drift might be to refactor the
product line’s source code instead. Here, the idea is that variants are refactored
indirectly by generating them from the refactored source code of a product line.
By generating variants in steps, with each step applying new refactorings to the
product line, it might be possible to attain variants with inherent variant drift.
However, refactoring the product line could invalidate the ground truth. Thus,
we investigate the technical feasibility of this approach.

4.2 Undertakings
Besides understanding the workings of VEVOS itself, including publications lead-
ing up to its introduction [Schultheiß et al., 2022a] as well as reports on using it
[Schultheiß et al., 2022b], a lot of time went into getting to know the LLVM infrastruc-
ture. Trough testing and using many of Clang’s tools like clang-query, clang-rename
or clang-reorder-fields, we investigated possibilities of achieving the goal of simulating
variant drift. Despite the option to create a standalone refactoring tool we eventually
decided that the built-in functionality offered by clang-tidy and its possibility to be
extended by custom checks will suffice.

Furthermore, we have successfully managed to extend clang-tidy by a couple of cus-
tom checks. This includes a check, which transforms upper-case enumerators into
their lower-case counterparts. Refactorings like this might emerge when developers
decide to adhere to the corresponding C++ Core Guideline17: “Don’t use ALL_CAPS
for enumerators”. Another check, besides the one described in Section 3.2.2, detects
catch-blocks not catching by const reference and subsequently inserts the const to the
catch-variable. Others were tried but quit when facing unresolved challenges described
in Section 5.2.

During development and testing the project libxml2 was used. It is a XML parser and
toolkit written in C and was originally developed for the GNOME Project. Its history18

encompasses roughly 5,5 thousand commits and its source code exposes variability
through the use of the C preprocessor.

Finally, we began the quest of finding a suitable subject system.

17A living document providing guidelines to write simpler, more efficient and more maintainable code.
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

18https://github.com/GNOME/libxml2
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4.3 Threats to Validity
4.3.1 Internal Threats

Build instructions are sometimes not well documented, neglected or outdated. The
third column on used build systems in Table 2 depicts our best efforts in determining
this information.

4.3.2 External Threats

The set of analyzed subject systems (cf. Section 4.4) is only a subset of existing software
product lines. Therefore other results might be obtained if a different set of subject
systems is used. However, it is the largest set known to us, contains a considerable
number of subject systems (44), and has been used in previous studies.
Our study focuses only on clang-tidy. We did not use other AST-based approaches.
However, as clang-tidy has been around for many years, we deemed it applicable to
reach our intent.

4.4 Subject Systems
As subject systems, we selected the 44 open-source preprocessor-based software product
lines that were provided as part of the replication package for the paper Classifying
Edits to Variability in Source Code19. Instead of further information about where these
projects are hosted, we list used programming language and build system relevant to
our discussion (see Table 2).
Hyphens in the third column of this table either represent projects using no build
system at all or this information was not apparent.

