
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Generator-based Fuzzing with Input Features

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: Roman Kraus
geboren am: 25.11.1993
geboren in: Moskau

Gutachter/innen: Prof. Dr. Lars Grunske
Dr. Marcel Böhme

eingereicht am: verteidigt am:

Contents
1. Introduction 4

1.1. Motivation . 4
1.2. Research Questions . 5
1.3. Outline . 5

2. Background 6
2.1. Fuzzing . 6

2.1.1. Introduction to Fuzzing . 6
2.1.2. Fuzzer Categorization . 8

2.2. Generator-based Fuzzing . 10
2.2.1. Property-based Testing . 10
2.2.2. JQF . 11
2.2.3. The Zest Algorithm . 13

2.3. Pattern Mining . 17
2.3.1. Sequential Pattern Mining . 17
2.3.2. Graph-based Pattern Mining . 20

3. Related Work 23
3.1. Fuzzing with Input Features . 23

3.1.1. FairFuzz . 23
3.1.2. Template-Guided Concolic Testing 26
3.1.3. K-Paths . 28

3.2. Directed Fuzzing . 31
3.3. Further mentions . 32

4. Generator-based Fuzzing with Input Features 34
4.1. Motivation . 34
4.2. The Approach . 41
4.3. Implementation . 64

5. Evaluation 69
5.1. Evaluation Setup . 69
5.2. Experimental Results . 72
5.3. Discussion . 91

6. Conclusion 93

A. Appendix 102

3

1. Introduction

1.1. Motivation
Fuzzing is a testing technique where a system under test (SUT) is repeatedly run with
generated inputs. The idea is to find bugs by exposing the system to inputs which it
might not expect [MHH+21]. One method to generate inputs is to randomly mutate
(i.e., change) the bytes of example inputs. For instance, to randomly overwrite the
bytes which constitute the characters of a given XML document. Such approaches can
be called mutation-based [MHH+21] [LZZ18]. Generating inputs in such a way however
can make it difficult to trigger functionalities which relate to valid processing. The
reason is that randomly mutating the content bytes of an input has a high likelihood
of breaking the syntactic or semantic structure of the input [PLS+19c]. Consider for
instance XML (e.g., the string "<a>") where deleting just a single angled bracket
could already invalidate the entire input.

Generator-based fuzzing is a technique which could potentially help with that. This
approach employs generators to create its inputs. Generators are programs which gen-
erate inputs of a certain type [PLS+19c]. This could be e.g., a generator which creates
randomized, but always syntactically valid XML documents. Employing generators for
the input creation can be beneficial, as the generator could give certain guarantees. For
example, that the inputs will always be syntactically valid. This increases the chance
of triggering valid functionalities, even if other aspects of the input are randomized.

Recent research suggests that generating inputs with certain qualities can be benefi-
cial for increasing the coverage during fuzz testing [LS18] [CLO18] [HKZ22]. This is
because certain functionalities might only be triggered by inputs with specific charac-
teristics. For example, XML inputs which contain specific tags. One open question
however is how to realize such a targeted feature generation with generator-based
fuzzing. Namely, it is unclear how one could represent, regenerate and identify input
features. This is a downside as generating inputs with certain qualities could have
additional benefits to potential coverage increases. For example, it could be used for
verifying debugging hypotheses by exposing the SUT to inputs with features that are
considered suspicious. Moreover, it could be used to test the quality of bug fixes by
producing inputs with properties that were earlier crash inducing [KHSZ20].

The goal of this thesis is therefore to develop an approach for targeted feature
generation with generator-based fuzzing. We will employ this approach to investigate
whether we can identify and re-generate features which are necessary to reach rarely
visited areas of an SUT. This could increase the achieved coverage and could thus
improve the effectiveness of fuzzing campaigns [LS18].

To achieve our goal, we will focus on inputs which have a tree-based structure
(namely, XML and JavaScript). Our core idea is to represent features as sub-trees of
an input and to re-generate the features by splicing (i.e., inserting) specified sub-trees

4

into the tree structure of randomly generated inputs. To identify critical features (e.g.,
ones which trigger a rarely visited SUT area), our approach performs pattern mining
on the tree structure of grouped inputs. This allows us to identify shared tree-paths of
inputs that fulfil a certain target (e.g., hit a certain SUT area).

To implement our approach we will extend the generator-based fuzzer JQF [PLS19b]
and its flagship algorithm Zest [PLS+19c]. The Zest algorithm has been specifically
designed to increase the valid coverage achieved during fuzzing. Extending Zest might
thus yield a particular chance to increase the achieved valid coverage even more.

1.2. Research Questions
To investigate the viability and effectiveness of our approach we plan to answer the
following research questions:

• RQ1 Can our approach hit rarely visited areas more often and with more varied
path traces compared to Zest?

• RQ2 Can our approach increase the overall coverage compared to Zest?

• RQ3 How effective is our approach with regards to feature learning and re-
generation?

1.3. Outline
The remainder of this thesis is structured as follows. In chapter 2 we will discuss the
background of our approach. This will include a discussion of Fuzzing in general, the
specifics of Zest’s generator-based approach and a discussion of pattern mining.

In chapter 3, we will present work which is related to ours. This will include previous
fuzzing approaches that employ input features for fuzzing. Furthermore will discuss
approaches which attempt to direct a Fuzzer into particular areas of an SUT.

Chapter 4 presents our approach. We will discuss the motivation behind it, show its
details and present the implementation.
Finally, we will present the evaluation of our approach in chapter 5 and provide a

conclusion and an outlook on further work in chapter 6.

5

2. Background
In the following chapter we will provide an introduction to foundational topics that are
relevant to our project. We will start with a formal explanation of fuzzing and typical
categories of modern fuzzers. Afterwards, we will discuss specifics of generator-based
fuzzing. In particular, we will focus on the generator-based fuzzer JQF [PLS19b] and
its algorithm Zest [PLS+19c]. Subsequently we will discuss pattern mining, especially
sequential (and graph-based) pattern mining.

2.1. Fuzzing
2.1.1. Introduction to Fuzzing

Fuzzing can be defined as the process of running an SUT with inputs which can go
outside of its expected input space [MHH+21]. In the case of XML this might be
running an XML parser with XML documents which are randomly mutated. For
example, where the contents of XML tags are randomly mangled. We will use the term
"fuzzer" to denote the programs which perform the fuzzing. Our terminology will be
based on Manes et al. [MHH+21] who provide reference definitions.

The goal of fuzzing is typically to discover bugs [God20] [BCR21]. To identify whether
an execution resulted in a bug, a so-called "bug oracle" is used. In its simplest form
this might be checking whether the run resulted in a crash. More intricate methods
may e.g., monitor the internal state of SUTs. For example, by using sanitizers to detect
memory issues which do not necessarily result in a crash (like e.g., buffer overflows)
[MHH+21] [Pay19].

Fuzzing is usually performed iteratively. Even though there exists a broad range of
fuzzers, Manes et al. [MHH+21] break the process down to a 7-step algorithm. We will
use that algorithm to explain the general steps of fuzzing. The algorithm is depicted in
Figure 1.It takes two inputs. First you have a set of configurations, C. A configuration
(c ∈ C) encapsulates the parameters a fuzzer needs to generate a new input and to
perform an execution. This includes at least the SUT. Other components might be seed
inputs1 or parameters for the randomization (e.g. where and "how much" to mangle
a file). Manes et al. [MHH+21] leave the configuration contents deliberately open as
each fuzzer might need different parameters depending on its algorithm.
The second input is the time limit, tlimit. This describes the maximum amount of

time a fuzzer shall operate on an SUT. The entirety of executions/iterations a fuzzer
performs before it stops can be called a "fuzz campaign" [MHH+21]. We will use the
terms "fuzz run" or "fuzz execution" to describe a single execution of the SUT with the
fuzzer (i.e., one iteration). The result of a fuzzing campaign is a set of discovered bugs, B.

1Seed inputs are provided inputs, which are used for bootstrapping.

6

Figure 1: The fuzzing loop (taken from [MHH+21])

Now that we know the inputs of the algorithm, let us discuss the processing steps.
In the first step, the initial set of configurations is replaced by a new, preprocessed
one (line 2)2. The preprocessing step is there to do some preparations before the first
fuzz run. This can include instrumenting the SUT, preparing driver applications or
removing redundant configurations [MHH+21]. Instrumenting means, that additional
code is added to the SUT in order to monitor (or control) its operation [BNK16]. In the
context of fuzzing this often means code which tracks code coverage during execution.

The next step is the while-condition of the fuzzing loop (line 3). This controls how
often the SUT is executed with a new input. The while condition performs two checks.
First, it examines if the time limit is met (telapsed < tlimit). Secondly, it checks whether
there are any custom reasons why the fuzzer might stop. These custom reasons are
implemented individually per fuzzer in the Continue(C) function. For example, it
might check whether the fuzzer traversed all possible paths of the program. If so, it
could stop the operation. This can be detected by fuzzers which closely analyze and
track the source code of the SUT [MHH+21]

The third step is the selection of the next fuzz configuration (line 4). This selection
might be e.g., influenced by which configurations have recently performed well in terms
of code coverage or number of found bugs.
In the fourth step, a test case (= input) is generated (line 5). The details of the

generation are once again fuzzer dependent. Two typical approaches are to either
mutate contents of a given seed file or to randomly generate inputs from a model (e.g.
a grammar).
Finally, the test case is used as an input to the SUT (line 6). A given bug oracle

(Obug) is used to classify the outcome as valid or invalid. This result is stored in the so
called "execution infos" (execinfos). These infos can also include additional data, like
achieved code coverage.

These gained pieces of information are then used to update the configurations (line
2We leave out the initialization of the bug-set (line 1), as it is an obvious step

7

7). For instance to add, remove or modify certain ones.
The last step is then to update the set of bugs (line 8) and to prepare the next

iteration of the fuzzer.

2.1.2. Fuzzer Categorization

There are many dimensions according to which one can distinguish different types of
fuzzers. In the following we will focus on two aspects: Source code awareness and input
generation.

Black- White- and Greybox-Fuzzer The first major distinction one can do between
fuzzers is according to their awareness of the SUT source code. Typically one can
identify three different types: black-, white- and greybox fuzzers [MHH+21], [LZZ18].
The source code awareness usually influences the decisions of the fuzzers (typically
input generation).

Blackbox fuzzers constitute the most traditional form [MHH+21]. They refer to
fuzzers which do not inspect the internals of the SUT at all. Instead, they make
their fuzzing decisions only depending on the directly observable output of the SUT
[MHH+21]. For example, the processing time or data on the standard-out stream. The
internals of the SUT constitute a blackbox for these fuzzers. This approach can be
very fast, as we have no instrumentation and likely process fewer information. However
it might explore the program less thoroughly, as it has no information on the coverage
achieved per input. Thus, it can e.g., not favor inputs which hit rarely visited program
areas.

At the other extreme there are whitebox fuzzers. These have full access to the
SUT source code and usually perform a thorough analysis of it. For example, they
might attempt to identify important values or possibly vulnerable locations in the
code [MHH+21]. Whitebox fuzzing is closely related to dynamic symbolic execution
(DSE) [MHH+21], [God20]. This is an adaptation of "normal" symbolic execution. In
("normal") symbolic execution, the SUT is executed with abstract, symbolic inputs
instead of concrete ones [BCD+18]. This allows one to directly explore each possible
program path, as you only have to update abstract constraints on the variables and
not provide real values beforehand. Furthermore, one can use obtained constraints to
later generate concrete inputs with a constraint solver. DSE augments this procedure
such that symbolic execution only keeps track alongside concrete executions. This
can have performance benefits, as we run the system with concrete and not abstract
values. Furthermore, DSE can also handle calls to libraries for which no source code is
available. Normal symbolic execution would usually struggle with that [FR19].

DSE has some relation to fuzzing, as you also repeatedly run a SUT with new inputs
to increase code coverage. Nevertheless, not all authors use the term fuzzing when
discussing their DSE works [MHH+21]. One reason might be that the program explo-
ration in DSE is more systematic than in traditional fuzzers. Still, it is a noteworthy

8

relation which is also relevant for this thesis.

Finally, we have greybox-fuzzers. These constitute a mix between blackbox- and
whitebox-fuzzers. This means that they employ some instrumentation and code analysis,
but usually keep it more constrained compared to whitebox-fuzzing [MHH+21]. The
reasoning is to profit from source code awareness, while limiting the overhead. A
typical metric collected by greybox-fuzzers is the code-coverage achieved by inputs.
Measuring this induces arguably less overhead than e.g., tracking branch conditions and
using solvers to generate inputs (as in DSE). Nonetheless, analyzing code-coverage can
already be a very powerful metric to better explore certain program areas. Greybox-
fuzzing is therefore an approach which is commonly employed in modern fuzzers. One
prominent example is the fuzzer American Fuzzy Lop (AFL) [Zal14]. This fuzzer is
"coverage guided", because it uses the coverage achieved by inputs to determine which
inputs to focus on. Namely, it keeps a queue of inputs which from which it selects
further inputs to mutate (see below). Generated inputs are added to the queue if they
achieved new coverage [LS18].

Input generation A second important dimension according to which fuzzers can be
classified is their input generation method. Currently there are two major categories:
Model-Based and mutation-based (or "model-less") input generation [MHH+21], [LZZ18]
[Pay19].

Model-Based Input Generation Model-Based input generation means that the
fuzzers use a description of the input format to generate their test-cases [MHH+21].
Typical examples include grammars, API-descriptions or implicit models embedded
in generators. One example for a grammar based fuzzer is Nautilus [AFH+19]. The
fuzzer JQF [PLS19b] on the other hand is an example where the model is embedded
implicitly. This fuzzer uses generator programs which have custom routines to create
new inputs for the SUT.
Another approach in model-based input generation is not to rely on predefined

models, but to instead infer them during execution [MHH+21]. For instance, a fuzzer
could perform static or dynamic analysis to identify constants which might be relevant
to pass certain constraints [LZZ18]. Furthermore, fuzzers could attempt to infer input
grammars based on a given set of valid files. Even though model inference could yield
important improvements, it seems that so far not much research has been done in this
direction [MHH+21]. Nonetheless, it is a potentially promising approach which could
simplify model generation.

Mutation-Based Input Generation The other major technique for input generation
is mutation-based. In contrast to the model-based approach, this principle does not use
any model of the inputs. Instead, it requires seed inputs. These are well formed inputs
which are used for bootstrapping. Fuzzers in this category would take those inputs
and randomly mutate parts of them to generate new inputs. For instance, by flipping

9

certain bits, by exchanging byte blocks or by setting parts to interesting values (e.g.
0 or -1 when mutating integers) [MHH+21]. The fuzzer AFL [Zal14] is a prominent
example of this approach.

2.2. Generator-based Fuzzing
Generator-based fuzzing constitutes a sub-category of model-based fuzzing. The idea
is to use generator programs which create inputs for an SUT. Thus, inputs are not
derived from seed inputs via random content mutation, but are instead generated from
the ground up by dedicated routines. The advantage of this approach is that generators
could give certain guarantees. For example, that inputs will always be syntactically
valid. This increases the likelihood of reaching valid processing stages with fuzz inputs
compared to mutation-based approaches. Because mutation-based approaches have a
high probability of breaking syntactic or semantic input properties due to their random
mutations which ignore the input model.

In the following we will briefly trace the origins of generator-based fuzzing before
describing the state of the art. Namely, the fuzzer JQF [PLS19b] and its algorithm
Zest [PLS+19c].

2.2.1. Property-based Testing

Property-based testing (PBT) as introduced by Claessen and Hughes [CH00] can
be seen as the origin of modern generator-based fuzzing3. It is a black-box testing
technique where SUT properties are checked by confronting the SUT with randomly
created inputs provided by generators. For instance, imagine that you have an SUT
which can reverse a list of integers. One property could be that a list should be in its
original order if you call the reverse-function twice on it. To test this with PBT, you
would specify this property and then let generators create random inputs. For each
such test case, the SUT is run and specified properties are checked. If an input violates
the property, this might be an indicator for a bug in the SUT [LS17]. Thus, in its most
traditional form PBT might be loosely defined as black-box fuzzing with generators
and property-based bug oracles.

Popular instances of PBT are the seminal tool QuickCheck [CH00] and its Java
implementation junit-quickcheck [Hol]. The modern generator-based fuzzer JQF is
in fact based on junit-quickcheck and also describes its process as property-based
testing [PLS19b]. The notion of generator-based fuzzing seems to be a relatively recent
one which appears to have become more popular (or possibly even originated) with
the advance of JQF and Zest [PLS+19a, Lem21, NG22].

3Please note that Claessen and Hughes [CH00] do not use the term "property-based testing" in their
paper. However, they are credited as being the pioneers of that field [LS17].

10

In the following we will use the term PBT rather when speaking of more traditional,
black-box, generator-based fuzzers in the lineage of QuickCheck. The term generator-
based fuzzing will be used as the more general term and especially when referring to
its more modern instantiations in the form of JQF and Zest. Please mind however,
that the term PBT and generator-based fuzzing have also been used synonymously by
one of the authors of JQF and Zest [Lem21].

2.2.2. JQF

Now that we have presented the origins of generator-based fuzzing, we will discuss the
state of the art. Namely, the fuzzer JQF [PLS19b] and its algorithm Zest [PLS+19c].

JQF Motivation JQF is a generator-based greybox-fuzzer which has been imple-
mented in Java. Its core strength is that it augments black-box PBT with coverage
information. We have previously seen that it can be difficult for mutation-based fuzzers
to cover valid functionalities of an SUT. This is because random mutations of the raw
input content have a high probability of breaking syntactic or semantic constraints.
Let us be more specific with what we mean by that. Many programs which take highly
structured inputs (e.g., XML documents) process their inputs in two phases:

1. A syntactic analysis

2. A semantic analysis

The first check ensures that inputs fulfill the general syntactic input constraints. For
instance that they are valid XML documents. The second check investigates whether
the input also fulfills content constraints specific to the SUT. For example, that a
XML file only contains tags which are defined in the SUT’s standard and appear in
sequences which match the SUT’s schema [PLS+19c].
Based on that we make the following definitions: If an input passes the first stage,

we will call it syntactically valid. If an input passes the first and the second stage,
we will call it semantically valid (or simply valid). Syntactic and semantic invalidity
refers to failing at exactly the corresponding stages. Simple invalidity (i.e., without
specifying the stage) may refer to either [PLS+19c].

To make it more concrete, imagine an SUT which can only process XML documents
which contain tags with the name "a". The input "<a>" would thus be syntactically
and semantically valid because it constitutes syntactically valid XML and because it
only contains tags with the name "a". If we would now replace an angled bracket with
an underscore, we would destroy the syntactic XML structure of the input. Therefore,
the mutated input "<a_" would be syntactically invalid. If, on the other hand,
we would replace both "a"s with "b"s, we would still produce syntactically valid XML.
However, remember that our SUT can only process tags with "a" as their name. The
input "" would thus be syntactically valid but semantically invalid.

11

Fulfilling syntactic and semantic input requirements can be a difficult task for
randomized input generation. Especially, if the inputs are generated by random
mutation of content bytes, as is the case for fuzzers like AFL [PLS+19c]. Generator-
based testing approaches (like PBT) can have an advantage because generators can
e.g., give the guarantee of syntactic validity, even if other aspects of the input are
randomized (for instance, the number of tags and their content in the case of XML).
Nevertheless, black-box PBT approaches can still struggle at generating inputs which
are semantically valid and which explore varying parts of the valid processing stages.
One factor is that they have no information on which SUT branches have been executed
by an input [PLS+19c]. Therefore, they could e.g., not attempt to re-generate new
inputs based on ones which recently uncovered new areas. This is a downside because
such a coverage-guided search strategy has proven itself to be quite successful with
mutation-based fuzzers and can be considered to be the de facto standard in current
fuzzing research [Pay19]. JQF attempts to bridge this gap by augmenting black-box
PBT with coverage information. The result is our modern notion of generator-based
fuzzing (at least, if we exclude Zest for a moment).

Technical details of JQF JQF extends the PBT framework junit-quickcheck [Hol]
and instruments SUTs to collect coverage information on executed inputs. However,
JQF does not ship with a mandatory, hard-coded fuzz algorithm which processes that
information. Instead, it is built by design to be an extensible framework which comes
with several fuzz algorithms and which allows for the simple implementation of custom
ones. JQF realizes that with a concept it calls Guidances [PLS19b].

A Guidance is a Java class which represents a fuzz algorithm in JQF’s framework.
JQF itself provides the generic fuzzing loop. It delegates however certain functionalities
within that fuzzing loop to a Guidance. In terms of Manes et al. [MHH+21] (see section
2.1.1) the tasks of a Guidance include the scheduling (and updating) of configurations
as well as the decision when to stop a fuzzing campaign.

This principle is presesented in the pseudo-code of JQF’s fuzzing loop in Listing 1.
The loop continues as long as the Guidance can (or chooses to) provide another input
(line 1)4. If an input is available, JQF obtains an InputStream (i.e., a byte stream) which
encodes the input (line 2). That InputStream is then used to instantiate the input objects
by calling the generators (line 3). This means that the generic byte stream is converted
to objects which e.g., represent XML documents. Finally, the SUT is run with the gener-
ated inputs and the Guidance is informed about the outcome of the execution (lines 4-5).

4What is not mentioned here is that JQF also considers a configurable max runtime.

12

1 while (guidance . hasInput ()) {
2 InputStream inputStream = guidance . get Input () ;
3 Object [] a rgs = gene ra to r s . generate (inputStream) ;
4 Result r e s u l t = runSUT(args) ;
5 guidance . handleResult (r e s u l t) ;
6 }

Listing 1: Pseudo-Code of JQF’s Fuzzing Loop

An important aspect is that the InputStreams which are returned by Guidances do
not directly represent the inputs that are later generated (i.e., in line 3). Instead
they constitute the byte stream that is consulted by generators when making random
decisions. Since these byte streams control the decisions of the generators, they also
decide how the input will look like. The fact that Guidances control the generator
decisions (and not directly the content) is a crucial design choice which also plays an
integral role for the Zest algorithm. We will thus discuss it more thoroughly, when
presenting Zest.

2.2.3. The Zest Algorithm

The Motivation Behind Zest Now that we have discussed the basics of JQF let us
move on to its arguably most important Guidance: The Zest algorithm [PLS+19c].

The idea of Zest is to increase the likelihood of generating syntactically and semanti-
cally valid inputs while fuzzing. We have previously seen, that many SUTs process
inputs in two steps: First, a general syntactic check and second a semantic check. We
have also seen, that it is quite difficult to fulfil both constraints. Especially, if you
generate inputs via direct content mutation and do not pay attention to the underlying
model. You can remediate this in some way if you use generators. Because generators
could give certain guarantees. For instance, that all created inputs will be syntactically
valid. Such inputs would pass the syntactic checks of the SUT. However, they will
again likely not meet the semantic constraints, as the contents are fully random (i.e.,
they ignore specifics of the SUT). One solution could be to develop generators which
are attuned to the SUT requirements. But this requires additional effort and knowledge
which might be difficult to acquire (e.g., because it is extensive or not well documented).
Thus it can be difficult to easily produce inputs, which explore semantic areas of SUTs.
Zest improves upon this by automaticallly guiding off-the-shelf generators towards
syntactic and semantic validity [PLS+19c].

Parametric Generators An important concept that Zest builds on is that of paramet-
ric generators. That is why we will first introduce this, before moving on to Zest itself.