19https://github.com/VariantSync/DiffDetective
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Project Name Domain Build System Language #Commits
apache-httpd web server CMake, Make C 33,272
berkeley-db-libdb database system Make C, Tcl 7
busybox embedded systems Make C 17,447
cherokee-webserver web server Make C, Python 5,855
clamav antivirus program CMake C 10,880
dia diagramming software Meson C 6,673
emacs text editor Make C, Emacs Lisp, Roff 161,404
freebsd operating system Make C, C++ 278,919
gcc compiler framework Make Ada, C, C++ 196,181
ghostscript postscript interpreter Make C 22,900
gimp graphics editor Make, Meson C 49,025
glibc programming library Make C 38,318
gnumeric spreadsheet application Make C 24,247
gnuplot plotting tool Make C 11,984
Godot game engine SCons C++ 48,095
irssi IRC client Meson, Ninja C 6,657
libssh network CMake C 5,556
libxml2 XML library CMake, Make C 5,540
lighttpd web server CMake, Meson C 4,658
linux operating system Make C 1,136,447
lynx web browser - PHP 125
Marlin 3d printing - C, C++ 18,880
minix operating system Make C, Roff 7,153
mplayer-svn media player Make C, Roff 37,992
MPSolve mathematical software Make ReScript, C 1,775
openldap LDAP directory service Make C 24,096
opensolaris operating system Make C 11,422
openvpn security application Make C 3,387
parrot virtual machine Make C, Perl 49,989
php program interpreter Make C, PHP 130,281
Pidgin instant messenger Meson, Ninja C 40,097
postgresql database system Make, Meson C, PL/pgSQL 54,821
privoxy proxy server Make C 7,558
cpython program interpreter Make C, Python 114,979
sendmail mail transfer agent - JavaScript 86
sqlite databases Make C 8,664
subversion revision control system Make C, Python 60,211
sylpheed e-mail client Make C, HTML 2,682
tcl program interpreter Make C, Tcl 26,131
vim text editor Make C, Vimscript 17,109
xfig vector graphics editor CMake, Make C, HTML 9
xine-lib media library Make Shell 133
xorg-server X server Meson C 17,918
xterm terminal emulator Make C, HTML, Roff 112

Table 2: The subject systems considered in this study.
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5 Results
In this section, we discuss the research goals posed as part of Section 4. Boxes at the
end of each topic outline the key take-aways.

5.1 Finding a Suitable Subject System
To run clang-tidy over entire projects a compilation database is needed. This is neces-
sary since full information about how to parse a translation unit is required by tools
based on the AST. A compilation database is a JSON file, which consist of an array of
command objects, where each command object specifies one way a translation unit is
compiled in the project20. The database file can be generated automatically by some
build systems, including CMake or Bazel on Linux.
However, as not all projects use any of these build systems, this restricts the number
of applicable subject systems.

Excerpt of the file compile_commands.json generated for libxml2:

[ {
"directory": "/home/seb/libxml2/cmake-build-debug",
"command": "/usr/bin/cc -DLibXml2_EXPORTS ...",
"file": "/home/seb/libxml2/buf.c" },

...
]

In this file, the following command objects are used:

• directory - working directory of the compilation
• command - compile command as a single shell-escaped string
• file - main translation unit source processed by this compilation step

We establish two requirements for a suitable subject system: First, they have to be
mainly written in C/C++. And second: They have to use the CMake build system.
We define mainly written in C/C++ by a project having more than 10% of its files
being either C or C++ files21. Finding such a project turned out to be not an easy
task. While 41 out of the 44 projects listed in Table 2 were mainly written in C/C++,
only six of them used CMake. As a subject system should fulfill both requirements,
this restricts the proportion of applicable subject system to 6/44. This corresponds
to a proportion of 13.6% (cf. right pie chart in Fig. 12). As build files are notoriously
hard to work with, transforming Make files into CMake files was not an option.
20https://clang.llvm.org/docs/JSONCompilationDatabase.html
21As is displayed for projects hosted on GitLab or GitHub.
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Figure 12: Proportion of subject systems fulfilling our requirements.
Left: Proportion of subject systems being mainly written in C/C++.
Right: Proportion of subject systems using the CMake build system.

• Only a small proportion of considered systems are applicable.
• The main restrictions are:

– System is a C-preprocessor-based product line (VEVOS).
– A sufficient portion of the project is written in C/C++ and uses a build

system supporting automatic generation of a compilation database
(clang-tidy).

5.2 Technical Challenges of Automated Refactoring
As mentioned in Section 3.1, finding refactoring opportunities, not to mention an
optimal design solution is not easy. When done correctly, the source code modifications
have to not only preserve the behavior, but also lead to improved code. Be it by lowering
cohesion and coupling [Du Bois et al., 2004, Meyers and Binkley, 2007] or aiding in
comprehension; ultimately resulting in easier to read, more maintainable and testable
code. That being said, it does not come as a surprise, that automating the task of any
non-trivial refactoring operation can be tricky.
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Let us take the Extract-Method refactoring22 to outline these challenges. According to
its description (cf. Section 3), a developer might extract lines 2-5 in Listing 12 into a
new method called sum().

1 double average(std::vector<double> const& vec) {
2 double sum = 0.0;
3 for (const auto elem : vec) {
4 sum += elem;
5 }
6 return sum / static_cast<double>(vec.size());
7 }

Listing 12: Use case of the Extract-Method refactoring operation.

When strategizing how to best utilize clang-tidy, we found that clang-tidy on its
ownClang-tidy on its own is not designed to recognize these refactoring opportunities.
Trying to simulate variant drift using clang-tidy without additional techniques like
program dependence graphs [Tsantalis and Chatzigeorgiou, 2011], we would have to
select a random method and a random number of lines to extract within that method.
While refactorings like these are technically possible with clang-tidy, it is the checks
implementers’ responsibility to guarantee that existing code is not breaking. By employ-
ing this random selection strategy we lose any realism and aspirations we have towards
a good refactoring - in a sense almost contradicting its core principles. Note however,
that existing checks built into clang-tidy and the custom checks we implemented are
sufficient for simulating variant drift. They could provide new insight, even if the
integration has to be further investigated in future work.

Moreover, VEVOS is written in the Java programming language. Clang-tidy on the
other hand is C++ based. Knowing both languages is thus a requirement when trying
to extend the behavior of either tool or combining results produced by both. We also
found that in its current state, users of VEVOS are pretty constrained to the library
itself. Output produced by either extraction or simulation are hard to work with on
their own. Fortunately, clang-tidy is compiled into a single executable that can be
invoked using its the command line interface. This simplifies the integration in VEVOS.

22Described problems also occur with other refactoring operations like Move-Field which change the
structure of the code.
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Lastly, we experienced that getting to know the LLVM infrastructure and its tools
requires considerable time. Implementing a check that handles every corner case is hard.
It requires a good understanding of the C/C++ programming langue. Additionally,
knowledge about other LLVM tools - or at least its existence - is very useful, if not
necessary. Even LLVM/Clang compiler developer V. Bridgers talks about an 80% rule
regarding the covering of checks in his talk at the 2020 LLVM Developers’ Meeting23.
He is referring the fact that developers are usually content if the check handles 80% of
the work. The rest is done by hand or a different tool.

• Large-scale refactoring using clang-tidy is possible but getting to know the
LLVM infrastructure, its tools to be able to implement a good check is very
time-consuming.

• More satisfactory results might be attainable when combining clang-tidy with
additional techniques such as program dependence graphs.

• Results produced by either VEVOS’ extraction or simulation are hard to work
with outside of VEVOS.

• Offering a rudimental command line interface for manipulation of results could
ease of use.

23https://llvm.org/devmtg/2020-09/slides/Clang-tidy_for_Customized_Checkers_and_
Large_Scale.pdf
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5.3 Refactoring Variants Directly
We began by exploring options of integrating clang-tidy into a workflow similar to
the one presented in [Schultheiß et al., 2022b]. In this study the authors simulated
change synchronization through the use of techniques based on document patching.
They used the well known tools diff and patch to determine the evolution between a
pair of consecutive commits, propagating changes to other variants and evaluating their
applicability and correctness. As this study was already completed, conducting a similar
one investigating differences in results to applicability and correctness seemed feasible
at first. Because of the way VEVOS is implemented (i.e., being split into modules for
extraction and simulation), as well as its internal workings (e.g., regarding the presence
conditions), we faced unresolved challenges.