We have already discussed generators in general before. We define them as programs
which produce randomized, but syntactically valid inputs of a given type. In order to
randomize the contents of their results (e.g., the number of XML tags), generators in

13

Figure 2: A Parameter-Stream (taken from [PLS+19c])

JQF employ a so-called SourceOfRandomness. This is a (potentially infinite) sequence
of pseudo-random bytes. It can be used by randomizer-functions to derive complex,
pseudo-random objects. For instance, if a function needs to produce a randomized
integer, it might read the next 4 bytes from that stream and interpret that as the
integer. Conversely, if a function e.g., provides a random character, it might just
read one byte and use that as the character. This idea is illustrated in Figure 2. It
shows how a generator calls randomizer-functions and how those functions use the
SourceOfRandomness. First, the generator queries for an integer. This might e.g., be
for the length of a random string. To obtain this value, the generator calls a nextInt(...)
randomizer-function. This function reads one byte from the stream and derives the inte-
ger 3 from that pattern5. Afterwards, the generator asks for a random character. This
might be e.g., the first character of the random string. Again, a randomizer-function
reads from the SourceOfRandomness and returns a derived value (this time ’f’). For the
sake of simplicity, both randomizer-functions read one byte in this example. In reality,
each operation can as read as many bytes as it wants and use them in any way they need.

Padhye et al. [PLS+19c] call each bit of a pseudo-random bitstream a parameter.
Each parameter is originally untyped. It only assumes a type, once it is read and
interpreted in some way (e.g., as a component of an integer). A parametric generator
might therefore be defined as a generator which uses a parameter stream to make (all)
its randomized choices.

An important insight is the following: If you mutate a parametric byte stream (e.g.,
by flipping random bits) this can induce high level changes in the produced output.
For example, imagine that we use the stream from Figure 2 to generate a XML tag
pair (<random_string></random_string>). Let the obtained integer (3) refer to the
length of a randomly generated tag name. Let the obtained character (’f’) denote the
first character of the string. Let the remaining two characters be an ’o’ (without loss
of generality). This would produce an output like this: <foo></foo>.
Let us now further assume, that we mutate some bits in the stream of 2. This is

illustrated in 3. As you can see, the mutation would change the character "f" to "W".
If we would now generate a XML document from that stream, we would obtain the
following output: <Woo></Woo>.
Even though we performed a random mutation on the bit-level, we still obtained

5If you are wondering, why the function returns a "3" even though there is a "2" in binary, then
please mind that the smallest number the function is asked for is a "1".

14

Figure 3: A Mutated Parameter-Stream (taken from [PLS+19c])

syntactically valid XML tags. This is because we affected the choices the generator
makes and not just randomly flipped bits in the produced content. Our mutations
thus caused changes on a conceptual XML level. This is what is meant by high level
changes. Even though we performed the mutation at a low level (i.e., change bits in a
stream), the impact occurs at a high level as it influences the course of the generator.
And since generators always produce syntactically valid outputs, so are the new ones.

This insight is presented in the Zest paper [PLS+19c] and yields tremendous con-
sequences. Because this provides a tool to perform low level mutations while still
producing syntactically valid files. It is a key component of Zest’s algorithm.

The Zest Algorithm We will now present how Zest works in detail. The core of Zest
rests on three principles.

The first principle is that Zest uses generators to create its inputs. This ensures that
the inputs should always be syntactically valid6.

The second principle is that Zest derives new inputs by mutating the SourcesOfRan-
domness (or "parameter stream") fed to the generators. This guarantees that the new
inputs will be again syntactically valid (as discussed before). Because, we are now
influencing the high level decisions of the generators (e.g., "produce 5 instead of 3 XML
tags") and not just randomly flip bits in the content.

The third principle is that new inputs are always based upon previous SourcesOfRan-
domness, which have either

• produced semantically valid inputs or

• uncovered new program areas.

First, this increases the chances of deriving new semantically valid inputs. Because
we are now basing our new inputs on SourcesOfRandomness of previously semantically
valid inputs. If we mutate these, the chance of new semantically valid inputs is arguably
higher than from random ones. Secondly, we also have a higher chance of extending
the coverage. Because we also derive new inputs from SourcesOfRandomness which
have discovered new program areas. Such inputs are more likely to visit related but
yet undiscovered areas, thus potentially increasing the coverage.

6Provided that the generator gives such a guarantee. For simplicity’s sake we will assume that
generators always produce syntactically valid inputs if not stated otherwise.

15

Initially Zest starts with randomly generated SourcesOfRandomness. However, as
soon as a SourceOfRandomness fulfills one of the criteria mentioned above, Zest saves
it to a queue and from then on only generates new inputs by mutating SourcesOfRan-
domness from that queue.

You can thus summarize Zest as a combination of coverage-guided fuzzing with
parameter stream mutation. By following this approach, Zest is potentially able to
better explore the semantic areas of SUTs compared to more traditional techniques
before. Because Zest can concentrate on generating inputs which are semantically
valid without risking to lose syntactic validity through mutation. This prediction has
been validated by comparing Zest against AFL and junit-quickcheck. The tested input
types included (among other things) XML configuration files for build systems (namely
Apache Maven [Mav] and Ant [Ant]) as well as JavaScript-code fed to compilers and
optimizers (i.e., Mozilla Rhino [Rhi] and Google Closure [Clo]). The JQF generators
have been manually developed by the authors in less than two hours each and are kept
rather small (all <= 500 LoC) and generic. Zest has been better at exploring semantic
code in each benchmark, exercising up to 2.81 times as many semantic branches as
the best other technique. Furthermore, Zest did discover semantic bugs faster and
more reliably than the other approaches. Therefore Zest appears indeed to be a good
method to better explore semantic code areas with fuzzing. It should be noted however
that AFL obtained up to 1.6 times more syntactic coverage and also discovered more
bugs there. Thus, Zest is not overall better, but still very effective at semantic fuzzing.
This is something which Zest’s authors mention as well [PLS+19c]. For them, Zest
constitutes a technique which targets a different area than more traditional fuzzers like
AFL. Namely, Zest focuses on fuzzing semantic processing stages of an SUT. It is thus
a complementary approach and no direct competitor.

Determining validity and further Guidances Before we close this subsection we want
to briefly discuss two more aspects. Specifically, how JQF/Zest determine semantic
validity of an input and what other Guidances are available next to Zest.

First, let us discuss semantic validity. JQF distinguishes between three types of
execution results:

1. SUCCESS

2. INVALID

3. FAILURE

The first outcome (SUCCESS) means, that the SUT ran without crashing. Thus, the
fuzz run returned normally and no un-catched exception occurred. The second outcome
(INVALID) indicates, that an assumption on the input has been violated. Assumptions
can be put on inputs to e.g., filter ones out which do not fulfill a pre-condition (e.g.,
when testing division that the second operator is unequal to zero). The third outcome

16

(FAILURE) signals that the SUT reported an exception or assertion violation. This case
can indicate potential bugs in the SUT [PLS19b].
Semantic validity for Zest means that JQF reports a SUCCESS for a given run.

Therefore, it is up to the test- or SUT-developer to ensure that syntactic or semantic
invalidity results in an error which can be picked up by JQF [PLS+19c].

In addition to Zest there also exist other Guidances. For example, the Zest paper
mentions the AFLGuidance which allows to employ the popular fuzzer AFL for the
input generation with JQF [PLS+19c]. Furthermore one could mention RLCheck which
proposes a black-box technique for valid input generation with reinforcement learning
[RLPS20]. However, we consider it valid to say that Zest is JQF’s flagship (and default)
Guidance.

2.3. Pattern Mining
In the next subsection we will discuss concepts of pattern mining which are related to
and employed in this thesis. Particularly, we will focus on sequential pattern mining
and graph pattern mining. Both topics are relevant to us, because we employed them
to identify patterns within inputs that hit a targeted region. Therefore, a certain
background is necessary to understand e.g., chosen parameters and implementation
aspects.

2.3.1. Sequential Pattern Mining

Pattern mining may be defined as the process of identifying interesting, useful or
unexpected patterns in a set of data [FVLK+17]. There exist several forms of pattern
mining, depending on the type of input data and the restrictions that discovered
patterns must fulfil. For instance, in frequent itemset mining the goal is to identify
recurring patterns in a list of (unordered) sets of items. An adaptation of that is
association rule mining which tries to identify implications between itemsets [Han12].
Sequential pattern mining is one particular type of pattern mining.

Sequential pattern mining attempts to find interesting subsequences in a given list
of sequences. A sequence is an ordered list of itemsets (s = 〈I1, I2, ..., In〉). An itemset
is a set of symbols (e.g., {a, b, c}). A sequence sa = 〈A1, A2, ..., An〉 is said to be
contained in another sequence sb = 〈B1, B2, ..., Bm〉 if each itemset of sa is contained in
an itemset of sb such that the order of containing itemsets reflects the original order in
sa. More formally, the sequence sa is contained in the sequence sb if there exist integers
1 ≤ i1 < i2... < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin. If a sequence sa

is contained in a sequence sb we say that sa is a subsequence of sb. It can be written as
sa v sb [FVLK+17, Agg15].

For example, the sequence s1 = 〈{b}, {f, g}〉 is contained in the sequence s2 =
〈{a, b}, {c}, {f, g}, {g}, {e}〉, because the first itemset of s1 is contained in the first

17

itemset of s2 and the second itemset of s1 is contained in the third itemset of s2. The
integers would thus be i1 = 1 and i2 = 3, which is fine because i1 < i2 holds. On
the other hand, the itemset s3 = 〈{b}, {g}, {f}〉 is not contained in s2. The first two
itemsets of s3 could mapped to the first and thid itemset of s2 respectively. However,
for the third itemset of s3, there is no containing itemset in s2 except for its third one.
However, we can not re-use the third itemset of s2 because it is already mapped to the
second itemset of s3. Otherwise we would violate the strict ordering which is required
by the subsequence-relationship. [FVLK+17].

The support measure Sequential pattern mining attempts to find interesting patterns.
There are different measures which could be used to define interestingness. One common
metric is the support measure. Let SDB = 〈s1, s2, ..., sp〉 be a list (or "database") of
sequences. The support of a sequence sp is the number of sequences of SDB which
contain sp as a subsequence. More formally: sup(sa) = |{s : sa v s ∧ s ∈ SDB}|7.
Counting the number of sequences which contain the subsequence is called the absolute
support. Alternatively, you might analyze the fraction of sequences which contain
the subsequence. This is called the relative support, defined as relSup(sa) = sup(sa)

|SBD|
[FVLK+17, Agg15].

Sequential pattern mining can now be defined as the process of identifying all frequent
subsequences in a sequence database (i.e., a list of sequences). A sequence s is called
frequent if sup(s) ≥ minsup. The value minsup is a user-defined minimum support
threshold [FVLK+17]. Again, the minimum support threshold could be absolute or
relative (which would correspondingly affect our definition) [Agg15].

For instance, imagine that we have a relative support value of 0.5 and mine for
patterns in the database presented at Table 1. In this case the sequence 〈{a}, {b}〉
would be a frequent pattern as it appears in at least half of the entries. However, if we
increase the relative support value to 1.0 then only 〈{a}〉 would be returned as pattern.
This is because this is the only sequence which appears as a subsequence in all entries.

Closed and maximal patterns Closed and maximal patterns are frequent sequential
patterns with specific properties. Focusing on these can help reduce the set of patterns
that is produced as a result.

Closed patterns are frequent patterns which are not contained in any other frequent
pattern that has the same support [FVLK+17, MdCH18]. Let FS describe the set
of frequent patterns for a sequence database. Then you can define the set of closed
sequences as CS = {sa : sa ∈ FS ∧ @sb ∈ FS such that sa @ sb ∧ sup(sa) = sup(sb)}.
The notation sa @ sb means that sa is a subsequence of sb but that is not identical

7Please note that Fournier-Viger et al. [FVLK+17] write s v sa. We consider this to be a mistake.

18

to sb
8. Focusing on closed patterns can be beneficial because they are lossless. This

means that you can reconstruct all other frequent patterns (and their support) from
this set because they would be subsequences of the closed patterns. Therefore you can
get a more compact result list without losing any information [FVLK+17].
To illustrate this, consider again the sequence database given in Table 1. If we set

an absolute minsup of 2, then we get the frequent patterns which are listed in Table 2.
You can see that the pattern 〈{a}〉 is closed because there is no other frequent pattern
which contains 〈{a}〉 and which has a support of 3. Particularly, it does not matter
that the pattern 〈{a}〉 is included in the pattern 〈{a}, {b}〉 because they have different
support values (namely, 3 versus 2). On the other hand, the pattern 〈{b}〉 is frequent
but not closed. This is because this pattern is included in the pattern 〈{a}, {b}〉 which
has the same support of 2.

SID Sequence
1 〈{a}〉
2 〈{a}, {b}〉
3 〈{a}, {b, c}〉

Table 1: A sequence database

Frequent pattern Support Closed? Maximal?
〈{a}〉 3 yes no
〈{b}〉 2 no no
〈{a}, {b}〉 2 yes yes

Table 2: Frequent patterns of Table 1 (absolute minsup = 2)

A related concept is that of maximal patterns. A maximal pattern is a frequent
pattern which is not included in any other frequent pattern [FVLK+17, MdCH18]. Let
MS describe the set of maximal patterns, then you could define it as MS = {sa : sa ∈
FS ∧ @sb ∈ FS such that sa @ sb}. You can see that its definition is almost identical
to the one of closed patterns, except for the missing support criterion. Nevertheless,
both sets are not necessarily the same. For instance, in Table 2 the pattern 〈{a}〉 is
closed but not maximal because it is contained in the pattern 〈{a}, {b}〉. Maximal
patterns can also be used to reconstruct all underlying patterns. However, you can not
reconstruct the support values for the embedded patterns. For instance, if we would
reduce Table 2 to the entry 〈{a}, {b}〉 then we could conclude that 〈{a}〉 must also be
a frequent pattern. However, we could not obtain from that entry that its support is 3
(and not 2). Therefore maximal patterns are not (fully) lossless [FVLK+17].

8Fournier-Viger et al. [FVLK+17] are not as explicit when introducing this notation, but we deduce
its meaning from the context

19

Gap constraints We have seen in our definition of the subsequence relationship
that the containing itemsets do not have to be contiguous. Therefore, the sequence
sa = 〈{a}, {c}〉 is contained in the sequence sb = 〈{a}, {b}, {c}〉, even though the
itemsets {a} and {c} do not directly follow one another in sb. There could be however
instances where you want that containing itemsets only have a maximum distance
between one another. For instance, imagine that these sequences describe the nodes of
two tree paths. Furthermore imagine that you want to find shared subpaths between
those paths. In this case you would require that the components of a pattern appear
strictly contiguous in the original inputs. Otherwise they patterns would not necessarily
describe contiguous sequences in the underlying paths.

Such requirements can be specified with a so-called maxgap constraint [Agg15]. For
instance, if we require that maxgap = 0, then sa would not be a valid subsequence of
sb, because the gap between {a} and {c} is 1. On the other hand, it would become a
valid subsequence if we could set maxgap = 19. Provided that the algorithm and its
implementation support such constraints you could thus control the maximum distance
between containing itemsets. The mingap constraint would be the analogous way to
require a minimum distance between containing itemsets [Agg15].

2.3.2. Graph-based Pattern Mining

Finally, we also want to briefly discuss graph-based pattern mining. We will focus on
mining frequent subgraphs from a set of (static) graphs as this is also the approach
that we experimented with. Please mind that there also exist other graph mining
approaches which e.g., try to find interesting patterns in individual graphs (i.e., not
across a list of graphs) or in graphs which change over time [FVHC+20].

Graph definition A graph may be defined as a tuple G = (V,E) where V is a vertex set
and E is an edge set. A vertex v ∈ V constitutes a "node" in a graph. The set of edges
E defines the connections betweens vertices. A graph can be directed or undirected. If
the graph is directed, then each edge is an ordered pair of vertices [FVHC+20, Kan19].
An edge e = (v1, v2) would then mean that there is a direct connection from vertex v1
to vertex v2 (with v1, v2 ∈ V and e ∈ E). A reverse connection from v2 to v1 would be
represented with an individual edge (v2, v1) ∈ E. For directed graphs, the set of edges
thus constitutes a subset of ordered vertex pairs (i.e., E ⊆ V × V) [FVHC+20]. If the
graph is undirected, then edges do not carry an ordering[FVHC+20, Kan19]. An edge
could thus be represented by a set {v1, v2} instead of a tuple [FVHC+20].

The vertices and edges of a graph may also have labels. These can provide additional
information on these elements. A label could e.g., be a number or character string
which represents the type of a vertex. Our original graph definition would then be
extended by functions which map vertices and edges to their corresponding labels

9Please note that we use the maxgap definition as employed by Aggarwal [Agg15] where no gap
between itemsets means maxgap = 0. In contrast, in the SPMF [FVLG+16] implementation of
the CM-SPAM [FVGCT14] algorithm no gap between itemsets would be equal to maxgap = 1
[FV22]. SPMF is a pattern mining framework.

20

A

B C

D

A

C

D

X

Y Z

1 2

Figure 4: Examples of various graphs

[FVHC+20].

We have provided visual representations of example graphs in Figure 4. The graphs
G1 and G2 represent directed graphs. The characters in the middle of the circles
represent vertex labels. The graph G3 constitutes an undirected graph which has vertex
labels and edge labels. You can see that vertices can be nicely represented as circles
and that their edges can be depicted by lines connecting these circles. Directed edges
can be highlighted with an arrow [FVHC+20].

Frequent subgraph mining Similar to the search for frequent patterns in sequences,
one can attempt to find recurring patterns in a list of graphs. More precisely, one
can attempt to identify frequently shared subgraphs [FVHC+20, Kan19]. A graph
G′ = (V ′, E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E [Kan19]. The
graph G′ thus constitutes a substructure of graph G. For instance, in Figure 4, the
graph G2 could be seen as a subgraph of graph G1. Given a list (or "database") of
graphs GDB = {G1, G2, ..., Gn} one can attempt to find subgraphs which appear in
a minimum amount of graphs of GDB. This process can be called frequent subgraph
mining10 [FVHC+20]. Again, the support of a subgraph G′ means how many graphs of
a graph database GDB contain G′. Furthermore, the user-defined minsup threshold
again defines how many graphs of a database must at least contain G′ so that G′ is
categorized as "frequent" and returned as a result [FVHC+20, Kan19].

Searching for frequent subgraphs instead of e.g., sequential patterns can be beneficial
if your base data can be represented with a graph structure (as is e.g., the case for
XML). This is because the returned graph patterns could encode structural properties
10Our definition of frequent subgraph mining is a bit simplified compared to Fournier-Viger et al.

[FVHC+20]. They define it using subgraph ismorphisms. We omit that so that we do not have to
introduce more graph terminology which is not necessary to understand the core idea.

21

which might get lost (or could be difficult to reconstruct) with other forms of mining.
We became aware of subgraph mining only some time into the work on this thesis.
Therefore, we experimented with its integration but eventually dropped it due to time
constraints. We will come back to the potential of graph-based mining when discussing
our approach in more detail.

22

3. Related Work
In the following, we will present research which is related to our approach and which
was partially highly influential for its design. We will begin by discussing fuzzing
approaches which incorporate input feature learning to achieve coverage improvements.
Afterwards we will review approaches which attempt to target specific SUT areas.

3.1. Fuzzing with Input Features
The upcoming section discusses selected approaches which incorporate input feature
learning or targeted feature generation to achieve coverage improvements during fuzzing.
Especially the first two approaches (i.e., FairFuzz [LS18] and TGCT [CLO18]) have
been highly influential for the design of our technique. But before we begin their
discussion, let us clarify what we mean by "input features".

Input Feature Definition We define an input feature to be a quality of an input
which can be directly observed on an input without having to first run it on an SUT.
This could refer to quite primitive qualities, but also more complex ones. For instance,
the existence of the substring "a" in the XML tag pair "<a>" could be counted as
an input feature. However, features might also be more abstract and could be placed on
the model level. For example, a more abstract feature could be that an XML document
must include a pair of embedded tags (without being more specific). Therefore, the
term "input feature" is rather broad. However, our definition excludes any qualities
which can only be ascertained after the input has been run on an SUT. This means
that qualities like e.g., input validity or SUT coverage do not meet our definition of
input features even though they might be counted as "features of an input" in other
contexts.

3.1.1. FairFuzz

Background of FairFuzz FairFuzz [LS18] is an adaptation of the fuzzer AFL [Zal14].
Its main objective is to improve the exploration of code which is only rarely visited by
normal AFL.

We have mentioned in section 2.1 that AFL generates inputs by directly mutating the
contents of previous inputs. Especially important is that AFL’s mutations can change
any part of an input without considering its underlying structure. This creates a great
risk of generating inputs which are syntactically and semantically invalid. Accordingly,
the authors of FairFuzz found that AFL often struggles to cover important areas of
SUTs. They illustrate this on xmllint (an XML parser). When fuzzing this SUT, the
authors discovered that AFL managed to produce the input <!ATTLIST BD. This
input is very similar an input which guards new code, namley <!ATTLIST ID. AFL
would only need to modify one character to generate the necessary input for uncovering
new code (i.e. B to I). However, since AFL is as likely to mutate any of the characters,

23

quick success is rather improbable. Quite on the contrary. In this example none of
the other characters should be mutated as their current form is a precondition to even
come close to the relevant code. A random mutation would thus likely lead away from
the currently interesting part.

The FairFuzz Algorithm The idea of FairFuzz is to find out which parts of an input
should (or should not) be mutated to increase the probability of new code coverage.
FairFuzz achieves this by employing three major ideas:

1. By focusing the fuzzing on specific program areas

2. By using a mutation mask which defines which bytes of an input are allowed to
be mutated (and how).

3. By using mutation experiments to heuristically calculate this mask.

FairFuzz’s Mutation Mask The mutation mask is an object which is individually
calculated per input. It returns for each byte of an input whether FairFuzz allows it to
be mutated (and how). The mutation mask only allows the mutation of a certain byte
if mutating the byte would produce an input which likely again reaches a currently
targeted program area. FairFuzz distinguishes three mutation types:

1. Overwriting a byte with a different value

2. Inserting new bytes at a given position

3. Deleting bytes starting at a given position

When generating a new input, FairFuzz uses the mutation mask for that input to
decide which mutations it can apply where. The mutations are still random, however
they are restricted to what the mutation mask allows. FairFuzz’s main goal is to block
input parts from mutation which should be kept intact to reach currently targeted
program areas. Therefore FairFuzz only generates inputs from ones which have hit
currently targeted areas. In addition to that, it calculates their mutation mask to
know which parts it can mutate. By this, FairFuzz attempts to increase the coverage
in targeted regions.

In order to calculate the mutation mask of an input, FairFuzz iterates over each byte
of the input. It then mutates the byte and checks whether the input still reaches a
desired program location. If so, FairFuzz allows the applied mutation type for this
byte (e.g., an overwrite). Otherwise, it forbids it. This is done once for each byte and
mutation type.
Please mind that this procedure still only calculates a heuristic mutation mask.

Heuristic means that FairFuzz does not perform every possible mutation for each
byte (e.g., every possible overwrite). Instead it only does one mutation per byte and

24

mutation type (thus, 3 per byte). FairFuzz does so for performance reasons, as it would
be too exhaustive to explore each mutation possibility. Furthermore, performing every
possible mutation would defeat the purpose of the idea as you would have already
generated every possible mutant. Thus, you would have no need for further mutations.

Rare Branches What has been kept vague so far is what program regions FairFuzz
targets. This is represented by a concept which FairFuzz calls rare branches.

A rare branch is defined as a code branch which has been visited fewer times than a
certain threshold (over all runs). This threshold is called rarity cutoff. Any branch
which fulfills 1 ≥ visits ≤ rarity cutoff is considered a rare branch. FairFuzz only
mutates inputs which hit reach rare branches. The aim is to thus increase the coverage
in areas which so far have been barely explored.

To increase the likelihood of passing constraints imposed by rare branches, FairFuzz
calculates the mutation mask for corresponding inputs. This limits the mutation to
those input parts which can be changed while still (likely) hitting the rare branch.

The value for the rarity cutoff is determined dynamically per fuzz campaign. This
means that it is dynamically obtained and not set beforehand. That approach has
advantages to manually setting a constant cutoff value. It also has advantages to
techniques which do not use cutoff values to determine rarity. First, if you manually
set the rarity cutoff value, then this value has to be updated individually for each SUT
and might not well reflect "rarity" in different fuzz campaigns of the same SUT (e.g.,
sometimes 100 visits could be "rare", while other times 100,000). On the other hand,
you might consider not using cutoff values at all. Instead you could e.g., simply define
the n least visited branches as "rare". However, this could also lead to a high variability
regarding what number of hits constitutes rarity.

FairFuzz therefore monitors the execution and defines the rarity cutoff as the smallest
2i greater than the smallest number of branch visits > 0. More formally:

visitsmin := min({visits(b) | b ∈ Branches ∧ visits(b) > 0})
rarity_cutoff := 2i so that 2i−1 < visitsmin ≤ 2i

By doing this, FairFuzz creates a dynamic rarity threshold which is automatically
attuned per fuzz campaign.

FairFuzz Evaluation Fairfuzz has been compared to other versions of AFL on nine
benchmarks (including e.g., xmllint, tcpdump, readpng). The results yield that FairFuzz
achieved the highest coverage compared to other approaches in most SUTs (namely 8/9)
and that its coverage increase was always the most rapid one. Furthermore, FairFuzz’s
coverage advantage was statistically significant in two cases. These results indicate
that the approach is indeed viable and that it can lead to better code exploration.

25

3.1.2. Template-Guided Concolic Testing

Next, we will discuss another approach which also has been influential for this thesis.
Namely, Template-Guided Concolic Testing (TGCT)[CLO18].

Background and Idea of TGCT

Dynamic Symbolic Execution and Path Explosion TGCT is a technique for dynamic
symbolic execution (DSE). It has been developed to improve upon some common
performance issues, especially the problem of so-called path explosion. We have already
seen in section 2.1.2 that DSE can be referred to as "Whitebox Fuzzing". So, there is a
certain relation between TGCT and fuzz testing. Nonetheless, please mind, that the
authors do not refer to their approach as fuzzing.

Before we will discuss TGCT in depth, let us revise some key points about DSE. In
DSE, a SUT is executed concurrently in two ways: First, there is a normal execution
which provides the SUT with concrete inputs and runs it. In parallel, the DSE engine
maintains a symbolic version of each input variable. This is an abstract version of
those variables. During execution, the DSE engine keeps track of all conditions laid
upon the symbolic input variables (e.g., x > 0 for a certain branch). This yields a
formula, which describes the necessary conditions to follow this execution path. The
DSE engine then negates one of the conditions of the formula. That is equivalent to
following a different branch on the execution path. This formula would be then fed to
a solver to obtain concrete inputs which fulfill these conditions. The SUT would be
then run with those inputs and the whole procedure would repeat [BCD+18].
By following this approach, DSE is able to potentially explore all possible paths

of a program. Because it can theoretically negate each condition it discovers and
thus investigate each possible alternative. However, one common issue is that of path
explosion [BCD+18]. This refers to the fact, that the number of paths can easily grow
exponentially in DSE. Consider for example while loops. If a variable in its condition
is symbolically tracked, each loop execution results in two paths: One for the true- and
one for the false-case. Each of the true-paths would in turn lead to two new paths. So,
if you were to continue this, you can easily see that the number of paths would grow
exponentially to the base of two. This problem can become even more troublesome if
you e.g., consider nested loops. A similar situation can e.g., occur with recursions.

Path explosion has at least two negative impacts. First, the growing number of paths
can cause high memory demands. This could e.g., cause resource competition with
other components (for instance, the solver). Thus, it could reduce the performance.
Secondly, the DSE engine might "get stuck" on mostly exploring paths which result
from the same loops. This could limit the exploration of the overall SUT.

TGCT Template-Guided Concolic Testing [CLO18] has been developed to improve
code coverage in DSE, even in the face of path explosion. It does not directly prevent
path explosion, however it attempts to enhance the performance by only tracking some

26

variables symbolically. This could e.g., lead to fewer loop conditions being collected
(if the conditions no longer involve symbolic variables). Therefore it can reduce the
potential for exponential growth.

The variables which are no longer symbolically tracked are set to concrete constants.
These constants are mined from previous inputs which improved code coverage. The
intuition is that there might be shared patterns in those inputs which can be beneficial
for further code exploration. Therefore we have a dual approach in TGCT: First, you
limit symbolic tracking to reduce path explosion. Second, you use values of previously
effective inputs to derive new inputs. This second aspect is somewhat reminiscent
of FairFuzz. However, we will see that the constant values are obtained quite differently.

TGCT proceeds in a four step loop. First it performs normal DSE for some runs.
This is meant to obtain a base set of inputs which have been effective for uncovering
new code.

Secondly, these inputs are analyzed for recurring patterns (e.g., common sequences
of characters). These patterns are ranked according to their frequency. Furthermore,
they are ranked according to whether they contain "good" or "bad" substrings. The
"good" substrings belong to patterns which previously performed well. The "bad" ones
failed to do so. Initially both sets are empty. They are only initialized after the first
TGCT loop.

From the ranked patterns, only a fixed number of top-patterns is considered in the
third step. Here, each selected pattern is converted into a so-called template. The
difference is the following: Patterns are only free-floating sequences. In a template
however, each pattern component is given a concrete position in the input. The
positions are calculated individually per pattern component, according to where they
occurred most often in the original inputs. Each input position which is not set to a
concrete value is left vague, i.e. it is tracked symbolically.

In the fourth step, the templates are then used to perform DSE. As just explained,
patterns define which input variables should be symbolically tracked and which are
fixed to constants. TGCT analyzes whether employing the templates uncovered new
areas and updates the "good" and "bad" patterns sets from step two accordingly.

As you can see, TGCT has some resemblance to FairFuzz as it also tries to fix
aspects of inputs to constants which could increase coverage. Both approaches attempt
to learn those aspects dynamically. However, while FairFuzz calculates a mutation
mask, TGCT employs pattern mining. Furthermore, while FairFuzz specifically targets
rare branches, TGCT attempts to increase coverage more generally. So, there are
certain similarities, but also differences. The key point is that both techniques learn
characteristics (or "features") of inputs that could be important for future generations.
And this aspect has been very influential for this thesis.

The authors of TGCT evaluated their approach on 5 C-programs, comparing it
against other DSE search heuristics (e.g., Random branch search). TGCT achieved
to cover more branches than the other approaches in all benchmarks. Furthermore,

27

TGCT discovered 3 unique bugs not found by any other technique. Therefore, the
current results suggest that TGCT is a viable approach which can indeed help improve
the coverage.

3.1.3. K-Paths

Finally, we want to discuss an approach which is quite similar to ours, namely the
work on grammar-based fuzzing with k-paths by Havrikov et al. [HKZ22]. Their idea
is also to investigate the impact of characteristic subtrees in the model of an input
on the achieved coverage during fuzzing. However, different to our approach, they
produce inputs by employing grammars and not input-specific generators. Therefore,
their technique belongs into the domain of grammar-based fuzzing.

Grammar-based Fuzzing Grammar-based fuzzing is a form of model-based fuzzing
where inputs are generated by deriving words from a given grammar. Specifically,
Havrikov et al. [HKZ22] focus on context-free grammars. We assume that the reader
is familiar with the concept of a context-free grammar. For completeness, we quickly
revise it here.

A context-free grammar "G" is a 4-tuple G = (V, T, P, S), where

• V is a finite set of non-terminals (also called variables)

• T is a finite set of terminals

• P is a finite set of production rules

• S is the start symbol (S ∈ V)

Non-terminals are symbols which can be replaced (or "expanded") by applying a
production rule. Production rules take the form A→ α, where A ∈ V and α ∈ (V ∪T)∗.
Therefore, a production rule A→ α defines that a non-terminal A can be replaced with
the (possibly empty) concatenation α which can contain non-terminals and terminals.
Terminals can not be expanded. They constitute the final characters that we want
to produce [SN07]. Deriving a word means that we begin with the start symbol and
apply production rules until only a string of terminals remains.

Grammars can be powerful tools to formally describe the structure of inputs for a
given SUT. For example, Havrikov et al. [HKZ22] employ grammars to generate JSON,
URL and JavaScript inputs (among other things). Provided that these grammars
correctly describe the syntactic structure, grammar-based fuzzing can increase the
likelihood of reaching semantic stages of an SUT compared to mutation-based input
generation.

28

K-Paths The derivation structure of a word can be represented by a tree. Consider
for example the following (simplified representation) of a grammar11:

Term→ Addition | Multiplication | Number
Addition→ Term ” + ” Term
Multiplication→ Term ” ∗ ” Term
Number→ ”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” | ”9”

The word "1 + 2" could be derived from the start symbol Term as is depicted in
Figure 5. You can see that non-terminals can be represented as inner nodes of the tree,
while terminal symbols constitute leaf-nodes. Expansions of individual non-terminals
are represented by edges.

Figure 5: Derivation tree for the word "1+2"

An important observation is that the derivation tree consists of several paths which
lead from the root to every leaf. For example, the path "Term→ Addition→ Term→
Number→ 1". This path has length 5, because it is a sequence of 5 derivation steps.
Furthermore, each derivation tree can be analyzed in terms of its sub-paths of a fixed
length. This leads to a notion of a k-path. A k-path is a derivation (sub-) path
of exactly length "k" [HKZ22]. For example, some of the 2-paths contained in the
11We define all symbols which appear on the left side of a production to be a non-terminal. The pipe

symbol (i.e., "|") separates different productions with the same non-terminal on the left side. I.e.,
A→ α | β represents A→ α and A→ β. Any character enclosed in double quotes represents a
terminal.

29

derivation tree of Figure 5 are: "Number→ 1", "Addition→ Term" and "Addition→ +".

A grammar could be also represented by a tree, similar to a derivation tree. Fur-
thermore, you could also enumerate all unique k-paths that can be derived from a
grammar for a given k. This information could be used to analyze a given set of inputs.
A set of inputs which contains many of the possible k-paths is said to have high k-path
coverage. The k-path coverage can be represented by a number within [0, 1] and can
be calculated as follows for a given set of inputs:

pathcovk(S) =

∣∣∣∣∣ ⋃d∈D
pathsk(d)

∣∣∣∣∣
|pathsk(G)|

Where S is the set of inputs, D is the set of derivation trees for the inputs and G
is the grammar. The operation pathsk(d) returns the unique k-paths contained in a
derivation tree d. Analogously, pathsk(G) returns all unique k-paths of a Grammar G
[HKZ22].

Intuitively, you would expect that a set of inputs with high k-path coverage should
also achieve higher SUT coverage compared to inputs with low k-path coverage. This
is because certain functionalities of an SUT could only be triggered by specific input
sequences which are represented by specific k-paths. Therefore it could be beneficial to
strive for high k-path coverage.
This is one of the aspects that Havrikov et al. [HKZ22] analyzed. They have

developed an algorithm to enumerate all k-paths of a grammar (for a given k) and
to systematically produce inputs which contain those k-paths. Furthermore, they
compared this input generation approach to a purely random (but still graph-based)
one. The input grammars that they tested included JSON, CSV, URL, Markdown
(and later) JavaScript.

Havrikov et al. [HKZ22] have made several interesting observations. First of all,
they have found that a systematic k-path generation resulted in significantly higher
code coverage compared to random input generation. This suggests two things. First,
that random input generation can have difficulties to explore a grammar as thoroughly
as a more systematic approach (in a given frame of generated inputs). Secondly, that
covering many k-paths of a grammar can indeed be beneficial for the SUT coverage.
Particularly, Havrikov et al. [HKZ22] have found that k-path coverage strongly corre-
lated with code coverage in their evaluation. Therefore, one can conclude that the level
of k-path coverage can be a predictor for the achieved SUT coverage. Finally, they have
used a decision-tree based learner12 to learn associations between k-paths and specific
code locations. The resulting decision trees were then used to produce inputs which
target certain methods. Again Havrikov et al. [HKZ22] have found that their approach
was quite effective, especially when compared to a random generation. On most SUTs
12Namely, an adapted version of Alhazen [KHSZ20].

30

they managed to cover more than 90% of the intended methods with at least one input13.

These results suggest that a feature-guided input generation approach can be benefi-
cial in several ways. First, that a systematic production of input features can lead to
increased code coverage compared to random input generation. Second, that there can
be associations between input features and code locations which could be leveraged (if
successfully learned) to target those locations.

Both of these conclusions have strengthened our idea that targeted feature generation
could be employed to achieve coverage gains compared to random input generation.
However, we only became aware of this particular research some time after work on this
thesis began. It therefore was not as influential in the design of our approach as the
previously discussed techniques (i.e., FairFuzz and TGCT). Nonetheless, it provides
(further) evidence for the potential of considering input features when fuzzing.

3.2. Directed Fuzzing
Directed Fuzzing is a technique where the goal is to automatically guide the fuzzer
to user-defined areas of an SUT [BPNR17, CXL+18]. It is related to our approach
because we also want to target certain code areas. However, our approach should
not be classified as directed fuzzing because our targeted areas are not user-defined.
Instead, our targeted areas are automatically selected with the hope to increase the
overall coverage through a temporary concentration on (potentially) under-explored
SUT regions. Thus our approach should rather be termed coverage-guided, even though
we also target specific areas of an SUT.

AFLGo One of the first approaches (if not the first) of directed greybox fuzzing
is the fuzzer AFLGo by Böhme et al. [BPNR17]. You may recall that AFL is a
mutation-based fuzzer which employs coverage information to prioritize inputs for
further mutation. Böhme et al. [BPNR17] extended AFL so that it is also able to
explicitly target user-defined areas of an SUT. This is realized by a combination of
two things. First, AFLGo performs a distance analysis at compile time. This analysis
provides for each basic block14 a value describing the distance to the target locations.
AFLGo can then use this information to assign a distance value to an input, based
on the basic blocks the input has visited. That distance value can then be employed
to prioritize inputs which are "closer" to target locations. This constitutes the second
major component of AFLGo’s approach. More precisely, AFLGo gradually shifts from
a rather explorative input generation to a more focussed one. In the more focussed
stages inputs are prioritized which have a low target distance. Prioritization means
here that more new inputs are generated from low distance inputs compared to other
13The coverage was not achieved by an individual input but as seen over all inputs.
14A basic block is a maximal set of instructions which can be executed in sequence without a branch

[CT12].

31

ones. The distance values that AFLGo employs are based on analyses it performs on
the call- and control-flow-graph(s) of an SUT15.

The authors of AFLGo have found that their approach can reach targeted locations
between 1.5 up to 11 times faster compared to baseline AFL. Furthermore AFLGo was
able to discover more crashes, reproduce more crashes and reach more target locations
compared to approaches based on symbolic execution [BPNR17]. This indicates the
validity and effectiveness of AFLGo’s directed greybox fuzzing.

Other directed fuzzing approaches Hawkeye [CXL+18] is a related directed greybox-
fuzzer which extends AFLGo’s approach by e.g., also considering function pointers.
CAFL [LSL21] is another directed fuzzer which also considers constraints (and their
ordering) necessary to reach targeted sites.

3.3. Further mentions
In this subsection we want to mention further work which is also related but which we
will not discuss in more elaborate detail.

Tree based splicing Tree based input splicing is a concept which can be found in
grammar-based fuzzing. The idea is to insert a particular subtree at a suitable position
in the derivation tree of another input [AFH+19, DRRG14, LKBS21]. This could be a
more effective mutation strategy compared to e.g., just randomly re-generating nodes
of the tree. The reason is that the spliced subtrees could e.g., be already semantically
valid. Inserting such subtrees arguably has a higher likelihood of adding new valid
features to an input, compared to random subtree re-generation.

Driller Driller [SGS+16] is an approach which combines (mutation-based) fuzzing
with selective symbolic execution. The idea is to identify when a fuzzer is "stuck". This
means that it has problems uncovering new areas in the SUT. The reason could be that
new paths are guarded by specific input constraints which are unlikely to be fulfilled
by random mutations. If Driller considers the fuzzer to be stuck, it employs concolic
execution to generate inputs which hopefully reach new paths. Afterwards Driller
transitions back to fuzzing until the fuzzer again gets stuck. To identify whether the
fuzzer is stuck, Driller employs a heuristic. Namely, it checks whether the fuzzer has
performed a certain amount of mutations (proportional to the input length) without
uncovering new basic block transitions. If this is the case, Driller performs concolic
execution on inputs it finds interesting. These are inputs which first uncovered certain
basic block transitions or which first reached a certain execution threshold for a loop
in the SUT [SGS+16].
An experimental evaluation indicates that Driller is able to discover more bugs

compared to normal fuzzing and symbolic execution. Furthermore, the results suggest
15A control-flow graph describes the connections between basic blocks (e.g., for a procedure). A

call-graph describes the call-relationships between procedures [CT12].

32

that the concolic execution was able to uncover new code transitions [SGS+16]. It thus
appears to be a promising idea to support the fuzzer with additional measures once it
reaches a discovery plateau.

AFLFast AFLFast [BPR19] is an adaptation of the (mutation-based) greybox-fuzzer
AFL [Zal14]. The authors of AFLFast observe that fuzzers like AFL tend to mostly
execute a limited set of high-frequency paths in an SUT. This is a downside as
less visited paths could guard new code which could be covered. To mitigate this,
AFLFast models the fuzzing process as a markov chain16. Specifically, it models the
probabilities to reach a certain SUT path after fuzzing a current input. Böhme et al.
[BPR19] distinguish between high- and low-frequency regions based on the transition
probabilities in the markov chains. They then adapt the number of generated mutants
per input and the order of seed inputs17 to increase the likelihood of reaching low-
frequency paths. Effectively, inputs which execute low-frequency paths are mutated
earlier and more often.
Böhme et al. [BPR19] have found that AFLFast was able to generate more unique

crashes than AFL and also could produce certain crashes that normal AFL was not
able to trigger. These results indicate (similarly to FairFuzz [LS18]) that a focus on
rarely visited SUT areas can be beneficial for the performance of a fuzzer.

16A markov chain can be used to model a stochastic process. It consists of a finite of states and
probabilities to move between those states [HMB17].

17With seed inputs we do not only mean inputs which are provided before the start of a fuzzing
campaign, but also which could be generated during a campaign. We clarify it as the term "seed
inputs" can also be just used for the former case.

33

4. Generator-based Fuzzing with Input Features
In this section we will discuss our approach for targeted input feature learning and
re-generation with the generator-based fuzzer JQF/Zest. We will start by highlighting
why targeted feature generation could be beneficial for a fuzzing campaign. Next, we
will present our approach both intuitively and more formally. Finally, we will discuss
the implementation.

4.1. Motivation
We have seen in chapter 3 that learning and re-generating particular input features can
have beneficial effects on the performance of a fuzzing campaign. Namely, FairFuzz
[LS18], Template-Guided Concolic Testing (TGCT) [CLO18] and fuzzing with k-paths
[HKZ22] indicate that targeted feature generation can increase the achieved coverage
during fuzzing. Furthermore, FairFuzz and AFLFast [BPR19] suggest that rarely visited
SUT areas could be a promising target to boost the coverage of a fuzzer. Moreover,
Fairfuzz and fuzzing with k-paths indicate that input features could be leveraged to
reach targeted areas. Thus, it appears reasonable to integrate all of those aspects (as
FairFuzz did) and to also employ it for generator-based fuzzing. Namely, to develop an
approach for generator-based fuzzing which allows to identify critical input features
of rarely visited SUT areas and to regenerate those features. This approach could
hit rarely visited areas more often. This then could uncover new SUT code which
could increase the coverage and might lead to the discovery of more bugs (compared
to undirected fuzzing). The particular advantage of generator-based fuzzing is that
the generators can give certain guarantees (like syntactic validity of inputs). The
targeting of rarely visited areas could thus be even more effective compared to the
mutation-based approach of FairFuzz.

However, to the best of our knowledge there has not yet been any published research
which deals with targeted feature generation or directed fuzzing in the context of
generator-based fuzzing. This is a downside as the state of the art generator-based
fuzzer JQF [PLS19b] and its algorithm Zest18 [PLS+19c] have been particularly capable
at fuzzing valid processing stages of an SUT [PLS+19c]. Integrating targeted feature
generation into Zest could thus yield a particular chance to test valid stages of an SUT
even more thoroughly.

Furthermore, targeted feature identification and generation could also be used as an
aid in the debugging process. Namely, assume that you can identify shared features of
a group of inputs. For instance, a group of inputs which trigger a particular bug. The
shared features could indicate what part of an input triggers the bug. Therefore, they
could help forming a debugging hypothesis. Furthermore, you could use these features
to test the robustness of fixes by constructing new inputs which contain the critical
features [KHSZ20]. Alhazen [KHSZ20] appears to be a promising tool for that in the
context of grammar-based fuzzing. It employs a decision tree to learn input features of
18In the following "Zest" will always refer to its JQF implementation.

34

inputs which cause a particular bug. However, to the best of our knowledge, there has
not yet been any research particularly for generator-based fuzzing.

Next, we will take a step back and describe on a more intuitive level why certain
input features can be relevant for the success of a fuzzing campaign and why they
might be difficult to generate. Afterwards we will discuss the particular challenges
which JQF/Zest pose to realize input feature identification and targeted re-generation.

The relevance of input features for fuzz coverage We use the term "input feature"
to refer to qualities of an input which can be observed on an input without running it
on the SUT. This can be rather low-level qualities, like e.g., individual characters of
an XML string. However, it could refer to more higher-level characteristics, like e.g.,
parent-child relationships between tags of an XML document. It is important that
definition excludes aspects which require an execution of the input. Thus, aspects like
its coverage or run time do not qualify as "input features" in our sense. For a more
thorough definition please refer back to section 3.1.

Input features can be important for the coverage achieved by a fuzzer. Imagine that
you want to test a build system which takes as input an XML document. The XML
document could describe various aspects of the project. For instance, the dependencies
or build configurations. We have provided an example of a fictive build system XML
in Listing 2.

1 <project >
2 <source_directory >/path/to/ project </ source_directory >
3
4 <dependency_list >
5 <dependency source ="web">lib_a </ dependency >
6 <dependency source ="local">lib_b </ dependency >
7 </ dependency_list >
8
9 <build >
10 <run_tests >yes </ run_tests >
11 <package >yes <package >
12 <build >
13 </ project >

Listing 2: Example of a (fictive) build system XML

It is reasonable to assume that different tags of the XML file are processed by
different procedures of the SUT (i.e., the build system). Therefore we need certain
tags to trigger (and thus test) certain functionalities of the SUT. However, it can be
quite unlikely to trigger these functionalities if inputs are randomly generated.

Assume that you have a generator which can generate syntactically valid XML. This
generator could use a dictionary of say 100 keywords to populate the content of an XML

35

file (e.g., the tag- or attribute names). The keywords could have been scraped from a
set of existing project XMLs19. Imagine that keywords are sampled in depth-first order
during generation. To create the XML sequence "<dependency_list><dependency
source="web">" (line 4 and 5 of Listing 2), we would thus need to subsequently
sample the keywords "dependency_list", "dependency", "source" and "web". If
each keyword has the same selection probability, we have a likelihood of 100−4 to select
these keywords in this order. Thus, you will on average need 1

100−4 = 100.000.000
attempts to generate this keyword sequence. This can be quite a lot if your SUT only
allows a limited number of executions per second. Imagine that you can run 1.000
inputs per second. Then you would on average need 100.000.000

1.000 = 100.000 seconds
≈ 27.7 hours20. This estimation should be taken with a grain of salt as the example
is completely fictive and the estimation ignores optimizations of modern fuzzers (like
limited mutation of previous inputs). However, it is meant to illustrate that on paper it
could be quite difficult to test certain functionalities of an SUT even if a generator only
creates syntactically valid inputs. That is because certain functionalities might only be
triggered by specific input features which are unlikely to be randomly produced. This
assumption is supported for mutation-based fuzzers by FairFuzz [LS18] and AFLFast
[BPR19].