Refactoring operations changing the structure of the code (i.e., by moving, inserting or
removing code) are interesting and challenging at the same time. That is because such
refactoring might invalidate presence conditions, which reference line numbers. Recall
that in order to generate feature-aware variants, VEVOS maps presence conditions
to code, block and file conditions. Invalidated presence conditions thus also render
the feature mappings derived by VEVOS’ as useless. Unfortunately this implies that
extraction has to be performed after applying each or a set of similar refactoring oper-
ations. However, this would result in long simulation times. We are facing restrictions
imposed by the architecture of VEVOS.
There also exist refactoring operations like Rename-Method, which do not change
the structure of the code. Simply changing the name of a method would not lead
to an alteration of the presence conditions. Nevertheless, all of these operations are
interesting as they change the context of the code and thereby represented features.

• The most interesting refactoring operations (changing the structure of the code)
also invalidate extracted presence conditions and feature mappings.

• Generally, every refactoring is worthwhile as it changes the context.
• Performing extraction after applying refactoring operations results in long simu-

lation times.
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5.4 Refactoring Product Line’s Source Code
VEVOS is split into two modules performing extraction (cf. Section 2.2.2) and simulation
(cf. Section 2.2.3). While this makes sense from a separation of concerns perspective,
especially since extraction takes considerably longer than simulation and is performed
only once, this imposes some challenges. In particular: The generation of variants
depends on prior extraction. Thus, the only way to reflect refactoring operations inside
the ground truth extracted by VEVOS is if we inject them directly into the source
code’s history. Such approach could look like the following:

(1) Create empty folder F
(2) Initialize VCS repository R inside F
(3) For each commit in original SPL history:

(4) Refactor code
(5) Copy and overwrite content in F
(6) Commit refactored code to R

Listing 13: Procedure of injecting refactoring into product line’s source code.

Using these steps, we end up with a new history containing changes introduced by
the refactoring while at the same time preserving the original software product lines’
evolution. Which is a problem in its own right: Now the differentiation between changes
introduced by the refactoring versus changes introduced by the natural evolution of
the variant becomes infeasible.
To investigate various kinds of refactoring operations or different granularity thereof,
we would have to create and handle multiple of these copies (emerging from step (5)
in Listing 13). Furthermore, there exists no clear way to map between commits of both
histories. Such a mapping only exists under the assumptions that refactoring operations
affect these copies in the same way or that evolution and modifications introduced
as part of the refactoring would end up at the same location. This remains to be proven.

• To incorporate refactoring into generated variants, refactoring operations have to
be applied before extraction.

• We proposed a procedure to directly inject refactoring (i.e., variant drift) into
the product line’s source code.

• The feasibility of this approach requires further investigation:
– It is unclear, whether a mapping between commits of distinct histories can

be constructed.
– It is not guaranteed that applying the same refactoring operation to different

variants affects them equally.
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6 Conclusion
In this study, we investigated the potential to simulate variant drift in software product
line variants using AST-based refactoring. Schultheiß et al. introduced the tool VEVOS,
which enables researchers to generate benchmarks and simulate the evolution of cloned
variants. However, these benchmarks (i.e., variants) lack variant drift. To counteract
this deficiency, our vision was to simulate variant drift by applying AST-refactoring
operations using the C++ linter tool clang-tidy.
Besides a demonstration of how clang-tidy can be extended by custom checks, we
examined requirements and challenges faced when trying to combine both tools. Our
results show the intricacy of the matter. Specifically, we found that only a small
proportion of the considered systems, six out of 44, are applicable at all. The main
reason is clang-tidy’s necessity to generate a compilation database in order to run it over
entire projects. While we argue that large-scale refactoring using clang-tidy is possible,
integrating clang-tidy into VEVOS posed additional challenges. These have to do with
the fact that results produced by either VEVOS’ extraction or simulation are hard
to work with outside of VEVOS. To this end, we proposed two approaches regarding
possibilities to integrate AST-based refactoring. The first one aimed at refactoring
variants generated by VEVOS directly. The second targeted refactoring the product
line’s source code instead. Lastly, we outlined the reasons for AST-based refactoring
using VEVOS being infeasible for the moment. In conclusion, we suggest that future
research should focus on the development of new refactoring methods and tools that
explicitly target the simulation of variant drift.
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