Another aspect that this example should illustrate is that particular input features
might be necessary to uncover certain functionalities of an SUT [LS18, HKZ22]. For
example, to fuzz functionalities related to build instructions (line 10 and 11 of Listing 2),
we need to have a "<build>" tag in our inputs (line 9). Therefore, the "<build>" tag
guards code of the SUT which can only be reached if this tag is present. Otherwise we
do not have a chance to test functionalities related to the running of tests or packaging
(line 10 and 11 of Listing 2). Thus, the generation of particular input features can also
be necessary to explore deeper processing stages of an SUT.

Input Features with Zest We have seen in section 2.2.3 that Zest [PLS+19c] is a
generator-based fuzzing approach which can be particularly effective at fuzzing semantic
processing stages of an SUT. One of Zest’s key concepts is that it mutates the pseudo-
random byte stream which generators use to make random decisions. Zest calls each
bit of such a byte stream a parameter [PLS+19c]. We will thus refer to these streams
also as parameter streams.
Mutating a parameter stream influences the decisions of a generators during the

input creation. It therefore impacts the form and the content of the input. However,
it will keep all the guarantees of the generators intact. For instance, that gener-
ated inputs are always syntactically valid. This is because each parameter stream
should be processed by a generator such that the resulting input fulfils the guarantees.
This allows Zest to perform random mutations on a low level (i.e., mutating bytes

19As has been e.g., done in the Zest [PLS+19c] evaluation.
20For simplicity, this estimation ignores the probabilities required to build the underlying tag- and

attribute structure

36

on the parameter stream) which still always will result in e.g., syntactically valid inputs.

However, one of the downsides of Zest’s approach is that it can become very difficult
to identify particular features within Zest’s inputs. Zest represents its inputs with their
parameter stream [PLS+19c]. Therefore, Zest does not store the inputs as they are
passed to the SUT, but only the byte stream to generate them.
The bytes of the parameter stream influence the decisions of the generator. They

therefore also indirectly encode the features of the input. To illustrate this, assume
that we generate XML structures using the pseudocode of Listing 3. This generator
first creates an empty XML node (line 2). Then it randomly selects a dictionary entry
as the tag name of the node (line 4-5). Finally, it chooses a random number of child
nodes (line 7) and recursively generates each child (line 9).

1 XmlNode generateNode () {
2 XmlNode node = new XmlNode () ;
3
4 int index = random . next Int (0 , d i c t i ona ry . s i z e ())) ;
5 node . tag = d i c t i ona ry . get (index) ;
6
7 int numChildren = random . next Int () ;
8 for (int i = 0 ; i < numChildren ; i++) {
9 XmlNode ch i l d = generateNode () ;
10 node . addChild (ch i l d) ;
11 }
12
13 return node ;
14 }

Listing 3: Pseudo-Code of a simple XML generator

The XML input "<project><build/></project>" could thus be generated by the
parameter stream depicted in Figure 6. For simplicity, assume that each call to "random"
consumes one byte. The employed dictionary is depicted in Table 3. You can see how
the different features of the input are encoded in the parameter stream. For instance,
the first byte determines the name of the root tag (i.e., "project"). This is because
the first byte impacts the first selected dictionary index. Similarly, the second byte
determines the number of children of the root node. The following bytes influence the
features of the child node (i.e., "<build/>").

Index Entry
0 project
1 build
2 package

Table 3: A dictionary represented as a table

37

σxml1 = 0000 0000 0000 0001 0000 0001 0000 0000

dict. index = 0 numChildren = 1 dict. index = 1 numChildren = 0

<project>...</project> </build>

Figure 6: Parameter-Stream for the XML input "<project><build/></project>".
Each number represents one bit.

The input features can thus be reconstructed from the parameter stream. However,
it requires some effort. This is because you have to follow the code of the genera-
tor to identify and understand them. Compare this e.g., to a representation where
the bytes directly represent individual ASCII characters of the input. In this case,
you have a direct one-to-one correspondence between bytes and individual charac-
ters. This makes it easy to see which byte is "responsible" for which feature of the input.

Zest’s input representation can thus make it difficult to understand how bytes of
a parameter stream relate to different features of the input. In fact, it can even be
more complicated than just presented. For example, different parameter streams could
produce the same input. Namely, the parameter stream depicted in Figure 7 could
produce the same XML as the original stream in Figure 6. For this assume, that the
bounded nextInt(...) call (line 4, Listing 3) performs the bounding by calculating
the next byte modulo the dictionary size. This guarantees that all returned integers
will lie in the interval [0, 2]. However, it introduces ambiguity between the values on
the parameter stream and how they are read as a result. This is because the parameter
bytes for 0 and 9 produce the same result, since 0 mod 3 = 0 and 9 mod 3 = 0.

σxml2 = 0000 1001 0000 0001 0000 0001 0000 0000

dict. index = 9 mod 3
 = 0

numChildren = 1 dict. index = 1 numChildren = 0

<project>...</project> </build>

Figure 7: Mutated stream of Figure 6 which produces the same XML. Changed bits
are highlighted red.

Another important aspect is that not all input features are explicitly represented
in the parameter stream. For instance, we can derive from the parameter stream
in Figure 6 that the tag <build/> is a direct child of the tag <project>. However,
this information is not explicitly represented in the stream. Meaning, there is no

38

byte sequence in the stream which explicitly states that <build/> is a child tag of
<project>. It can only be reconstructed if we run the generator on the stream and
monitor the XML model during the creation. Thus, there can be input features that
only indirectly follow from the parameter stream.
Finally, it is also relevant to mention that the semantics of parameter bytes can

change depending on previous bytes. For this, consider a string generator which first
samples the string length and then each individual character. A parameter stream
for the string "abc" is given in Figure 8. Now take a look at the mutated stream in
Figure 9. You can see how the mutation of the first byte influenced the semantic role
of the third byte. Before, the third byte determined the second character of the string.
After the mutation, the third byte now selects the length of the next string. Therefore,
one can not generally assume that a certain position in the parameter stream always
relates one particular input feature.

σstring1 = 0000 0011 0000 0000 0000 0001 0000 0010

Str. length = 3 'a' 'b' 'c'

"abc"

Figure 8: Parameter-Stream for the string "abc".

σstring2 = 0000 0001 0000 0000 0000 0001 0000 0010

Str. length = 1 'a' Str. length = 1 'c'

"a" "c"

Figure 9: Parameter-Stream for the two strings "a" and "b".

This entire discussion should make clear that it can be quite difficult to draw conclu-
sions between a parameter stream and the features of the resulting input. Therefore it
can also be difficult to apply the feature representation and identification methods we
discussed in section 3.1. For instance, FairFuzz [LS18] employs a mutation mask to
learn which bytes it can mutate while still hitting a targeted region. This preserves
certain input features, e.g., characters of an XML tag, by blocking them from mutation.
However, it can not be directly employed for Zest’s parameter streams. FairFuzz learns
its mutation mask by mutating each byte and observing its effects on the coverage
trace. This can work fine with FairFuzz because it mutates the bytes which directly
constitute the content of an input. The mutations of FairFuzz thus only have local
effects. Namely, a single byte mutation only impacts that particular byte in the input.
This would then e.g., also only impact the single character which is represented by this

39

byte. Therefore, FairFuzz can later use the result of each individual mutation to build a
combined mutation mask as a union of the individual mutation experiments. This can
be difficult with Zest. The reason is that the semantics of blocked bytes chan change if
previous bytes are mutated. For example, imagine we require strings as inputs whose
second character is a ’b’. In this case, the third byte of the parameter stream of Figure
8 would be blocked. The bytes before will likely not be blocked from mutation as they
are either irrelevant or unlikely to change the interpretation of the third byte. However,
there are cases where the interpretation of the third byte is changed by the mutation of
previous bytes (see Figure 9). Therefore, one can not guarantee in Zest that a blocked
byte will always have its intended impact on the input features. This situation can
become even more complicated if you try to form one combined mutation mask which
is the result of different isolated byte mutation experiments (as FairFuzz does).

Another challenge for FairFuzz on Zest is the ambiguity of Zest’s parameter streams.
We have previously highlighted that different bytes on a parameter stream can have
the same impact on the resulting input (see Figure 6 and Figure 7). Therefore it is
also not guaranteed that a mutation of a byte will also change the content of the input.
This is a contrast to FairFuzz, where the mutated bytes always directly impact the
content (because they are the content). It could thus happen in Zest that a byte will
not be blocked from mutation because the mutation experiment happened to produce
an equivalent byte value. This could then leave bytes open for mutation which in fact
should best be blocked. FairFuzz’s [LS18] mutation mask strategy can thus rather not
be used as effectively for Zest as it has been for AFL.

The approach of Template-Guided Concolic Testing (TGCT) [CLO18] faces similar
issues. TGCT employed pattern mining to identify character sequences in inputs
which should be reproduced to increase the coverage. In theory, one could attempt a
similar technique to learn shared bytes of Zest inputs which are important for e.g., valid
coverage. However, a problem is again the ambiguity of Zest’s input bytes. Therefore it
is not guaranteed that bytes which produce the same input features will also have the
same byte values. These bytes would then not be identified as a pattern even though
they have the same effect on the input. Moreover, even if one could identify a pattern,
then it is not quite clear where to insert this pattern. This is because the insertion
position must be at a place in the parameter stream where the generator will read the
pattern bytes in their intended sense. Identifying such positions however can be quite
difficult, as they depend on the implementation and the course of a generator for a
particular input.

Finally, one could also consider whether Havrikov et al.’s k-paths approach [HKZ22]
might be a suitable technique to represent and identify input features with Zest. How-
ever, the problem here is that k-paths are a grammar-based concept relies on (sub-)
paths in a derivation tree. Zest’s parameter streams however are unstructured and
have no notion of a path. Therefore, it is not really a concept which can be directly
employed for Zest.

In summary, this discussion should make clear that Zest’s parameter streams do
encode the features of the resulting input. However, it can be very difficult to extract

40

those features without running the parameter stream on the corresponding generator.
Furthermore, the parameter streams make it difficult to employ previous techniques
which attempt to learn and reproduce particular features of an input. Important
reasons are that that the position of a byte in the parameter stream is no guarantee
for its semantic impact and that different byte values can have the same impact on
the input. Furthermore, it can be difficult to know where to insert a sequence of bytes
even if one should have identified bytes which are responsible for a certain feature.

4.2. The Approach
Representing features on the model level The issues that we have discussed above
made it difficult for us to develop a technique which can learn and regenerate particular
input features on the basis of Zest’s parameter streams. To overcome this, we have de-
cided to instead focus on the model-level of an input. Meaning, we analyze the features
of an input after it has been generated from a parameter stream. The model of an
input is an abstract representation of an input. However, it might also be materialized
if the model actually describes the internal structure of an input. When studying the
Zest evaluation [PLS+19c], we have noticed that most of Zest’s test subjects take inputs
which can be represented with a tree-based model. Namely, the build systems Maven
and Ant take XML files. The subjects Closure and Rhino process JavaScript. When
analyzing JQF’s XML and JavaScript generator it becomes evident that the produced
inputs inherently have a tree-based structure21. This means that their models form a
tree of "nodes". To illustrate, consider the XML string represented in Listing 4. JQF’s
XmlDocumentGenerator would internally build a tree-based model for this input which
is illustrated in Figure 10. This model is not necessarily what is later passed as an input
to the SUT. Instead, it is an object-based representation of a structured input. This
representation could be then converted to other ones which describe the information in
another form (e.g., the XML string in Listing 4). However, the important aspect is
that this model is materialized. Meaning that there are objects in main memory which
represent the individual nodes and connections of an input. Thus we could also change
the features of the input if we change aspects in the model.

1 <project >
2 <version >1.0.0 </ version >
3 </build name="out">
4 </ project >

Listing 4: A simple XML string

Another important insight is that input features can be much more easily identified
on a tree-based model compared to its parameter stream representation. First, the
21JQF’s generators do not always "materialize" the trees as a data structure. Thee tree-based form of

the inputs is nonetheless recognizable in the generators. We will discuss it in more detail when
presenting our implementation.

41

project
[Element]

vesion
[Element]

build
[Element]

1.0.0
[Text]

name="out"
[Attribute]

Figure 10: Tree model of the XML string of Listing 4

input models speak for themselves (once generated). This means that you do not need
to follow the implementation of the generator to identify the features of an input. For
example, the existence of a certain XML tag is represented in the model by the existence
of a corresponding Element node. This can be immediately identified, without first
running the input again through the generator and monitoring its execution.

Second, the input features are encoded less abstractly compared to Zest’s parameter
streams. For example, the fact that there exists a tag with the name "project" is
represented by a logical entity (i.e., a node) which has the tag name as a readable
string. This is more clear compared to Zest where the features would be encoded in a
sequence of bytes.

Third, input features are also encoded more directly in contrast to parameter streams.
For instance, the fact that the "project" tag contains a "version" tag is evident due
to the parent-child relationship in the model. If you recall, such a tag relationship was
not explicitly represented in the parameter streams of our example XML generator
(Listing 3).

These aspects have lead us to the decision to analyze and reproduce input features
on the model level. Particularly, we will focus on inputs which have a (materialized)
tree-based model. This means that they are structured as a tree of node objects which
describe the form and content of the input. While this might seem like a limitation,
it allows us to employ our approach on relatively important input formats like XML,
JavaScript or HTML. Furthermore, our ideas could possibly be transferred to other
domains which deal with tree-based inputs. One example would be grammar-based
fuzzing where inputs can be natively represented as derivation trees.

42

Features of tree-based inputs Input features can be represented relatively easily
when dealing with tree-based models. There are two types of basic features. Either
the existence of a particular node or the connection between two nodes. Nodes can
furthermore have a type (e.g., "Element" in Figure 10]) and additional metadata (e.g.,
the name of an Element node) to qualify them. These four qualities however can suffice
to describe the entire input structure and content. Especially when combined into
more complex features. Particularly important for us is the concept of a path through
a model. This notion refers to the paths which lead from the root of a tree to each of
its leaves. For example, the tree model of Figure 10 has the paths depicted in Figure
11. Each bulletpoint indicates an individual path. The components of one path are
separated by the symbol ">". We call each such path a feature path to highlight that
it describes the features of an input. Each path component (or node in the tree) is
accordingly referred to as a feature node.

• project [Element] > version [Element] > 1.0.0 [Text]

• project [Element] > build [Element] > name="out" [Attribute]

Figure 11: Tree paths of the model of Figure 10

Learning shared features of tree-based inputs Each tree-based input can be decom-
posed into its list of feature paths. The feature paths are thus are another representation
of an input. Furthermore, each feature path can be modelled as a sequence of strings.
This can be done by converting each feature node to a string containing the type and
metadata of the node. We have seen this in Figure 11.

The sequential nature of feature paths allows us to employ sequential pattern mining.
You can recall that sequential pattern mining finds shared sub-sequences in a list of
sequences (see section 2.3.1). A feature path may be represented as a sequence of
nodes (or a string which encodes this node). A sub-sequence would then correspond to
a sub-path in a feature path. For readability we will use the symbol ">" to separate
elements of a sequence. Furthermore, we will only analyze sequences whose itemsets
all have exactly one item. We will thus omit the curly brackets ({}) when describing
components of a sequence. For example the notation "version [Element] > 1.0.0 [Text]"
describes the formal sequence 〈{"version [Element]"}, {"1.0.0 [Text]"}〉. Furthermore,
we will only analyze sub-sequences which are strictly contiguous in the underlying
sequences.

The sequence of our notation example is a sub-sequence (and thus sub-path) of Figure
11’s first path. Importantly, you can see how this sub-path still conveys information
about the features of the underlying input because it is a feature (sub-) path. Namely,
the features are that you have an Element node with the name "version" which contains
a Text node with the content "1.0.0". Sequential pattern mining on feature paths
could thus allow us to identify shared features of a set of inputs. To illustrate this,

43

A

B C

D

A

B

C

A

B C

Input 1 Input 2 Input 3

Figure 12: Three input trees with shared sub-paths. Shared sub-paths are highlighted
in color.

consider Figure 12. This Figure shows the tree model of three inputs. You can see that
they all share a certain set of sub-paths. These sub-paths are highlighted in matching
colors. Furthermore, these shared sub-paths could be identified using sequential pattern
mining.
Sequential pattern mining gets as input a list of sequences. It then returns sub-

sequences which appear in at least minsup many input sequences. The minsup value
may also be given as a fraction of the inputs (the so-called relative support) (see section
2.3.1). This will be our preferred method. For example, imagine that you have a list of
the following sequences and a relative minsup of 0.5.

• 1 > 2 > 3

• 2 > 3

• 4 > 1 > 2

In this case you would identify the subsequences "1 > 2" and "2 > 3" as frequent
sub-sequences as they appear in at least half of the input sequences22.

Sequential pattern mining could now be used to find patterns between tree-based
inputs. For this consider Table 4. Here we have presented the feature paths of Figure
12 as a sequence database. This is the formal name for the sequence list a sequential
pattern miner receives as input. The feature paths of each tree have been combined
into one sequence per input. This has been done by concatenating each path. Each
path is linked by an additional entry which contains the index (or "number") of the
input. We will discuss its role later in more detail.
Now imagine that we perform sequential pattern mining on this database with a

relative minsup of 1.0. The returned sub-sequences would be:
22In fact, you would also find the individual symbols "1", "2" and "3" as frequent patterns. However

we focus here on closed patterns. More on that later.

44

Input Sequence
1 〈{A}, {B}, {D}, {1}, {A}, {C}〉
2 〈{A}, {B}, {C}〉
3 〈{A}, {B}, {3}, {A}, {C}〉

Table 4: Sequence database for the paths of Figure 12

• 〈{A}, {B}〉

• 〈{C}〉

These are exactly the shared sub-paths we have highlighted in Figure 12. Therefore
sequential pattern mining appears like a valid option to identify shared sub-paths in a
given list of trees.

To finalize our discussion, we want to mention some further aspects. Namely, we
have not mentioned some hidden configuration for the pattern mining example above.
First, we have only mined for closed patterns. Intuitively, this removes all sub-patterns
which are contained in other ones. Otherwise, the sub-sequences 〈{A}〉 and 〈{B}〉
would also have been returned as patterns. They are however not as interesting because
they are already contained in another pattern. Furthermore, these smaller patterns lose
the information that the nodes A and B are actually connected in each tree. Returning
such sub-patterns could thus also add confusion to the results. For more details on
closed patterns see section 2.3.1.
Another aspect is that we have set the constraint that maxgap = 1. The maxgap

value defines how many items may lay between items of a pattern. With maxgap = 1
we say that patterns must be contiguous sequences of items23. If we had not defined a
maxgap constraint, then the sub-sequence 〈{A}, {C}〉 would also have been returned
as the items A and C follow upon each other in every input sequence. They however
do not always follow contiguously on one another. Therefore, they do not always form
sub-paths in the underlying tees and are thus not interesting to us. You may also
have noticed that we have spoken of the distance between items when describing the
maxgap constraint here. In fact, the distance refers to itemsets. However, as discussed
before, our itemsets always consist of exactly one item. Therefore, the distance between
itemsets and items is equivalent in our case. More information on items versus itemsets
and the maxgap constraint can again be found in section 2.3.1.

Furthermore, we want to explain why we have added the itemsets {1} and {3} to the
sequences of input one and three. These prevent that patterns can be found between
paths. We call these components path-end components because they signal the end
of every path (if we have multiple paths in an input). Each path-end component is a
number corresponding to the index of the input. They are thus unique per input and
can not be identified as a pattern between inputs. They form a pattern barrier between
23This interpretation of the maxgap value is in accordence with the interpretation of the pattern

mining algorithm that we use. Namely, CM-SPAM [FV22].

45

paths of an input (in combination with maxgap = 1). The result is that patterns can
only be found along a path. This is exactly what we want. Otherwise we could find
patterns between the end of one path and the start of another one. These patterns
are not useful for us because they do not constitute real sub-paths in the underlying
inputs.

Finally, we want to mention that graph-based pattern mining might be an even more
natural way to mine for patterns in trees. In fact, this is something we experimented
with over the course of this thesis. However, we had some difficulty finding (peer-
reviewed) implementations of graph-mining for directed graphs. Directedness however
can be a crucial feature. For instance, in XML it is very important whether tag
<a> contains tag or the other way around. This information however would get
lost when mining on undirected graphs. Meaning, the undirected graph pattern a
- b24 could mean either case. We thus adapted the input graphs so that we could
reconstruct the directedness of patterns even when mining with formally undirected
graphs25. However, it added considerable complexity and was thus not picked up again
when implementing our final approach. Mining on graphs can nevertheless solve some
issues with sequential pattern mining we will discuss in the next paragraph. It could
thus be interesting for future work.

Reconstructing structures from sequences We have discussed in the motivation
(section 4.1) why input features can be relevant to reach certain areas of an SUT. These
features might be represented as e.g., sub-paths in a tree model. However, they also
could form more complex structures. To illustrate this let us again pick up our fictive
build system SUT. Imagine that there is a rarely visited branch in the SUT which is
only activated if we package the project and also run the tests when building. The
corresponding XML sub-structure is presented in Listing 5. It could trigger a specific
branch because the processes might need coordination. The graph of the necessary
XML sub-structure is depicted in Figure 13.

1 <build >
2 <run_tests >yes </ run_tests >
3 <package >yes </ package >
4 </build

Listing 5: XML substructure to trigger a specific rare branch

Imagine that we have several inputs which trigger the rare branch and perform
sequential pattern mining on their paths as discussed above. We would then find the
two paths as patterns shown in Figure 14.

24This means graph node "a" is conntected with node "b" but without any information on the direction.
25The details are omitted here for brevity. We however hand in our implementation. For this please

have a look at the JavaScript mining of jqf-feature.

46

build
[Element]

run_tests
[Element]

package
[Element]

yes
[Text]

yes
[Text]

Figure 13: Graph of the XML of Listing 5

• build [Element] > run_tests [Element] > yes [Text]

• build [Element] > package [Element] > yes [Text]

Figure 14: Feature paths patterns for the rare branch corresponding to Figure 13. Each
bulletpoint indicates one pattern (i.e., frequent sub-sequence).

These sequential patterns correctly describe the paths of the necessary structure.
Yet, they do not convey that the paths should form a shared structure. Namely, that
both paths should have the same root node (as depicted in Figure 13). This is a
downside because if we would add these paths individually to an input, we will likely
not trigger the rare branch. On the contrary, we would likely produce a semantically
invalid input, because we would add two distinct <build> tags.

To resolve this issue, we employ a heuristic which reconstructs a structure from a
set of mined paths. Namely, we assume that identical path-prefixes26 form one shared
sub-path in the tree. This allows us to correctly reconstruct the structure of Figure 13
from the patterns that we obtained. The reason is that both patterns start with the
prefix "build [Element]". The node for each prefix would thus be merged into one by
our heuristic. This would also work with more complex prefixes. Imagine that both
patterns started with "project [Element] > build [Element]". Again, we would only
create one node for each prefix node. The result with (and without) our reconstruction

26A path-prefix is a sub-sequence of path components beginning at the first component of a path. A
component is one "item" or "node" of the path.

47

build
[Element]

run_tests
[Element]

package
[Element]

yes
[Text]

yes
[Text]

project
[Element]

build
[Element]

run_tests
[Element]

package
[Element]

yes
[Text]

yes
[Text]

project
[Element]

build
[Element]

project
[Element]

Figure 15: Example of our reconstruction heuristic. Left depicts the result with our
heuristic. Right shows the result without.

heuristic is illustrated in Figure 15.

Our heuristic allows us to reconstruct structures from one-dimensional patterns.
However it could also erroneously merge prefix nodes which in fact should be represented
by distinct nodes. This is a trade-off we accept with our heuristic. Our intuition is that
the regeneration of multi-dimensional structures can be important to trigger certain
SUT functionalities. Thus, we have to identify them in some way. The presented
heuristic offers an solution for sequential patterns. Nevertheless, it could produce
imperfect or even wrong results.

Regeneration of features So far we have discussed how input features could be
represented and learned with tree-based inputs. Now we will present our approach to
regenerate them. The concept that we employ is tree-based splicing.

Tree-based splicing is a technique which can be found in grammar-based fuzzing
[AFH+19, DRRG14, LKBS21]. The idea is to add a structure to a given tree input.
Imagine that we have identified the subtree depicted in Figure 16 as a feature to
regenerate. This could be a substructure which triggers a certain behavior in an SUT.
To regenerate this feature we could take the tree model of another input and add our
substructure. This process is shown in Figure 17. We will call this process (tree-based)
splicing. Splicing will add the substructure to the model of the input. The generator
could then process the model to produce a final input for the SUT containing the

48

A

B C

Figure 16: Example of a mined subtree

X

Y

Z

X

Y

Z

A

B C

Figure 17: Example of simple splicing. Left shows the input before splicing. Right
depicts the result afterwards.

spliced features. This should then trigger our wanted behavior.

However, the process of splicing can be more complicated than in our simple example.
There are at least two concerns: Syntactic validity and semantic validity. Let us first
discuss syntactic validity.

Our simple example ignores that tree nodes can have a type. For example, in XML we
can distinguish between nodes which represent tags (here referred to as Element nodes)
and nodes which represent tag Attributes. Imagine that we deal with a tree-based
model where parent-child relationship must follow the hierarchical relationships in
XML. An Element node could thus have an Attribute as a child node. This is
because Attributes are aspects of Elements and not the other way around. However,
Attributes can not have an Element as their child. This would relate to syntactically
invalid XML. Even if a generator could try to make sense of such a structure, it would
likely produce a result similar to Listing 6. Here the tag has been attached as a
child of the attribute some_attribute. The result is not syntactically valid XML.

1 </a some_attribute = >

Listing 6: Attaching tag to the attribute some_attribute

One thus has to be careful when choosing where a structure is spliced to. We call
the node we attach a structure to the splicing target. To ensure the syntactic validity

49

X

Y

Z

X

Y

Z

A

B C

A

Z

Figure 18: Realizing splicing as an overwrite. Left shows the input before the splicing.
Right shows the splicing result.

of inputs, one has to pay attention that our spliced structure can be attached to our
splicing target as a child. This is a check which has to be implemented individually
per input format (e.g., individually for XML and JavaScript). That is because each
input format can have different node types and different allowed connections27. We
circumvent this issue. Namely, we do not actually add to a splicing target but actually
overwrite it. Therefore, our splicing targets must have the same type as the root of
our splicing structure28. For example, we can only overwrite Element nodes with other
Element nodes or Attributes with other Attributes. The result is virtually the same
as appending to a node. The difference is that we delete the substructure of our splicing
target and replace it with our spliced structure. The process is depicted in Figure 18.
The overwritten target node is highlighted yellow on the left side of the image.

Implementing splicing as an overwrite requires the existence of a type-identical target
node when splicing. This potentially reduces our pool of available splicing targets.
However, it arguably simplifies the implementation. Otherwise we would have to mind
the acceptable parent-child relationships of around 30 different JavaScript node types.
This could have been a sizeable effort and would have added complexity.

Another concern for the syntactic validity of inputs is the potential incompleteness
of patterns. Imagine that we have a tree representation of XML attributes where the
name and value of an attribute are represented as children of an Attribute node.
This is illustrated on the left side of Figure 19 for the attribute source="web". It
could easily be that attributes with the name "source" always trigger a certain rare
branch regardless of the attribute value. Pattern mining could then find an incomplete
attribute substructure as shown on the right side of Figure 19. It is incomplete because
XML attributes require both an attribute name and value. If we would splice this
incomplete structure, we could thus not produce syntactically valid XML. To resolve
this, we need to implement routines which check the completeness of patterns and

27Grammar-based fuzzing can be at an advantage here because the productions can define which
non-terminal can be expanded into which symbols. This allows for the automatic extraction of
such rules.

28With "splicing structure" we mean the structure we want to splice.

50

[Attribute]

source
[name]

web
[value]

[Attribute]

source
[name]

Figure 19: Example of a complete (left) and incomplete (right) attribute structure

perform a completion if necessary. We do this by letting the generators fill the missing
parts in a random manner. In our case it is however only done for JavaScript because
our XML nodes can not produce incomplete patterns. For instance, our Attribute
nodes contain the attribute name and value directly within the Attribute node. This
reduces the granularity of learnable patterns but also makes it impossible to mine
incomplete attributes.
Finally, we want to discuss concerns regarding semantic validity. Imagine that

we have learned the XML structure <project></build></project> as a pattern.
Furthermore imagine that we want to generate new inputs off of that via splicing. For
instance, by splicing it to inputs which were previously valid. Let us assume that all
valid inputs have a <project> tag as their root. If we would add our structure as a
child to an existing tag, the we would create an additional <project> tag which is
likely semantically invalid. Our input would thus likely be discarded with an error.
On the other hand, if we would overwrite an existing node, then we would likely

have to overwrite the root node as it should be the only <project> tag in valid inputs.
Overwriting the root however would delete the entire previous structure below the root.
The only thing which would remain is our added </build> tag. This input is likely
too simple and would also be discarded as semantically invalid. Thus, there is a certain
dilemma.

Our solution is to perform a mix between overwriting and appending. Our splicing
implementation overwrites the metadata of the target node (e.g., the tag name).
However it keeps all original child nodes of the target (if possible)29. It then adds all
the children of our splicing structure root to the splicing target. This makes our splicing
less destructive than a simple overwrite. Furthermore, our splicing implementation
favors splicing targets which have the same metadata as the splicing root30. Therefore,

29Sometimes our generators can have limitations regarding the number of children of a node. In such
cases we have to compromise by deleting (randomly selected) children of the splicing target or
possibly even our splicing structure.

30Splicing root means the root node of the structure we splice

51

source dir
[Element]

project
[Element]

/path/to
[Text]

source dir
[Element]

project
[Element]

/path/to
[Text]

build
[Element]

Figure 20: Splicing which combines a node overwrite with child appending. Left depicts
the original input. Right shows the splicing result.

we would e.g., rather select nodes as a splicing target which have the same tag name as
our splicing root. This would bias us to always select the <project> root as a target
in our example. Moreover, our implementation would not categorically remove the
original children, but (ideally) only add to it. This should increase the probability
for creating a fully valid input compared to a complete subtree replacement. The
entire idea is illustrated in Figure 20. The original <project> root is highlighted
yellow to indicate that it would be the favored splicing target for the splicing structure
<project></build></project>. You can see that we have overwritten the original
root but simultaneously kept the original children.

Identification of rare branches We have mentioned at the beginning of this chapter
that our goal is to better explore rarely visited branches. For this, we first have to
define what we mean by rare. To define rarity we employ FairFuzz’s [LS18] approach.
FairFuzz defines a branch as rare if its number of hits is below a dynamically set
threshold. FairFuzz calls this threshold the rarity cutoff. The details and formula of
FairFuzz’s approach can be found in section 3.1.1. We have chosen FairFuzz’s approach
because it allows us to dynamically identify which branches are rare and which not.
This is helpful, because which branch is "rare" may change over the course of a fuzzing
campaign. Furthermore, FairFuzz’s approach allows us to automatically adjust the
concept of rarity per SUT. This is also important, because the number of hits which
constitute rarity can also change from SUT to SUT. For instance, in some SUTs 100
hits could be considered rare while there might be others where the number could be
closer to 10, 000. Therefore, FairFuzz’s technique seemed like a good solution.

However, when experimenting with our approach we have sometimes ran out of rare
branches to target with FairFuzz’s approach. The reason is because FairFuzz’s cutoff
can be quite restrictive and because we target each branch at max once. Thus, we
need a "new" rare branch for each targeting. Furthermore, we also exclude branches
which we consider related to previously targeted ones. Together with the fact that

52

FairFuzz’s cutoff can be quite restrictive, we can run of branches to target during a
fuzzing campaign.
These target exclusions are an optimization of our approach. The fact that a

previously targeted branch is still rare indicates that its spliced pattern was not
successful. Otherwise the branch would likely not be rare anymore. Furthermore, we
only store a limited amount of inputs per branch (to control the memory overhead).
Thus it is likely that we would mine on the same inputs as before and produce the same
pattern which was not effective the last time. Repeatedly using ineffective patterns
can be a waste of resources. To mitigate this, we prevent the re-targeting of previously
targeted branches. Furthermore, we exclude "related" branches. These are branches
which would use the same inputs for mining as previous targets. The idea is to exclude
rare branches which are always triggered together with a previous target. For instance,
imagine that you fuzz our example build SUT. There might be a rare branch which is
only triggered when the project XML contains a <build> tag. However, it is likely that
the <build> tag will trigger an entire list of related rare branches. This is because the
<build> tag might activate a complex set of (rarely activated) SUT procedures. The
corresponding rare branches would have different branch IDs but they would always
be triggered together. Thus, they would be activated by the same inputs and would
produce the same (in-/effective) patterns. For this reason, we also exclude branches
which we consider related according to our heuristic.

Our exclusion of previous targets, together with FairFuzz’s rather restrictive rarity
cutoff can let our approach run out of further rare branches to target. To continue
targeting, we switch to another rarity heuristic in such cases. This heuristic defines all
branches with hits in the lowest 30% percentile as targets. That heuristic can be more
inclusive than FairFuzz’s one. For instance, we analyzed rarity on the SUT rhino over
20 campaigns at different points at time. Each campaign had a duration of 12 hours.
Over these campaigns, only 4% of valid branches (241 absolute) were identified as rare.
Thus we saw a potential to raise the threshold.

There could be also other methods to raise the threshold. If you recall, FairFuzz’s
rarity cutoff is always a 2i. Thus one could alternatively increase the exponent i in
incremental steps. We have decided against this option, since the increases could be
considerably huge at some point. By focusing on the lowest 30% percentile we can
ensure that rarity will always only include the low end of hit counts. Formally however
we only define branches as rare according to FairFuzz’s formula. Our alternative
heuristic only serves as a fallback. The idea is to further support the SUT exploration
by targeting comparatively rarely visited areas even if we have exhausted the formally
rare branches.

Handling multiple pattern subtrees So far, we have only discussed the case when
pattern mining returned one pattern subtree for a group of inputs. However, it could
happen that we obtain multiple ones. The reason is that our subtree reconstruction
algorithm could produce several distinct pattern trees. To illustrate that, let us go back
to our example build system SUT. Imagine that we want to target a branch which is

53

• dependency_list [Element] > dependency [Element]

• build [Element] > run_tests [Element]

Figure 21: Example of feature paths which result in different pattern trees

related to handling dependencies. Let us assume that we have several inputs which
trigger this functionality and that we mine on their model tree paths. The mining
algorithm could return the frequent feature paths shown in Figure 21.
You can see that mining returned a subpath related to dependencies, as one would

expect (the first pattern). However, the mining incidentally also found a pattern related
to the running of tests during building (the second pattern). This could easily happen,
because pattern mining returns every shared subpath it finds. This might also include
ones which actually do not contribute to our target branch. This raises two issues.
First, we can not build a combined tree from the patterns in our example. This is

because the obtained patterns have no shared path prefixes. We thus end up with
multiple trees as a result. This is shown in Figure 22.

Second, the example highlights that we can incidentally find patterns which do not
contribute to our target branch. These can make it in fact more difficult to trigger
our target, because the more complex the pattern, the more likely it (arguably) is to
violate input validity by splicing. Especially if we splice several trees at once.

Let us first discuss how one can deal with multiple pattern trees (as in Figure 22).
One option would be to always splice all pattern trees that one has obtained. Meaning,
if you have an input you want to splice to, then you would always splice all obtained
patterns at once into that input. This will guarantee that you also always will splice the
trees which actually contribute to the target branch. On the other hand, it could also
increase the likelihood of creating invalid inputs because you splice multiple trees into
one input. Each splicing is a (somewhat controlled but still) randomized manipulation
of a potentially valid input. And each randomized manipulation has the potential to
break validity.
Another idea would be to splice different combinations of obtained patterns. For

instance, imagine that we have obtained the tree set {t1, t2, t3} to splice. Then one
could first try to splice {t1, t2} together, then {t2, t3}, afterwards only {t1} and so on.
Each time one could monitor what subtree combinations perform best and finally settle
on that combination which triggers the target branch most effectively. However, this
approach could lead to a combinatorial explosion with a growing number of subtrees. It
also would be particularly inefficient if most subtrees do not contribute to the targeting
of the branch. We would try them multiple times with different combinations without
actually triggering our target branch.

To avoid the above issues, we only splice one learned subtree. The subtree we splice
is obtained by comparing the performance of each individual tree. This means that

54

dependency_list
[Element]

dependency
[Element]

build
[Element]

run_tests
[Element]

Figure 22: Reconstructed pattern trees of the paths of Figure 21

we splice each subtree individually and monitor how effective it is at triggering the
target branch. Finally, we compare which tree was most effective and only keep that.
Effectiveness is measured with the ratio target_hitsi

splicing_attemptsi

for each learned tree ti.
We perform a fixed number of splicing attempts per tree. The number of attempts was
set to 100 in our experiments.

The advantage of our approach is that we do not have to splice multiple trees at once.
This can be beneficial for the validity. On the other hand, our approach could fail to
trigger rare branches which actually require the splicing of multiple disjunct subtrees.
Thus, there is a certain tradeoff between keeping multiple trees and reducing them.
Our approach should at least help us identify the subtree which is best at triggering
the targeted branch if we only need tree. However, it remains that our approach will
not fully identify the pattern if we need to splice multiple disjunct subtrees.

Targeting start and interval The goal of our overall approach is to support the
fuzzing campaign by focusing on rarely visited areas. However, an important question
is when and how often this targeting should happen. For this question, we found it
difficult to find previous research that would serve as an effective basis for us. Our
intuition was to start targeting once the performance of the fuzzer (e.g., the branch
discovery) begins to plateau. This indicates that the fuzzer has exhausted the set of
branches which it could find with rather simple mutations. It might thus make sense
to now concentrate on rarely visited SUT areas. Because these areas might be difficult
to trigger but still could guard code to cover.

This time we found it difficult to base ourselves on FairFuzz [LS18]. That is because
FairFuzz only mutates inputs which hit rare branches. However, we found it difficult to
understand when rarity is established by FairFuzz. It could be that FairFuzz updates the
rarity cutoff with each new input it mutates. Another option is that it is only updated
in certain intervals. In theory, it could also be that the rarity cutoff is set beforehand on
the basis of previous fuzz campaigns. We find that the FairFuzz [LS18] paper is not very
explicit regarding that. However, our intuition is that rarity in FairFuzz is established

55

dynamically during a fuzzing campaign31. Nevertheless, due to the uncertainty we
found it difficult to use FairFuzz to decide when to start targeting ourselves. One
could theoretically begin targeting immediately at the start of a fuzzing campaign.
However, our approach pattern mining and splicing arguably incurs considerably more
overhead compared to FairFuzz’s mutation mask. Thus it seemed sensible to identify a
targeting start time when the trade-off between additional overhead and performance
gains would be best (or at least better).
Driller [SGS+16] is an approach which has a similar idea to us. This technique

switches from mutation-based fuzzing to concolic execution once it detects that the
fuzzer is "stuck", which means that it has difficulties finding more branches. But
again, we found the described approach difficult to apply. Driller switches to concolic
execution once it has performed a specified amount of mutations without uncovering
new branches. The number of mutations it performs is proportional to the length of an
input [SGS+16]. Still, we found this rather vague, because the description is not more
explicit than here presented. Thus we do not know which exact mutation threshold
has been employed by Driller. Furthermore, it is not quite clear when Driller switches
to concolic execution. However, to the best of our understanding it does so, once it
has checked all inputs which it has stored in its queue.
Due to these difficulties, we have developed a custom heuristic to identify when

the performance of a fuzzer starts to degrade. It works by analyzing the number of
paths that the fuzzer discovers over time. A path in Zest refers to a coverage trace
which contains previously not seen branches or which managed to increase the hit
counts of some branches. We analyze the path discovery ratio to estimate the inflection
point in the performance. For this, we sample the current number of discovered paths
every 1000 seconds. Let this number be pathsi at a measurement interval i. The
path discovery ratio at interval i + 1 is then defined as pdri+1 := pathsi+1 − pathsi

pathsi

.
We have found that in practice that a path discovery ratio below 0.05 was a good
indicator for the inflection of the performance or the initial stages of plateauing. With
"performance" we refer to the discovery of new branches. Thus, we start targeting
once the path discovery ratio drops below 0.05. If the path discovery ratio drops once
below we target different rare branches in intervals of 10 minutes. This means that
we do not analyze the path discovery ratio again once we heuristically determined a
performance degradation. Instead, we now focus on targeting rare branches. If a rare
branch is targeted, we first learn the pattern and then splice it in newly created inputs
for at max 10 minutes. Afterwards, we select a new branch to target. However, we will
discuss the details of targeting more in our description of the integrated approach.

Splicing and parametric inputs Before we present the integrated approach, let us
discuss how we combine model-based splicing with the parametric inputs of Zest. You
will recall that Zest represents its inputs by the parameter stream which generators use
to create inputs. Due to the difficulties of identifying and regenerating features with a
31Because the FairFuzz paper also refers to the cutoff as a "dynamic" rarity cutoff [LS18].

56

parameter stream, we have to decided to splice on the model level. This means that we
work on the models of inputs which are the result of generators. Splicing thus means
in our context, that we have a tree of node objects in main memory which represent an
input. We would then take a subtree of other nodes and adapt the connections in the
original model to perform splicing. This should then we can create an input (model)
which contains new features after the splicing. However, we lack the parameter stream
which would generate our spliced input32. For this, we would need to map the model
back to its parameter stream which can be quite difficult. The reason is that we would
need to predict (based on the model) which feature decisions are made at which point
in the generator and which bytes need to be written where to create our input. This is
not trivial because generators can be highly recursive and also can represent certain
input features only implicitly in a stream. At the same time it would be a loss if we
would not have the parameter stream of a spliced input. Because with the parameter
stream we could give Zest a chance to further mutate the spliced input. This could
help further explore our targeted branch (or its surrounding region) without additional
splicing.

Thus, we have developed a technique to obtain the parameter stream based on the
model. It is based on the following observation. JQF’s XML and JavaScript generators
create their inputs by effectively traversing the tree of an input while they generate it.
You can see this principle in the pseudocode of our simple XML generator in Listing 3
(page 37). The XML input is generated during a depth-first traversal of the input while
it is being generated. We leverage this to obtain the parameter stream of a model.
Namely, we perform a traversal of the tree with the generator, but instead of making
random decisions, we force the generators to make ones based on the given model.
For this, we implement the input generation within the model. Our generators work
like this that they first create a bare instance of each node and then generate their
contents by calling a populate() method on them. This idea is illustrated in Listing 7.
Imagine that we first create a bare root node (similar to line 8 of Listing 7). Then we
could call its populate() method to create the content of the node and its entire subtree.

32Spliced input refers to resulting input after the splicing.

57

1 void populate () {
2 int index = random . next Int (0 , d i c t . s i z e ()) ;
3
4 this . tag = d i c t . get (index) ;
5
6 int numChildren = random . next Int () ;
7 for (int i = 0 ; i < numChildren ; i++) {
8 XmlNode ch i l d = new XmlNode () ;
9 ch i l d . populate () ;
10 this . addChild (ch i l d) ;
11 }
12 }

Listing 7: An XML gnerator which can track create a parameter stream from a model

Implementing the generation within a node object gives us the chance to access the
attributes of the node during generation. Typically they would be uninitialized during
the traversal. However, we could access the attributes if we would traverse the tree
after the generation, because they would be set then. Our trick is to store the decisions
of a generator as attributes of each node. This allows us to access the decisions for a
node, if we would traverse its subtree again. Importantly, we can instruct the generator
to use pre-existing decisions of a node, if there are any. This allows us to control the
decisions of a generator from the model level. To achieve this, we always pass a fallback
value each time we query for a random value. This fallback value is the attribute value
of the corresponding decision. If our generators receive an initialized fallback value,
they know not to read from a pseudo-random byte stream, but to instead write (and
return) bytes corresponding to the given fallback value33. This creates a parameter
stream which corresponds to model. You can find an example for this procedure in
Listing 8. This example is an adapted snippet of Listing 7 (line 2). In our adapted
example, we query for the index in a dictionary but pass an additional parameter.
This parameter is the value of the index during the original generation of the node.
During the original generation, it would be uninitialized. Accordingly, the generator
would sample a random value. However, if we would traverse tree afterwards, then
the attribute would be set (see line 2, Listing 8). We would thus pass an initialized
value. The "random"-object would thus not read and return a pseudo-random value
but instead write and return a value corresponding to the attribute. This allows
us to create a parameter-stream from a given model. Because by manipulating the
attributes of a node, we can now simultaneously influence the generator. To create the
parameter stream for a changed model, we would simply have to re-run the traversal
of the tree and track the parameter stream that the generator writes based on the model.

33In the implementation we in fact do not necessarily check whether the fallback value is initialized
but also consider if other things are initialized. It is simplified here for brevity.

58

1 int index = random . next Int (0 , d i c t . s i z e () , this . index) ;
2 this . index = index ;

Listing 8: Example for model-based decision control during generation

This technique allows us to obtain the parameter stream for a spliced input. Because
all that splicing really does is influence the attributes of affected nodes. We could thus
afterwards re-run the generation with the current model and obtain the parameter
stream to re-create it "from thin air" (i.e., without splicing but only with the parameter
stream and generator).
While this technique is practical, it also has its caveats. First, we have to know

which bytes a generator has to write for a given decision. This depends on how the
generator interprets the bytes of a parameter stream. It can be straightforward. For
instance, we have seen in Figure 6 (page 38) that integer decisions might be repre-
sented by their corresponding byte sequences. In this case, we would simply have to
write the byte sequences for an integer to create the corresponding decision on the
parameter stream. However, it can also be more complicated than that. For instance,
if we deal with bounded integer sampling. For example, if we query for integers that
all must lie within the interval [1, 10] (i.e., random.nextInt(1,11)). In this case we
would have to know how the generator converts pseudo-random bytes to values in
that interval. Based on that we would have to write a reversal routine which returns
the parameter bytes we have to write for a given value within [1, 10]. This can be
rather complicated as generators might operate with non-trivial operations on bytes
which might be difficult to understand and to reverse. However, it can be manageable.
Especially, if the low-level operations are only based on unbounded integer sampling34.
Nevertheless, we had some difficulties understanding and reversing the sampling of
(double-precision) floating point numbers as it relied on querying integers of different
bit sizes, partially bit-shifting them and then multiplying them. This made it difficult
for us to write a reversal routine for such floating point numbers. To overcome this, we
have discretized our generators. This means that they only can query for unbounded
pseudo-random integers at the low-level. More complex queries (e.g., bounded integers
or floating point numbers) have to be built on this integer sampling. This can work
reasonably well, however it can limit the precision of floating point numbers. For
example, to generate real values in the interval (0.0, 1.0], we use the following sam-

pling: value = random.nextInt(0, SAMPLING_RANGE)
SAMPLING_RANGE , where SAMPLING_RANGE is

an integer greater zero. You can see how the precision of the values is influenced by
the SAMPLING_RANGE. In our experiments, the SAMPLING_RANGE was set to 1000.
This limited precision is definitely a downside compared to the normal sampling where
we likely have more flexibility regarding that. On the other hand, it allows us more
easily to identify which values we have to write on the parameter stream to create
a given floating point number. That is because each floating point number can be
mapped back to a corresponding integer.
34For example, producing integers within a bounded range might first query an unbounded integer

and then use modulo and addition to move the unbounded integer into that range.

59

The second caveat of our model-based parameter stream generation is that splicing
might produce features which actually can not be produced by the generator. Therefore,
we also can not create a parameter stream for the model. For instance, imagine that
you have an XML generator which allows created XML documents to have at max 100
different tag names (but potentially more tag instances). Now imagine, that you have
an input which exhausted that limit and that you splice a structure to it which contains
new tag names. This could create a model which contains more than 100 different tag
names. That however is an input which could not be created by the generator. In such
cases, our generators will still attempt to build an input which can be created by the
generator. Namely, by replacing the new tag names with existing ones from the model.
This will keep the number of unique tag names within the threshold35. However, it
might change our original pattern. This is a trade-off that we accept. It might change
certain features, but it still could keep other features of the spliced structure intact.
Thus, we could nonetheless produce inputs which are closer to triggering our target
branch compared to randomly mutated ones. A similar concern is that you often have
to mind max tree depth constraints when splicing. This means that generators often
only allow trees with a fixed maximum depth. That constraint however can often be
checked more easily before the splicing so that we do not have to prune our spliced
tree afterwards.

The integrated approach In the previous sections we have discussed several basic
components of our approach. Now we will combine them and present a more formal,
integrated description of our technique.

In essence, our approach begins as a normal Zest campaign. Only at a certain point
does our approach begin to target rare branches via splicing. Namely, when it detects
an (incoming) performance plateau with our path discovery ratio heuristic. If that is
the case, we switch to the targeting stage. In this stage we individually select rare
branches to target. The rarity of a branch is determined according to FairFuzz’s [LS18]
(or our updated) heuristic. If we have selected a branch, then we take a group of
inputs which hit that branch and perform sequential pattern mining on their feature
paths. The inputs we mine on are recorded throughout the entire duration of a fuzzing
campaign. They are stored in memory and in their parameter stream representation36.
We limit the number of inputs we store per branch to 5 to control the memory overhead.

After the mining, we reconstruct the pattern trees from the pattern sequences we
obtained as a result. This might produce several distinct pattern trees. Each pattern is
referred to as a candidate. We splice each candidate to 100 randomly selected (mutated)
inputs of Zest’s queue and observe how often they manage to trigger the target branch.
In the end we only keep the pattern which has the best target hit to attempts ratio.
35In fact, this example is based on the restrictions that JQF’s JavaScriptCodeGenerator has with

regards to unique identifier names. We described it in the context of XML because most of our
examples are based on XML.

36Before we mine on them, we create their models with the generators. We store their parameter
stream representation as it arguably costs less memory than their generated model.

60

The resulting pattern is now spliced for at max 10 minutes (as seen from the targeting
start). For this, we let Zest mutate the inputs it has stored in its queue and then splice
to the mutated input. However, we do not splice to each input. Instead we have a
splicing probability. This probability is based on the number of shared characteristic
branches between the inputs we have mined on and the current parent input37. Let us
(for now) refer to the inputs we have mined on for a single branch as its mining inputs.
We define the characteristic branches of a pattern as branches which are shared by the
mining inputs but which are not also shared by other inputs. For this, we first obtain
the branches which are shared by the mining inputs and then obtain the branches
shared by a random sample of other inputs. Then we remove the branches which
are shared both by the mining inputs and the random sample. The remaining set of
branches is referred to as the characteristic branches of our pattern. If we perform
splicing, we first check how many of the characteristic branches are contained in the
path trace of the current parent input. The ratio of contained branches (compared to
all characteristic branches) gives us the probability with which we will we splice to the
current input.
The intuition behind this is to make the splicing probability dependent on the

similarity between a parent input and our mining inputs. The more similar the inputs
are (concerning their branches), the higher is the splicing probability. Our goal is to
focus the overhead of splicing on inputs which have a higher probability to trigger the
target branch after the splicing. If we splice to inputs which are completely unrelated
to our target, then we might have a lower chance to trigger the target branch and the
trade-off between splicing attempts and target hits might be lower.

To illustrate our approach more compactly and to compare it against Zest, we provide
the (simplified) pseudocode of the Zest in Algorithm 1 and our adapted version in
Algorithm 2. The additions of our approach can be found in the lines 10 - 17 and 25 -
30 of Algorithm 2.

There are some other details one can mention. First, we currently only target valid
branches. This is because Zest has been specifically developed to better explore valid
processing stages of an SUT [PLS+19c]. Thus, we consider it best to focus on valid
areas, just like Zest. Secondly, we stop targeting early if the number of target hits
crosses a non-rarity threshold. We do this because some patterns increase the target
hit counts of a target quite rapidly. If the hit counts are greater than the median of
all valid hit counts, we consider the target branch not rare anymore. In this case, we
immediately target the next branch so that we can hopefully explore more branches in
a shorter amount of time.
Finally, we want to discuss some details about the pattern mining. The relative

minsup value we require is 1.0. Therefore, the pattern mining algorithm will only
return subsequences which are shared by all inputs. The reason is that we assume
that input features for a certain branch must be shared by all inputs which hit that
branch. Thus, it would not make sense that we e.g., also return patterns which are
only present in 70% of inputs.

37A parent input is an input of Zest’s queue which has been mutated to generate a new one.

61

Algorithm 1 The Zest Fuzzing Loop
1: queue ← initInputQueue()
2: coverage ← initCoverage()
3: generator ← getGenerator()
4:
5: while ¬timeout() do
6: parameterStream ← queue.nextInput()
7: parameterStream ← parameterStream.mutate()
8:
9: input ← generator.createInput(parameterStream)

10: runCoverage ← runInput(input)
11:
12: if coverage.doesNotContain(runCoverage) then
13: coverage.update(runCoverage)
14: queue.store(parameterStream)
15: end if
16: end while

Crash splicing In addition to our approach of targeting rare branches with splicing,
we have also developed an approach to investigate the validity of pattern mining for
debugging purposes. This technique mines on inputs which trigger the same crash. The
idea is to identify a feature pattern in those inputs and to employ the learned pattern.
Either to understand the circumstances under which an error occurs or to produce
more inputs which trigger that crash. The second application can be particularly useful
to investigate the robustness of fixes for a crash. To uniquely identify a crash, we
produce a hash of its stack trace. Our stack trace hashing is based on Zest’s one but it
is more restrictive. Zest hashes the entire stack trace. Our approach only hashes the
top 3 elements of the stack trace and the exception class. We will thus likely discover
fewer unique crashes because we consider less details when hashing. The reason is that
Zest’s hashing finds many allegedly unique crashes which in fact seem to be identical
except for some details lower in the stack trace. For this reason, we deduplicate more
restrictively to be more sure that unique crashes point indeed to unique bugs. This
deduplication is also used in the analysis of found crashes for our targeting approach.
Other than that our approach is quite simple. We only perform pattern mining

once, namely at the start of a campaign. Our algorithm performs the mining on inputs
which previously triggered a particular crash. Once the mining is done, we reduce the
obtained pattern trees to a single one, similar to our rare branch technique. Namely, we
check which pattern tree is most effective at triggering the target bug and only keep that
pattern. From then on, we have several variations. For instance, one implementation
performs a Zest campaign and splices the pattern with a (fixed) probability to inputs
created by Zest. Another implementation splices to each input. However, this time it
does not also perform a Zest campaign, but only splices to given inputs from a previous
fuzzing campaign. These implementations are purposefully simpler because we only

62

Algorithm 2 Zest with Targeted Splicing
1: queue ← initInputQueue()
2: coverage ← initCoverage()
3: generator ← getGenerator()
4:
5: while ¬timeout() do
6: parameterStream ← queue.nextInput()
7: parameterStream ← parameterStream.mutate()
8:
9: input ← generator.createInput(parameterStream)
10: if currentlyTargeting() then
11: pattern ← getCurrentPattern()
12: probability ← getSplicingProbability(pattern, input)
13: if randomDouble(0, 1) ≤ probability then
14: input ← input.splice(pattern)
15: parameterStream ← input.buildParameterStream()
16: end if
17: end if
18: runCoverage ← runInput(input)
19:
20: if coverage.doesNotContain(runCoverage) then
21: coverage.update(runCoverage)
22: queue.store(parameterStream)
23: end if
24:
25: if shouldTargetNewBranch() then
26: rareBranch ← getRareBranch()
27: inputList ← getInputsForBranch(rareBranch)
28: pattern ← mine(inputList)
29: setTargetWithPattern(rareBranch, pattern)
30: end if
31: end while

63

want to get a rough idea of how much potential pattern mining and splicing can have
for debugging purposes. Unfortunately we were not able to evaluate them due to time
constraints.

4.3. Implementation

Our approach has been implemented in Java as an extension of JQF/Zest[JQF]38. It is
implemented within an IntelliJ IDEA project (version 2021.1.2 - Community Edition).
We use Maven (version 3.8.1) as a build system. The development took place with the
Java SDK on version 11. The development operating system was Windows 10. We
make our implementation, experimental data and scripts available as a (Humboldt
University internal) GitLab repository39. Access is granted upon request. We can also
supply you with a replication package on request. This will not require access to the
Humboldt University GitLab.

We have made two implementation attempts. The first attempt is located in a
project called jqf-feature. Our current implementation resides in a project called
jqf-crash. The first attempt did not store inputs for mining in memory. Instead, it
exported the feature paths of each valid input to disk and only loaded them for mining
as needed. This however can generate a lot of data. To control this, we have set a
limit for the disk space usage. The downside is that we can quickly exhaust that limit
and thus not export further data at some point. We attempted to mitigate this by
limiting the disk usage in stages. Nonetheless, this introduced additional complexity
which sometimes made it difficult to know which data has been written to disk and
which not.

Another downside of our original implementation was that our generators were
not capable of producing parameter streams for spliced inputs. Therefore, we could
not further mutate them via Zest. Finally, we also attempted graph-based (versus
sequential) pattern mining on the original project. However, this again introduced some
complexity as we did not use a graph mining algorithm for directed graphs40. Thus,
we had to augment our inputs in particular ways to reconstruct necessary relationships
from the undirected graph mining results. Due to the above difficulties, we decided
to re-implement our approach when investigating the feasibility of splicing for crash
debugging. This is why the project jqf-crash now contains both the implementation
for rare branch targeting and the implementation of splicing for crash reproduction.
In the following we will only describe the implementation and usage of jqf-crash.

The project jqf-feature will neither be further discussed nor evaluated. However, its
source code is made available in our repository for reference.

38The JQF version is 2.0. at the commit 71b3eac88029ee76dc95ced2edd9ed9fde73f4ea
39https://gitlab.informatik.hu-berlin.de/krausrom/feature-fuzzing
40As we had some difficulties finding an implementation for directed graphs which is peer-reviewed

and would suit our needs.

64

Implementation overview One can distinguish two main components of our imple-
mentation. The fuzzing framework and the generators. The fuzzing framework contains
all classes we have written to adapt JQF/Zest to our needs. This includes several
Guidance classes which implement different components of our fuzzing algorithms. An
overview of the fuzzing framework classes is given in Figure 28 (page 103).

You may recall that Guidances are the classes which implement the core mechanics of a
fuzzing algorithm in JQF. All our Guidances are built on (i.e., extend) the ZestGuidance
(which is JQF’s implementation of Zest). Some of them only add additional tracking
of data. Others impact Zest’s procedure more drastically. For instance, we have
written a HitTrackingGuidance which can track (and export) how often certain branches
have been hit. This is not something which Zest normally performs, however it is
relevant for our approach (e.g., to identify rare branches) and for our evaluation. The
HitTrackingGuidance realizes that by processing the runCoverage object provided by
the ZestGuidance. In all case that we ran experiments for Zest, we actually ran the
HitTrackingGuidance. This is because the HitTrackingGuidance is a simple wrapper which
only collects additional metrics. It does not change the processing of the ZestGuidance
in any other way.
The InputTrackingGuidance is a Guidance we use to store up to five Zest inputs for

each valid branch we observe. It is an extension of the HitTrackingGuidance (and thus
inherits and keeps its hit tracking functionality). The input-storing is realized in a
"first-come first-serve" manner. This means that we store the first five inputs we observe
for each given branch. Further work might e.g., put more focus on a higher variability
in the set of inputs we store per branch. We store inputs as a preparatory step so that
we could later mine on them (see below). The inputs are stored as SpliceInputs. This is
an extension of the class which the ZestGuidance uses to represent parameter streams
(namely, the class LinearInput).

Finally, we have the FeatureGuidance. This is the Guidance which implements our
targeted pattern mining and splicing approach. It extends the InputTrackingGuid-
ance. Therefore, the FeatureGuidance inherits both the hit tracking capabilities of the
HitTrackingGuidance and the input storing of the InputTrackingGuidance. Once the
FeatureGuidance decides to perform a targeting, it selects a rare branch according to the
FairFuzz rarity cutoff41 [LS18] or our adapted heuristic. It then uses the functionalities
of the InputTrackingGuidance to obtain previous inputs for these branches to perform
pattern mining on their tree paths. The pattern mining is realized with a PatternMiner
instance. This class performs sequential pattern mining (see below) and reconstructs
the feature trees from the sequential patterns according to our heuristics. The recon-
structed tree patterns are represented with FeatureGraph objects. This is an immediate
representation which is later converted to input-specific model tees when it is being
spliced. That conversion has to be implemented by the corresponding generators42. A
41Our implementation of the FairFuzz rarity cutoff is in fact also slightly adapted. If the FairFuzz

rarity cutoff is only 2 branch hits, we arbitrarily set it up to 10. The reason is that a cutoff value
of 2 limits us to mine on at max two inputs per branch. This could lead to patterns which could
be less reduced than if we mined on more inputs. For this reason, we make this arbitary increase.

42In fact, it is realized by the inputs themselves. This is however almost equivalent in our case,

65

FeatureGraph consists of FeatureNodes. Each FeatureNode is an abstract representation
of a tree-model node. It has a type and a payload (both Strings). All our inputs
(i.e., JavaScriptDocument and XmlDocument instances) must be able to convert their
models to a FeatureGraph and back again. We enforce this with an interface they must
implement (i.e., FeatureInput)43. Since FeatureNodes only consist of Strings, we can
encode each path in a FeatureGraph as a sequence of strings. These sequences are then
used as input for sequential pattern mining.

The sequential pattern mining is realized with the SPMF [FVLG+16] implementation
of the CM-SPAM algorithm [FVGCT14, FV22]. SPMF is a Java framework for pattern
mining. Our implementation only includes the SPMF-classes necessary for CM-SPAM
to our project. The SPMF version we use is 2.53. The CM-SPAM algorithm has been
chosen as it mines for closed patterns and it allows us to set gap constraints. This
eliminates many sub-patterns from the results list and it allows us to only obtain path
patterns which form are strictly contiguous sequences of nodes. Our relative minsup
value has been set to 1.0. This means that we will only obtain (sub-)paths which
are shared by all inputs. The gap constraint has been set to 1 (which means no gap
in the CM-SPAM implementation of SPMF). This enforces strict contiguity for the
components of a pattern. Without that we could find node sequence patterns which
are not strictly contiguous. These would not be real (sub-)paths of a tree model44 and
are thus not interesting to us.
Once we have performed pattern mining and obtained the reconstructed pattern

trees, we can employ them for splicing. The splicing is implemented by each input class
individually. Meaning, we have a separate implementation for our JavaScriptDocument
and XmlDocument classes. One could possibly think about building an abstract tree
input class as a basis for these objects. This could combine the implementation of
tree-based splicing into one. However, we found it difficult to realize within the scope
of this project.
The splicing is realized by calling a splice(FeatureGraph ...) method on an input

(i.e., either on an XmlDocument or JavaScriptDocument). The call is performed by the
FeatureGuidance if it has obtained a new input from Zest and decides to splice a mined
pattern (i.e., a FeatureGraph) to it. If the splicing succeeds, the FeatureGuidance calls a
getParameterList() method on the input to obtain the parameter stream for the updated
model. The input then attempts to reconstruct the parameter stream necessary to
generate it in its current state (i.e., after the splicing). The FeatureGuidance could then
store this stream in Zest’s queue for further processing should the spliced input e.g.,
uncover new branches.

In addition to these Guidances and other classes, we have also implemented a
prototype which can be used to (ideally) reproduce crashes with pattern mining and
splicing. We will only briefly mention them as were were unfortunately not able to

because the generation routines are mostly embedded within the classes of the inputs.
43You can see how this interface relates to our inputs in Figure 31, page 106.
44I.e., they would not correspond to strictly contigous sequences of nodes in the underlying tree.

66

perform a thorough evaluation of this use case. You can find the classes for crash
splicing also in the class diagram for jqf-crash (Figure 28, page 103). Again, all our
Guidances extend the ZestGuidance as we also base this approach on Zest. The first
class is the CrashTrackingGuidance. We use this Guidance to collect several inputs per
(deduplicated) crash and to collect metrics on each crash (e.g., how often it occurred
and its number of unique path traces). Next, we have the CrashSplicingGuidance. This
Guidance can learn the patterns for a set of crashing inputs and then attempts to
re-generate the crashes via splicing while running a Zest campaign. It extends the
CrashTrackingGuidance so that it inherits its crash metric collection. Finally, we have the
NoExpCrashSplicingGuidance45. This is an adapted version of the CrashSplicingGuidance
developed specifically for evaluation purposes. This Guidance does not perform a Zest
campaign alongside splicing. Instead it splices to each (mutated) input of a given
input list. Our comparison baseline would have been the CrashMutatingGuidance. This
Guidance also obtains a set of crashing inputs, however it does not perform splicing but
simply mutates their parameter streams to ideally produce more crashes. The original
goal of our evaluation was to see whether splicing can be more effective at re-generating
crashes with more varied path traces compared to simple crash mutation. Unfortunately
we were not able to fully perform these experiments. Preliminary experiments indicate
that crash splicing could work, however it does seem (considerably) less efficient than
crash mutation. At least for our analyzed metrics.

The second major component of our implementation are the generators, namely the
XmlTrackingGenerator and JavaScriptTrackingGenerator. They create instances of type
XmlDocument and JavaScriptDocument respectively. These are classes which represent
XML and JavaScript documents as tree-based inputs. You can see (partially reduced)
class diagrams for our XML classes in Figure 29 and for JavaScript in Figure 30 (pages
104 and 105).

The main difference between ours and JQF’s generators is that our generators
store and produce an object which contain an explicit tree-based representation of the
generated inputs. JQF’s generators only partially build explicit tree-based models46.
Furthermore JQF’s generators always return a String as a result. However, to perform
tree-based splicing we actually need explicit tree-based models which furthermore
need to support splicing. Moreover, our spliced models need to be converted back
to parameter streams so that we can use them for Zest mutation. We enforce these
functionalities in with the FeatureInput interface which generated inputs must implement.
You can see how this interface relates to our XmlDocument and JavaScriptDocument
inputs in Figure 31 (page 106). The downsides of our custom generators are that they
are considerably more complex which likely negatively impacts the throughput (i.e., the
generated inputs per time). Furthermore, they perform a discretization of all random
operations. Therefore, e.g., our randomly generated doubles only have a precision of
up to 10−3.

45"NoExp" stands for "No (Zest) Exploration"
46Namely, JQF’s XmlDocumentGenerator does so, while the model is only implicit in the JavaScript-

CodeGenerator

67

Usage To run jqf-crash you need to have its packaged jar-file. You can obtain it
when building jqf-crash with the "mvn package" command within its project direc-
tory (once it is installed). Installation instructions for jqf-crash will be provided with
our repository47. Pre-built images of jqf-crash can also be found in our repository.
You will find them as jqf-crash-1.0-SNAPSHOT-cli.jar.

To run jqf-crash you need an SUT and a test driver. We recommend that you
set up an IDE project (e.g., with the IntelliJ IDEA) for the SUT and load it (and
jqf-crash) as a dependency. The test driver must be a Java class which is annotated
with @RunWith(CrashJQF.class). This will run the test with jqf-crash. You will also
need a test method within the test class. This method should take as a parameter
the inputs which our (or JQF’s) generators will create. The generators are specified
with the @From(NameOfTheGenerator.class) annotation before the parameter. Within
the test-method you should then initialize your SUT and run the created input on it.
This method will later be used by jqf-crash to run inputs on the SUT. You can find
examples of this entire setup in the "Software/test-subjects" folder of our repository
for each of our SUTs.
We advise you to create a .jar package which contains your test driver the depen-

dencies it needs (e.g., the generators you employ). You can the run jqf-crash as
follows:

java -jar ./jqf-crash-1.0-SNAPSHOT-cli.jar ./test_driver.jar TestClass testMethod

The first parameter is the jqf-crash build that we want to run. Next comes the
packaged jar of our test driver (test_driver.jar). Afterwards comes the name of
the test driver class (without ".java" at the end) and finally the name of the test method.

The above call will start jqf-crash with the CrashTrackingGuidance. You can
use options to change the selected Guidance. For instance, you can add the option
-f to run targeted crash splicing with our FeatureGuidance. To run Zest with our
HitTrackingGuidance employ the option -z. These are only some of the available
configurations. You can find an overview of the options if you run jqf-crash without
any parameters. Meaning, if you call:

java -jar ./jqf-crash-1.0-SNAPSHOT-cli.jar

Further examples can be found in our experiment scripts (which can be found in the
Data folder of our repository, once you extract the archive of an experiment).

Analysis Scripts To perform the plotting of data and statistical analyses we have
written several Python 3.7.9 scripts. These can be found in the "Software/scripts"
folder of our repository. The purpose of these scripts should be mostly evident from
47This implicitly includes the replication package.

68

their names. All parameters are specified within the scripts themselves. Thus, you
have to update the scripts and re-run them to e.g., plot data for different SUTs. The
plotting and statistical analyses are conducted with the Python libraries Matplotlib
(version 3.5.3) [Mat], NumPy (version 1.19.4) [Num] and SciPy (version 1.7.3) [Sci].
The employed versions can also be found in the "requirements.txt" file of the "scripts"
folder. We advise you to create a virtual environment with Python to run these scripts.

Patch files In addition to our jqf-crash sources, you will also need patch files
for JQF. This is because we require access to certain attributes of ZestGuidance
objects which are otherwise not available. Furthermore the patch files fix a crash
which apparently can occur when the ZestGuidance forces an export of data but the
last export is less than 1 millisecond ago. You will find two files in our repository.
The ZestGuidance.java file is our adapted ZestGuidance. The adapted janala.conf file
instructs JQF to exclude our packages from its instrumentation. You will need to
overwrite these files in your local JQF installation and re-build JQF to run jqf-crash.
Our pre-built jqf-crash-1.0-SNAPSHOT-cli.jar archives should work out of the box (i.e.,
without these additional preparations). The patch files are located in the repository at
"Software/patch-files".

5. Evaluation
In the following, we will discuss the evaluation of our approach. The discussion will
encompass the design of our experiments, the presentation and analysis of our results
and finally the discussion.

5.1. Evaluation Setup
Subjects For our test subjects we have oriented ourselves on the Zest [PLS+19c]
evaluation. Namely, we evaluate our approach on the following benchmarks:

• Apache Maven [Mav] (version 3.5.2)

• Apache Ant [Ant] (version 1.10.2)

• Google Closure [Clo] (version v20180204)

• Mozilla Rhino [Rhi] (version 1.7.8)
Maven and Ant are build systems which process XML inputs. Closure and Rhino

are a JavaScript compiler and an implementation of JavaScript in Java respectively
(however, our test driver for Rhino also performs a compilation of JavaScript). The
versions that we employ are the same as in the original Zest evaluation [PLS+19c].

These benchmarks are four out of the five SUTs which Zest was originally evaluated
on [PLS+19c]. We do not include BCEL [BCE] as its generator does not have a similar,
easily recognizable tree-based structure as JQF’s XML and JavaScript generator. Future
work might explore whether our approach could also be extended to this benchmark.

69

Generators To create our inputs we have employed our custom XML and JavaScript
generators, namely the XmlTrackingGenerator and JavaScriptTrackingGenerator. We
do this as we require inputs which have an explicit tree-based model and implement
functionalities for splicing. This would not the case with JQF’s generators. We use our
generators both for the experiments with our approach and with Zest. The reason we
also use it for Zest is that we observed different branch-ID mappings when employing
different generators. For this reasons we employ the same generators in both experi-
mental conditions.

The XML generators require dictionaries of keywords to populate the contents of
their models (e.g., for tag names). We have employed the dictionaries provided by JQF
for Ant and Maven respectively. They were used in all experimental conditions.

Data Collection To evaluate our approach we have performed several fuzzing cam-
paigns to compare our technique to Zest. We analyze the same data set to investigate
all of our research questions. Our data collection consisted of two campaign sets. One
preparatory set and one to compare our approaches.

The preparatory sets consist of 20 Zest fuzzing campaigns we have performed on
each SUT. Every campaign had a duration of 12 hours. The goal of these campaigns
was to establish which branches can be "typically" considered rare. It would be these
branches for which we would later compare the branch hit counts and unique path
traces between our approach and Zest. The number of repetitions and the duration has
been chosen to reflect our later evaluation setup which compares our approach to Zest.

We have identified the valid rare branches of each campaign at 1 hour, 6 hours and
12 hours. We sample the branches at different points in time as the rarity of a branch
could change over time. Since we could perform targeting over the entire course of a
campaign, we have to consider rarity at different time points. Our sampling points
have been chosen to reflect the start, middle and end of a campaign. The validity of
a branch has been established according to the ZestGuidance. To collect the branch
hit counts, we have performed the campaigns with our HitTrackingGuidance as it is a
wrapper of JQF’s ZestGuidance for precisely that purpose. The hit counts have been
tracked by analyzing Zest’s runCoverage. Rarity has been established according to the
implementation of the FairFuzz [LS18] heuristic in our approach. This has been realized
with a Python script (get_rare_branches.py) after the campaigns. The script unifies
the rare branches of a campaign into one set (i.e., it unifies the rare branches of different
time points). Afterwards it unifies the rare branches of all campaigns of one SUT
into one set. This gives us the rare branches for this SUT. One could think that it
would be better to calculate an intersection of the rare branches of different campaigns.
However, we have found that it can reduce the set of rare branches to 0 on all SUTs.
Apparently, rarity can vary considerably between different campaigns. Possibly, the
results would be different if we had more fine-granular sampling points. Nevertheless,
to account for this apparent variability, we calculate the union of the rare branches of

70

different campaigns. This lead to the following number of rare branches:

• Ant: 484 (26%)

• Closure: 3583 (21%)

• Maven: 274 (14%)

• Rhino: 241 (4%)

The percentages reflect the proportion of valid rare branches to all valid branches
that we have analyzed for these SUTs.

After these steps we have run our evaluation experiments. These also consisted of
20 Zest fuzzing campaigns per SUT. Each campaign had a duration of 12 hours. The
20 campaigns have been performed to account for the variability due to the random
nature of fuzzing. It is the same number of trials as in Zest’s [PLS+19c] evaluation
and the one of FairFuzz [LS18]. However, it falls short of Klees et al.’s [KRC+18] 30
repetitions. The duration is four times as long as Zest’s original 3 hour runs. However
it also falls short of Klees et al.’s [KRC+18] suggested 24 hour durations. We have
chosen smaller durations due to time constraints. Further research could investigate
longer durations.
The campaigns for our approach have been performed with the FeatureGuidance.

The campaigns for Zest have been performed with the HitTrackingGuidance to collect
additional performance metrics which the ZestGuidance does not provide (see below).

Analyzed Metrics To analyze RQ1, we collect the hit counts for each valid and invalid
branch. Validity is established according to the ZestGuidance. The counts are tracked
within the HitTrackingGuidance. Our FeatureGuidance extends the HitTrackingGuidance.
Therefore, our approach inherits the hit tracking from there. Branch hit counts are
counted once per input. Meaning, if a single input hit a branch several times it is still
only counted as one hit.

In addition to the hit counts, we also analyze the number of unique coverage traces.
This is done by tracking the coverage hashes of inputs which hit a rare branch of our
preparatory campaigns. The hashing is performed with a method provided by Zest’s
runCoverage object. The hash should consider both which branches have been hit and
how often (within a single trace).

To investigate RQ2 we analyze the data provided by the plot_data file produced by
the ZestGuidance48. This includes the number of total and valid branch hits. Additional
metrics are e.g., the number of discovered paths and generated in/valid inputs.

48It is also produced for our campaigns as each Guidance we run extends the ZestGuidance.

71

For the analysis of RQ3 we track and export data for each branch targeting within
the FeatureGuidance. All metrics are tracked individually for each branch targeting and
only refer to one particular targeting49. They include the

• Splicing attempts: The number of times it was attempted to splice while
targeting a given branch

• Splicing successes: The number of times that we succeeded at splicing a
substructure to an input

• Splicing (valid) target hits: The number of spliced inputs which hit the branch
(separately tracked for valid and any coverage)

• Splicing valid inputs: The number of spliced inputs which produced valid
coverage

• (Valid) Target hits at start: The number of target branch hits before the first
splicing (separately tracked for valid and any coverage)

• (Valid) Target hits at end: The number of target branch hits after the last
splicing (separately tracked for valid and any coverage)

This base data is later analyzed in different combinations to investigate how often
splicing apparently succeeded at re-generating our target features and how effective
the patterns seem to be at hitting our target. The FeatureGuidance exports this data
in a file per fuzzing campaign (splicing_events.csv).

Statistical Analysis To analyze whether our observed differences in RQ1 and RQ2
are statistically significant we perform Mann-Whitney U tests with α = 0.05. This
particular test and alpha level can often be found in fuzzing research [HGM+21,
NNTH+21, MKC20]. Its advantage is that it does not make an assumption on the
distribution of the (fuzzing) algorithm performance [KRC+18].

Hardware All experiments were conducted on compute servers of the Humboldt
University of Berlin with an Intel(R) Xeon(R) CPU E7-4880 v2, 2.50GHz CPU, 1 TB
of main memory, running on openSUSE Leap 15.3.

5.2. Experimental Results
In the following section we will present the results and analysis of our experiments for
each research question. For brevity we will often refer to our approach of rare branch
targeting with pattern mining and splicing simply as "splicing" (or "splice"). It should
be clear from the context whether "splicing" refers the the act of "tree attachement" or
to our approach in more general.
49A "targeting" means the phase during which we target a single branch with splicing.

72

RQ1: Can our approach hit rarely visited areas more often and with more varied
path traces compared to Zest? To analyze RQ1 let us first look at a the comparison
between the mean number of branch hits from our targeted splicing approach compared
to Zest. This data is presented in Table 5. It shows the mean total branch hits for
each approach and SUT. Furthermore, it shows the quotient of the means between
the splicing approach and Zest for each SUT. This allows one to see quickly whether
splicing produced a higher mean ("Splice / Zest" > 1) or lower mean ("Splice / Zest" <
1). Significant differences are highlighted in bold. Values are rounded to 5 decimals
after the comma. A shown p-value of 0.0 means that it is smaller than 10−5. This
holds for all p-values we report in our tables.

SUT Splice Zest Splice / Zest p
ant 2546529.5 2242306.8 1.13567 0.0531

closure 15465995.5 24107462.7 0.64154 2e-05
maven 66358298.35 48804136.0 1.35969 1e-05
rhino 1091169.35 611630.15 1.78403 0.00234

Table 5: Mean Total Branch Hits

One can see that splicing produced on average higher hit counts for rare branches on
all SUTs except for Closure. The differences are significant for all SUTs, except for Ant
where it closely misses significance. These results indicate that splicing can be effective
at increasing the hit counts of rarely visited branches. The increases reach on average
from 13% (Ant, not significant) to up to 78% (Rhino, significant). Nevertheless, one
can also see that our approach is significantly worse on Closure. The reasons for that
could be manifold. First, Closure had much more rare branches than any other SUT50.
Thus it could be that increases for some rare branches could impact the mean less
drastically than with a smaller set. Furthermore, the high number of rare branches
could indicate that the conditions to trigger those rare branches could be much more
intricate than on other SUTs. Our simple pattern mining approach could thus of-
ten fail to correctly detect those patterns and thus not lead to an increase in branch hits.

One of our ideas was to particularly support Zest’s fuzzing of valid processing stages.
Let us thus now analyze the mean hit counts for valid inputs. This data is presented
in Table 6.

You can see a similar pattern to Table 5. The differences in the mean are better for
splicing on all SUTs except for Closure. However, this time they are significant in all
cases. Furthermore, the relative increases are much higher, with at least 38% on Ant
and more than 100% on Maven and Rhino. These results indicate that we can target
valid rare branches quite effectively on average. The only exception is again Closure.
We assume that the reasons are similar to what we have discussed when analyzing all
hits (i.e., not only valid ones).

50Closure had 3583 rare branches we analyzed. The next highest number was on Maven with 274.

73

SUT Splice Zest Splice / Zest p
ant 1079963.65 779026.4 1.3863 0.00163

closure 12411865.7 20501664.95 0.60541 2e-05
maven 17802706.0 7774842.35 2.28978 0.0
rhino 739115.05 281247.4 2.62799 0.00012

Table 6: Mean Total Valid Branch Hits51

Finally, let us analyze whether our approach can also produce more unique traces
compared to Zest. This data is presented in Table 7.

SUT Splice Zest Splice / Zest p
ant 57514.35 56763.85 1.01322 0.47348

closure 358226.55 457653.8 0.78275 0.0
maven 1380289.3 1136089.3 1.21495 6e-05
rhino 322861.1 255072.55 1.26576 0.00771

Table 7: Mean Unique Traces

It is evident that splicing was able to significantly increase the number of unique
traces on Maven and Rhino for around 20%. There is also a slight increase on Ant which
is however not significant. For Closure splicing performed worse. Again, the reasons for
that could be the higher number of rare branches and the possible higher complexity of
necessary patterns. It is interesting that the increases on Ant are considerably smaller
compared to Maven and Rhino and that they are not significant. Possibly it is because
Ant can have a slower throughput compared to Maven. This means that we can run
less inputs per time. We will therefore splice less often on Ant which might decrease
the number of unique traces one can discover in a targeting period. This reasoning
is supported by the fact that Ant has the lowest absolute number of rare branch hits
of all SUTs (see column "Zest" of Table 5). You can see that we have on average 2
million hits of rare branch on Ant compared to 48 million hits on Maven. This either
supports a lower average throughput or suggests that the necessary features for rare
branches are more complex on Ant. You can see a similar pattern for the splicing hits
(see column "Splice" of Table 5). This time we have on average 2 million hits of rare
branch on Ant compared to 66 million hits on Maven. Since we have a higher number
of splicing hits on Maven, it is arguably also more likely that splicing will uncover more
unique traces. Of course, it could also be that there are less unique traces to find on
Ant. But this hypothesis can neither be verified nor rejected based on the data we
have. Taken together, the data suggests that splicing can be effective at uncovering
new path traces for rare branches, however the relative increases are smaller compared
to the hit counts and are only significantly better for half of the SUTs.

RQ2: Can our approach increase the overall coverage compared to Zest? To
analyze RQ2 let us first have a look at the mean covered branches over time. Zest

74

refers to the covered branches as "probes". We plot this (and the standard error of the
mean)52 in Figure 23. The metrics are averaged per minute. The black horizontal line
in each plot shows the average start time of the first targeting.
The first thing one can notice is that our approach and Zest are quite similar in

terms of branch coverage. This indicates that our approach does not incur so much
overhead that it drastically reduces the coverage. Nevertheless, on most SUTs our
approach either ends with a slightly worse or nearly identical coverage. Only on Ant
does our approach visibly (but still slightly) outperform Zest.

Furthermore, it appears that the beginning of the targeting period does mostly not
positively influence the coverage. On the contrary, you can see relatively well on Maven
and Rhino that the beginning of targeting coincides with a slight downward trend
compared to Zest.
Table 8 shows the results of the statistical tests on the final branch coverage per

SUT. The "Zest" and "Splice" columns show the average final values.

SUT Splice Zest Splice / Zest p
ant 1959.55 1951.3 1.00423 0.14752

closure 17069.6 17149.95 0.99531 0.2853
maven 2199.0 2198.75 1.00011 0.08056
rhino 6219.0 6232.3 0.99787 0.87105

Table 8: Mean Covered Branches

You can see similar results to the plots. The final branch coverage is nearly identical
on all SUTs. Splicing only slightly outperforms Zest on Ant and Maven (the XML
SUTs). It is slightly worse on Closure and Rhino (the JavaScript SUTs). The differences
are not significant in any case. Taken together the results thus suggest that splicing
performs similar in terms of branch coverage. The results are somewhat better on
the XML bechmarks. The reason could be that the structure of XML files is simpler
compared to JavaScript (only 4 node types compared to more than 30). Therefore
it could be simpler for our approach to learn effective patterns on XML which could
then have positive influences on the coverage. Nevertheless, we see that the positive
differences are quite small and also not significant in any case. Moreover, we can
also see that our targeting start can introduce a slight downward turn in the branch
coverage. This turn is somewhat catched up on Maven, but neither Closure nor Rhino
can recover from that. This again indicates that our splicing approach might work
better for XML than for JavaScript.

Let us now analyze the mean valid branch coverage. The corresponding plots are
given in Figure 24. You can see a similar result situation as before. Splicing performs
worse on all SUTs except for Ant. This mirrors the results for the total coverage
only that Maven is now also visibly worse. Furthermore, you can again see that the
52The standard error might be difficult to see. We plot it as a colored, slightly transparent area

surrounding the lines. It is visible if you look at the Rhino plot in Figure 26 on page 81.

75

(a) Ant (b) Closure

(c) Maven (d) Rhino

Figure 23: Mean Covered Branches

76

(a) Ant (b) Closure

(c) Maven (d) Rhino

Figure 24: Mean valid covered branches

beginning of the splicing often marks a downward turn in the coverage compared to
Zest. Finally, the difference between splicing and Zest seems more drastic compared
to what we have seen for the total coverage. This is interesting because we had the
reverse situation regarding the rare branches (RQ1). Namely, the branch hits were
drastically better for the valid rare branches compared to all rare branches.
Table 9 shows the result of the statistical analysis for the valid covered branches

at the end of a fuzzing campaign. You can again see that splicing performed worse
on all SUTs, except for Ant. The differences are only significant for Maven. This is
interesting as splicing often performed quite well on Maven regarding the rare branch
hits (RQ1).

Taken together, one can not say that our splicing approach can increase the total
coverage. Neither the overall nor the valid coverage is positively affected in most SUTs.
On the contrary, it is often worse. Furthermore, the beginning of the splicing often
marks a certain downward turn in the branch discovery rate.

77

SUT Splice Zest Splice / Zest p
ant 1791.25 1780.0 1.00632 0.25573

closure 16235.95 16347.85 0.99316 0.08339
maven 1823.85 1843.6 0.98929 0.01605
rhino 5732.0 5745.2 0.9977 0.55172

Table 9: Mean valid covered branches

Nevertheless, we want to analyze a final branch coverage metric, namely the discovered
paths. The number of discovered paths refers to the number of inputs that Zest stores
in its queue at a given time. Zest stores an input in its queue if its coverage trace
contains new branches or it managed to increase the hit counts for some branches.
Thus the number of stored inputs can be an indicator for the number of discovered
"paths" through an SUT.

The plots of the mean paths total are presented in Figure 25. This time you can see
a more positive picture for splicing. On most SUTs splicing outperforms Zest in terms
of discovered paths. Moreover, the average start time of the targeting phase often
marks the point where splicing tends to overtake Zest. Only on Closure is splicing
noticeably worse compared to Zest.
A similar picture is presented if we look at the results of the statistical analysis

in Table 10. The mean paths total at the end of a fuzzing campaign are higher for
splicing on all SUTs except for Closure. The differences are significant for all SUTs.
However, the relative improvements are this time noticeably smaller compared to the
ones we have seen for the rare branch hit counts. This time they lie between 3% and
10% (compared to improvements of up to 100% for the valid rare branch hit counts,
see Table 6 at page 74).

SUT Splice Zest Splice / Zest p
ant 428.6 389.45 1.10053 0.0

closure 4569.7 4771.25 0.95776 0.00129
maven 974.3 939.6 1.03693 6e-05
rhino 1841.5 1772.35 1.03902 0.00604

Table 10: Mean paths total

These results are interesting. On the one hand they mirror the observations of
RQ1. Namely, improvements on all SUTs except for Closure. On the other hand they
indicate positive coverage effects in the number of paths. This is in contrast to our
observations for the discovered branches. Taken together it seems that splicing can
not be effective at discovering more branches, however it might help to explore the
branches more thoroughly. Meaning, we can produce more diverse paths for our targets.
This could explain the positive observations regarding rare branch hits and paths total
but the lacking improvements in the overall coverage. It is also supported by the fact

78

(a) Ant (b) Closure

(c) Maven (d) Rhino

Figure 25: Mean paths total

79

that the unique path traces for the rare branches have been mostly higher on splicing
than on Zest (see Table 7, page 74). However one might wonder why the differences
for unique rare branch path traces have been significantly better only on Maven and
Rhino, whereas total paths are also significantly better for Ant. The reason could be
our adapted rarity heuristic. You may recall that we switch to a different rarity cutoff
heuristic if we fail to find new targets with FairFuzz’s formula. This heuristic is not
considered in our analysis of RQ1. Therefore, branches in RQ1 are only categorized as
rare according to FairFuzz’s cutoff value. It is thus likely that our approach at some
point begins to target branches which are not rare according to FairFuzz. This could
positively impact the number of discovered paths for these branches, however it would
not be reflected in our results for RQ1.

Finally, we want to discuss our performance degradation heuristic. One can see that
the mean start of targeting phase coincides reasonable well with the beginning of the
performance plateauing on Zest (i.e., with the inflection point where the curves start
to flatten). Thus, one could say that our performance degradation heuristic generally
worked as intended. However, one should be careful to generalize this heuristic on other
SUTs and circumstances because we have built this heuristic based on observations we
have made for these SUTs in particular and with Zest.

Number of deduplicated crashes and generated inputs In the following we want
to discuss some additional performance metrics which have not been formulated as
research questions. These can shed additional light on the impact of our approach.

The first metric we analyze is the number of unique crashes found by splicing
compared to Zest. The deduplication was conducted according to our more restrictive
stack trace hashing. We will not discuss the results according to Zest’s deduplication
because we consider ours to be a better indicator for the actual number of unique
bugs found. Therefore "deduplicated crashes" will in the following only refer to ones
deduplicated according to our heuristic.

We have compared the mean number of deduplicated crashes at the end of a fuzzing
campaign between splicing and Zest. The results of the statistical test are presented in
Table 11.

SUT Splice Zest Splice / Zest p
ant 1.0 1.0 1.0 1.0

closure 1.95 1.8 1.08333 0.49856
maven 0.0 0.0 nan 1.0
rhino 5.55 5.5 1.00909 0.72292

Table 11: Mean deduplicated crashes

You can see that both approaches perform nearly identical. Splicing tends to find on
average more crashes on Closure and Rhino. However, the gains are very small (on

80

(a) Ant (b) Closure

(c) Maven (d) Rhino

Figure 26: Mean Valid Inputs

average less than one bug) and not significant in any case. Thus, one can not say that
our approach is in general beneficial for the bug discovery. At least concerning the
number of discovered bugs according to our stack trace deduplication and concerning
the investigated SUTs.

The next metric we will analyze is the number of generated valid and invalid inputs.
This can give us an idea whether our approach can generate more valid inputs compared
to Zest and whether we can see any impacts on the throughput (i.e., the overall number
of executed inputs during a fuzzing campaign).

The plot of the mean number of generated inputs is presented in Figure 26. You can
see that splicing tends to more valid inputs on Ant and Maven (the XML benchmarks).
However, splicing tends to be worse on Closure and Rhino (the JavaScript benchmarks).
This reflects our previous observation that our approach might work better for XML
than for JavaScript (see RQ2). The table for the corresponding statistical analysis is
presented in Table 12.

81

SUT Splice Zest Splice / Zest p
ant 81469.3 77749.0 1.04785 0.10173

closure 386943.25 489867.35 0.78989 0.0
maven 4545513.65 4435413.1 1.02482 0.63594
rhino 1069704.65 1132802.65 0.9443 0.42488

Table 12: Mean valid inputs

You can see a similar situation to the plots. Our splicing approach produces on
average slightly more valid inputs on Ant and Maven. These results are however not
significant. Splicing performs worse on Closure and Maven. The difference on Closure
is also statistically significant. Thus, one can state that our approach has a certain
advantage for XML, however it tends to be worse on JavaScript.

Let us now discuss the invalid inputs. The average number of generated invalid
inputs is plotted in Figure 27. Splicing produces less invalid inputs on all benchmarks.
Again, the difference is particularly visible for Closure. These impressions are confirmed
by the statistical analysis presented in Table 13. You can see that splicing produces on
average less invalid inputs on all benchmarks. Again, the differences are only significant
for Closure.

SUT Splice Zest Splice / Zest p
ant 303871.2 311075.95 0.97684 0.56085

closure 316232.55 407030.15 0.77693 0.0
maven 26156885.45 27049608.15 0.967 0.18954
rhino 865879.4 892781.7 0.96987 0.71498

Table 13: Mean invalid inputs

Since splicing produces slightly more valid inputs but slightly less invalid inputs for
XML one can conclude that the overall throughput appears to be similar on the XML
benchmarks. However, for JavaScript our approach produces less valid and invalid
inputs on both benchmarks. This indicates an overall lower throughput. The reason
might be that JavaScript has a more complex tree structure which makes splicing more
complex. On the one hand, it could take more time to find a suitable node to splice to
in an input. On the other hand JavaScript patterns might also require completion. This
introduces additional overhead which is not present for XML. We are not quite sure
why the throughput of our approach is noticeably worse for Closure than for Rhino. A
cursory review of our splicing logs indicates that we have on average performed less
targetings on Rhino compared to Ant. Therefore, the overhead imposed on Closure
would also be more higher.

82

(a) Ant (b) Closure

(c) Maven (d) Rhino

Figure 27: Mean invalid inputs

83

RQ3: How effective is our approach with regards to feature learning and re-
generation? In the following we want to better understand how well our splicing
approach can learn patterns which increase the hit counts of targets and how often
splicing can produce inputs with our desired features.

Let us begin by investigating the feature re-generation. For this let us first analyze the
success rate. This gives us the number of times that we could splice to an input divided
by all attempts we made at splicing53, i.e., splicing_successesi

splicing_attemptsi

for each targeting i.
That metric is a rough estimate for the ratio of produced inputs which should have
our target features. The mean success rate, the standard deviation and standard error
of the mean54 are given in Table 14.

SUT Mean Std-Dev Std-Err
ant 0.9857 0.05097 0.00264

closure 0.75487 0.33825 0.01111
maven 0.99811 0.02485 0.00089
rhino 0.81456 0.32377 0.01617

Table 14: Success rate

You can see that splicing succeeds relatively often with a rate of at least 75% on each
SUT. Once more, the rates are best for the XML benchmarks. This again supports
our previous observation that our approach seems to work particularly well for XML.
This is also indicated by the higher standard deviation of at least 30% on Closure and
Rhino. This suggests that it can be partially more difficult to splice certain patterns for
JavaScript. That could then lead to a higher variation in the success rate because for
some patterns the success rate can be quite high while for others it might be lower. It is
interesting that the performance is again worst for Closure. This could indicate that the
patterns learned for Closure could be more complex than on Rhino. The effect would
be that it could be more difficult on Closure to find suitable splicing targets in an input.
However, this is only a theory. One would need to analyze the mined patterns more thor-
oughly to confirm it. A cursory review of our splicing logs indicates that patterns can be
quite complex on Closure, however we can also see relatively complex patterns on Rhino.

To further investigate the effectiveness of feature re-generation, let us next have a
look at the valid input rate of splicing successes. This metric represents the number
of times splicing produced a valid input divided by the number of times that splicing
succeeded, i.e., splicing_valid_inputsi

splicing_successesi

for each targeting i. One can say that it gives
us an estimate of the probability that a splicing success produces a valid input. This
53We have calculated this fraction for each targeting individually. The reported mean reflects the

mean of these fractions.
54We report the standard error in most of the following tables to get an idea of how "reliable" our

mean is. However, we will often not further analyze it as it is typically rather low.

84

metric is interesting for us because our goal was to particularly focus on valid processing
stages of an SUT. The analysis table for this metric is given in Table 15.

SUT Mean Std-Dev Std-Err
ant 0.28022 0.09883 0.00512

closure 0.43617 0.25536 0.00881
maven 0.23533 0.03727 0.00133
rhino 0.52389 0.25445 0.01325

Table 15: Valid input rate of splicing successes

You can see that the rate is relatively low with barely more than 50% on Rhino
and only 23% on Maven. This indicates that our splicing implementation is not
particularly effective at generating valid inputs. It is interesting that the JavaScript
performance is this time better than for XML. The reason could be because XML
also has content constraints for validity while validity constraints should be mostly
structural on JavaScript. For instance, it could be for Maven that tags with the name
"A" are not allowed to have tags with the name "B". This would be an invalid input
on Maven even though it would be syntactically valid XML. JavaScript nodes do not
typically have "content" in addition to their type and their child nodes. For example,
a node for a "while" loop or a "statement" do not have additional metadata content.
They only have their child nodes which further specify the subtree55. Thus the validity
constraints should be mostly structural on JavaScript which should also be more easily
achievable by splicing.
In summary, the relatively low validity rate indicates that even if our splicing suc-

ceeded, that it is far from guaranteed that we will also produce a valid input. This is
a downside as our original goal was to especially target valid processing stages of an SUT.

Taken together, the results suggest that splicing succeeds relatively often on average
with a rate of at least 75% on each SUT. This indicates that our operation for feature
re-generation succeeds most of the time. However it does not tell us whether the
splicing produces inputs which really contain our desired features. For instance, it
could be that our splicing implementation could be somehow faulty so that we do not
modify the model in such a way that our wanted features are in fact introduced to our
target input. To analyze this, we would need to have some way to check whether the
spliced inputs really exhibit the features that we want. Probably, it would be best to
analyze this in a separate experiment as it could introduce additional overhead. One
option could be to check whether our spliced inputs contain our desired "feature paths"
(excluding ones which were present before).

Our current results at least indicate on average a high success rate of splicing. Fur-
thermore, our results of RQ1 indicate positive impacts on the hit counts of rare SUT
55This not to say that there is no JavaScript node with metadata comparable to XML. For instance,

nodes for "identifiers" do have a freely selectable name (e.g., think of variables). However, many
JavaScript nodes do not have that, whereas it is the case for every XML node.

85

areas. Thus, there is some reason to believe that we can generate inputs with relevant
features. However, the data does not allow to make a conclusive statement on that. The
relatively low validity rate shows that splicing can not be very effective at generating
valid inputs. But again the results of RQ1 indicate particular benefits for the valid
hit counts. Thus, it could be overall not too problematic that we such a relatively low
validity rate.

In summary you can thus state that splicing succeeds relatively often with an average
rate of at least 75%. However, it does not allow us to conclude that a similar rate of
inputs also really exhibit the features afterwards. This requires further investigation.
The results of RQ1 suggest that splicing can produce inputs which increase the hit
counts of rarely visited regions. However, this does not allow one to make conclusions
on how effective splicing is at feature re-generation.

Let us next investigate how effective our patterns are. This means to analyze how
"well" splicing is able to produce inputs which hit our targeted branches. This question
is related to the first part of RQ3, however it is also distinct. Because a target hit
does not necessarily entail that the targeted features have been introduced by splicing.
Nevertheless, if spliced inputs are noticeably successful at increasing the target hits
then there is increased reason to believe that the feature re-generation also might work.

To investigate the effectiveness of our learned features, let us first analyze how many
of the targetings56 had at least one spliced input which managed to hit the target
branch. Thus, we divide the number of targetings which fulfill this criterion by the
number of all targetings. That gives us the proportion of targetings (per SUT) where
spliced inputs fulfilled their goal at least once. This data is given in Table 16. Please
note that we do not report the mean or its related metrics as we only analyze a ratio
in this case.

SUT Ratio
ant 0.81984

closure 0.49246
maven 0.95903
rhino 0.55335

Table 16: Ratio of targetings where splicing resulted in at least one target hit

You can see that our approach appears fairly successful for XML where at least
80% of the targetings hit the target branch at least once when splicing. This rate is
much lower with only 50% for the JavaScript benchmarks. This gives a rough idea
of the proportion of patterns which can be deemed "successful". However, one has to
be careful when interpreting this data because a targeting is already considered to
56Again, a "targeting" refers to the entire phase of selecting a particular rare branch, learning the

pattern for it and then splicing it with the goal to increase its hit counts.

86

be "successful" if at least one spliced input hit the target. This neither tells us the
proportion of splicing attempts which hit the target nor whether the target hit can be
really traced back to the splicing. It could easily be that the target hit is due to other
reasons. For instance, because of a randomized pattern completion or because of the
original input features. Nevertheless, if we accept these limitations for a moment, then
one can at least say that the patterns seem more effective for XML than for JavaScript.
A success rate of at least 80% seems fairly encouraging. However the success rate of
only 50% for JavaScript indicates that our approach has problems to learn effective
patterns there. On the flipside a potential success on every second pattern could also
be not too bad, because it could still help increase the coverage if we are stuck at a
plateau. However, our results of RQ2 do not suggest overall coverage improvements by
our approach. Furthermore one has to bear in mind the limitations of our analyzed
metric for this particular aspect.

To better understand the effectiveness of splicing, let us analyze the ratio between
splicing target hits and splicing attempts and per targeting, i.e., splicing_target_hitsi

splicing_attemptsi
for each targeting i. Again, we calculate the average of all these fractions per SUT.
This gives us an estimate probability that a learned pattern will also result in a target
hit after splicing. The data is presented in Table 17.

SUT Mean Std-Dev Std-Err
ant 0.1802 0.16606 0.0086

closure 0.08314 0.20842 0.00685
maven 0.22514 0.06245 0.00224
rhino 0.16596 0.29294 0.01463

Table 17: Splicing hits to attempts ratio

You can see that the probability that a splicing attempt will result in a target hit
is rather low. The results are again best for XML and in particular for Maven with
a 22% target hit rate. However, taken together one can not conclude that splicing
has a high chance to result in a target hit. It is also interesting that the JavaScript
benchmarks have a relatively high standard deviation of at least 20%. This indicates a
noticeable variability in the hit rate of patterns and thus possibly in their "quality"57.
The relatively low standard deviation on Maven (6%) suggests that most patterns have
a relatively equal chance at triggering the target. However this probability seems still
rather low.

Even though the probability of target hits when splicing appears small, it still could
be that the splicing makes a positive impact on the hits of a targeted branch. For this
let us analyze the average quotient between the target hits at the end of a targeting and

57I.e., some patterns could be particularly ineffective while others are better.

87

the target hits at the start of a targeting, i.e., target_hits_endi

target_hits_starti
for each targeting i.

This data is presented in Table 18.

SUT Mean Std-Dev Std-Err
ant 24.09423 74.99507 3.8831

closure 143.13347 721.89357 23.74855
maven 11.68576 59.82011 2.1419
rhino 289.0845 1648.96666 82.44833

Table 18: Average quotient of target hits at the end of a targeting and the target Hits
at the start of a targeting

You can see that the results are quite positive on average. Particularly, on the
JavaScript benchmarks we can end up with target hits which are more than 280 and
140 times higher than the value before the targeting. At the same time, we have a
relatively high standard deviation on all benchmarks (compared to the mean) which
indicates that the hit increases can vary drastically from pattern to pattern. The high
standard errors for Closure and Rhino also somewhat dampen the increase one might
expect on average. However, even if we subtract the standard error from the means, we
end up with relative increases of more than 100 and 200 times on Closure and Rhino
respectively.

It is interesting that the average relative increases are far lower on the XML bench-
marks compared to JavaScript. Our intuition is that there could be fewer branches
with particularly difficult feature requirements. Thus, the target hits at the start of a
targeting could already be relatively high which would then lead to a lower relative
increase. However, this is only a hypothesis which we have not investigated further. It
should also be noted that we do not focus on hits which happened after splicing but
consider all registered target hits during a targeting. Thus we can not state that these
increases are necessarily due to splicing.

For completion, we also present the average absolute increases. These are calculated
by subtracting the target hits at the start of a targeting from those at the end (i.e.,
splicing_target_hits_endi − splicing_target_hits_starti for each targeting i) and
then by averaging these per SUT. This data is presented in Table 19.

You can see that the increases can seem quite quite sizable with around 23000 hits
average hits on Maven. At the same time we have seen that the relative increase on
Maven is only 11 times of the start value (see Table 18). Thus, the large number can
be misleading when qualifying the observed increases. Because even though we have
much smaller absolute increases on Rhino and Closure, the relative improvements are
far better than for Maven. Thus one could say that these SUTs tend to benefit more
from the targeting than Maven (and Ant). However, we have at seen for Closure that
the improvements do not seem to be often (or strong) enough that one can observe

88

SUT Mean Std-Dev Std-Err
ant 345.27415 393.59649 20.13815

closure 438.75754 1613.60018 52.99758
maven 23681.5557 14802.31657 530.00795
rhino 4405.52605 9176.19427 457.66697

Table 19: Average difference between the target hits at the end and the target Hits at
the start of a targeting

significant differences in the number of rare branch hit counts. Again, one reason could
be that we do not consider our adapted targeting heuristic in RQ1 which is however
also considered here.

Let us finally analyze how many of the target hits during a targeting occurred with
spliced inputs. For this we divide the splicing target hits by the overall target hits per
targeting, i.e., splicing_target_hitsi

target_hits_i . This gives us an estimate of how many of the
target hits occurred when (and thus could be due to) splicing. The averages of these
fractions per SUT are presented in Table 20.

SUT Mean Std-Dev Std-Err
ant 0.83722 0.30945 0.01698

closure 0.74481 0.38195 0.01659
maven 0.97699 0.11392 0.00414
rhino 0.8354 0.30603 0.01984

Table 20: Average quotient of splicing target hits to target hits per targeting

You can see that on average most of the target hits (per targeting) occurred with
spliced inputs. This data suggests that it could be indeed our splicing technique which
is responsible for most of the target hits. At the same time one has to be careful when
interpreting this data. The reason is because our splicing probability is dependent
on the ratio of shared branches between the inputs we mined on and the inputs we
splice to. Thus we have a higher probability to splice to inputs which execute similar
functionality to the inputs we mined on. However, such inputs with similar branches
also (arguably) have a higher likelihood of triggering our rare branch due to random
mutations. Thus we not be sure that it is really our splicing technique which is the
main contributor because we have a bias to splice to inputs which might be at any rate
more likely to trigger our target branch.

Nevertheless, if we ignore this limitation for a moment then the data seems relatively
positive. However, the quite high standard deviations indicate a high variability. This
means that it can apparently vary quite significantly from pattern to pattern how many
of the target hits co-occur with splicing and which not. It is again noteworthy that the
results are better for our XML subjects compared to JavaScript.

89

Threats to validity One threat to internal validity comes from odd observations on
JQF’s coverage instrumentation. We checked at the start of the project that the ID of
a branch is identical, regardless whether we run a campaign with the ZestGuidance or
one of our custom ones. This was performed by running a fuzzing campaign with the
ZestGuidance and obtaining the input queue afterwards. We could then run this queue
as seeds to our custom Guidances and see whether the branch IDs are identical for each
input. This seemed to be the case. However, it seems that we have only checked it
on Maven as an SUT. Because we have later found that this relationship must not
necessarily hold. Even if we run the same inputs on the same Guidance. The issue
seems to lie within JQF’s new FastNonCollidingCoverage implementation, which is a
relatively recent addition. If we use JQF’s original Janala coverage implementation,
then the branch IDs appear to stay identical, even between different Guidances (but
provided that you use the same generators). Still it seems that the branch hit counts
can vary, even with Janala. Possibly, we have not fully understood how we could
correctly query the hit counts, but to the best of our knowledge, it seems fine. Luckily
we are not interested in the branch hit counts, but only in the branch IDs. The reason
is that we only count one hit per input and branch even if that input visited a branch
multiple times. Due to these reasons we ran our experiments with the Janala coverage.
Nevertheless, these are odd observations which should be definitely kept in mind when
interpreting the results of our experiments.

Another threat to interval validity comes from the way we evaluate RQ1. To compare
the number of hit counts between Zest and our approach we first ran several preparatory
campaigns. These were meant to establish a "ground truth" which branches are typically
rare per SUT. We could then track and analyze data particularly for these branches
to compare our approach to Zest. To obtain the rare branches we performed multiple
Zest campaigns per SUT to account for the randomness of fuzzing. Furthermore, we
sampled random branches at different times to consider changing rarity. We then
calculated the union to obtain the "typically" rare branches of an SUT. While it makes
sense to calculate the union for the rare branches of a campaign, we find it a bit odd
that we had to resort to the union to obtain the rare branches between the campaigns
of one SUT. Intuitively the intersection should produce a more reliable set concerning
which branches can "typically" be considered rare. However, when we intersected the
rare branches over different campaigns, we ended up with 0 rare branches for each SUT.
This was rather unexpected. It could be that rarity is quite variable over the course
of a campaign, however we have sampled the hit counts for each campaign at exactly
the same points in time. Possibly, our sampling granularity is too low with only 3
measurements per campaign (at 1, 6 and 12 hours). Nevertheless, these observations
and the fact that we calculate the union over different campaigns can shed some doubt
on the veracity of our "ground truth" set of rare branches.

Finally, we also wan to mention that the number of effective targetings can be quite
lower than one might expect. Our implementation checks whether it should target a
new branch each 10 minutes (once it switches to targeting mode). However, we have
often found that only around 20 targetings have been performed in a campaign with a
12 hour duration. We have not performed a deeper analysis of this, however this could

90

be one of the reasons why there is only a relatively small overhead noticeable regarding
the coverage metrics. Because the targeting of new branches does not necessarily
occur very often. Nevertheless, even though the number of targetings can be small it
seems that they can still have positive impacts on the hit counts of rare branches (RQ1).

In terms of external validity one can critique our limited set of SUTs and input formats.
We have chosen the same benchmarks as in Zest’s [PLS+19c] original evaluation (or at
least 4 out of 5). This should provide a fair comparison between our approach and
Zest. Nevertheless, an analysis of only four SUTs is quite limited in scope and could be
extended in future work. Also, the selection of XML and JavaScript as input formats
is rather small. It would be interesting to see how our approach performs on other tree
based input formats.

5.3. Discussion
The results that we have presented paint a complex picture. One the one hand it seems
that our approach can indeed be successful at increasing the number of target hits
and unique traces (RQ1). At the same time these results can vary from SUT to SUT
and from metric to metric. The best results have been observed for the number of
valid rare branch hits. Here, we have seen significant increases for all subjects except
for Closure. At the same time these improvements did not also lead to significant
improvements of the valid (or overall) coverage (RQ2). On the contrary, we have seen
a significant decrease in the valid coverage for Maven. This is particularly interesting
as Maven otherwise is that benchmark where splicing seemed to work best (in relation
to the number of splicing attempts per targeting). The data seems to suggest that our
pattern mining and splicing approach can be successful at increasing the branch hits
(and partially path traces) for targeted branches (RQ1). This is also indicated by the
higher number of total paths we have observed for most SUTs when analyzing RQ2.
However this improved exploration did not also lead to coverage increases. This was
was one of our main hopes but it was not confirmed. Ou approach did also not lead to
the discovery of more deduplicated bugs. Nevertheless, it could be interesting to see
how the approach performs on other SUTs. Furthermore, one could possibly analyze
additional metrics like the mean time to discovery of bugs. This could give further
insight into the performance of our approach.

It is interesting that our pattern mining and splicing technique seemed to generally
perform better for XML than for JavaScript. Again, our assumption is that patterns
might be more easily learnable on XML due to its simpler tree structure. Another
reason could be that certain JavaScript branches could only be triggered by semantic
feature patterns. For instance, imagine that a certain rare branch is only triggered if you
have a "while"-node which has another "while"-node in its subtree. However, it does not
matter where and how distant the nodes are. Our approach could have problems with
such patterns because it requires fixed sequential structures which are fully contiguous.
This allows for no gaps or other degrees of freedom within a pattern. The consequence

91

is that we could fail to identify patterns which otherwise could be simply described
with natural language. This is also indicated by our analysis of RQ3. Here we have
seen that the quality of our learned patterns can apparently vary drastically. That
is suggested by the high standard deviations for the target hit increases (Table 18,
page 88) and the proportion of target hits which co-occur with splicing (Table 20, page
89). Therefore it seems that some patterns can be quite effective while others are less so.

Another interesting question is how much of the target hit count improvements
(RQ1) can be really traced back to splicing. Because it could be that we sometimes
only partially managed to learn a pattern. These would then not necessarily result in
immediate target hits. However, these patterns could still produce inputs which are
more likely to trigger the target branch if mutated. Thus, if Zest stores these inputs in
its queue and mutates them later, these inputs could trigger a target hit as an indirect
consequence of splicing. However, such effects are only speculative. Our analysis of
RQ3 suggest that many target hits indeed seem to immediately co-occur with splicing.
However, these observations only analyze the window of individual targetings. Thus,
there could be positive effects of splicing which only indirectly occur. But we currently
do not have data to either support or reject this hypothesis.

Taken together it seems that our approach can at least partially fulfill its intended
goals. However, increased numbers of rare branch hits or unique traces have not brought
along the coverage (or bug discovery) improvements we have hoped for.

92

6. Conclusion
All in all it seems that our approach of pattern mining and tree-based splicing has some
potential to support a fuzzing campaign. Namely, it could possibly be used to better
explore targeted areas in terms of branch hits and unique traces. Nevertheless, our
results also suggest quite plainly that such improvements can not be expected to entail
overall coverage (or bug discovery) improvements. On the contrary, we have seen that
this can have negative impacts on general performance of a fuzzer. The reason could
be that targeted areas simply do not guard new code to cover or that the patterns we
splice do not reflect the necessary input features. This would then produce overhead
which will not be beneficial for the fuzzing campaign. Possibly it would be a better use
case for our approach if it would be employed for directed fuzzing [BPNR17, CXL+18].
However, one downside of our approach is that we need inputs which hit the targeted
branch. Otherwise we could not learn a pattern for this branch. This is a stark contrast
to the directed fuzzer AFLGo [BPNR17] which can perform its targeting in gradual
steps. The reason is that AFLGo can focus on inputs which have a smaller distance
to the target branches in terms of the call- and control flow graph of an SUT. Our
approach does not have a similar notion of distance (in terms of input features). This
is because we can not know beforehand which input features are necessary to reach a
targeted branch.
Even though we have observed some positive results and a certain potential, we

do not think that the additional overhead introduced by our approach is in general
worthwhile for fuzzing campaigns. At least when considering our current approach and
implementation. Especially when performed with generator-based fuzzing. The reason
is that the splicing routines have to be implemented individually per generator which
can be quite complicated and time consuming. It could be that the technique can be
helpful in some ways but our current results do not point to improvements for fuzzing
campaigns which attempt to explore SUTs as efficiently as possible, ideally without
much additional work and preparation beforehand.

For future work one might nevertheless think about improving our approach. One
possibility is to further develop the pattern learning. For instance, currently we only
learn from positive examples. This refers to inputs which actually hit the target branch.
However, it could also be interesting to learn similarities from inputs which do not
hit our target and to remove these from our learned "positive" patterns. This could
produce patterns which are more concise and which could thus have a higher likelihood
to be spliced successfully and maintain input validity.
Additionally one could think about improving patterns one has mined based on

experience. For example, one might try to remove certain parts of a pattern and see
if it is still effective at triggering a target functionality (similar to Hierarchical Delta
Debugging [MS06]). This might also lead to simpler patterns which could be more
effective.
Another current downside of our approach is that we only learn and splice one

subtree. However it could perfectly be that patterns require several subtrees. Thus,

93

one might investigate how one could best identify which subtrees are necessary and
how their splicing could be coordinated (e.g., possibly they need be spliced a specific
spots compared to one another).

Furthermore, one might consider to combine our approach with a call- and control flow
graph analysis. We have seen that our approach was partially effective at increasing the
hit counts of rarely visited areas. This suggests that our targeting of specific branches
could be successful. However, there is no guarantee that rarely visited areas also guard
new code to uncover. This might be one factor why we have failed to observe overall
coverage improvements. It could thus be interesting to particularly focus on targets
for which we know that there is more code to be explored. This could possibly be
determined by analyzing how a certain branch is situated within the call- and control
flow graphs of an SUT and whether there are unexplored areas below that branch.
Focus on such targets might lead to a better tradeoff for our approach and could
possibly lead to significant (overall) coverage improvements.

Moreover it could be interesting to further explore the viability of our pattern mining
and splicing approach for debugging purposes. Our results seem to suggest that it can
be effective at targeting rarely visited areas. Thus, we could possibly also learn the
features of particular crashes. We have performed preliminary experiments on that
which do not necessarily indicate that we are currently more efficient at reproducing
crashes compared to an approach which simply mutates crashing inputs. Nevertheless,
we have seen that there is still room for improvement of our approach. Thus, it could
possibly have some potential. Especially because the mined patterns could give insights
on which input features likely case a bug. This is not something one can (directly)
obtain when mutating crashing inputs.
Furthermore, it could be interesting to see if we could learn better patterns with

graph-based pattern mining. Our sequential pattern mining approach is not ideal
because we have to reconstruct trees based on estimated guesses. Graph-based pattern
mining could resolve such issues. However, from our current perspective it would
be ideal to use a pattern miner for directed graphs. We had some difficulties to
find corresponding (peer-reviewed) implementations which could be easily integrated
into our technique. Nevertheless, if we are not wrong, then there are ways in which
information on "directedness" can be recovered from undirected patterns. One only has
to augment the original graphs to represent the directedness via additional nodes and
edge labels. Thus it could be interesting to see whether graph-based pattern mining
could bring about improvements for our technique.

Another interesting point for further research is developing a robust heuristic which
dynamically identifies the inflection point (or plateau) in the performance of a fuzzer.
We think that this could be beneficial because it is likely that there are other fuzzing
approaches (like e.g., Driller [SGS+16]) which want to set in when the performance
deteriorates. Our heuristic seems to work reasonably well, however it has been developed
based on observations we have made for our test subjects in particular and only when
fuzzing with Zest. Thus one could possibly investigate whether our heuristic also works
for other SUTs or other fuzzers (e.g., AFL [Zal14]). Furthermore, one might more
generally analyze which markers could be analyzed to identify performance deterioration

94

and how existing research might be used to build a heuristic. Possibly there already
exists a reliable heuristic which we have not been able to find (in addition to possibly
the one of Driller [SGS+16]).

Moreover we would also find it interesting to develop approaches which attempt to
identify (and ideally re-generate) input features on the parameter stream level of an
inputs. This could be a more general way to identify and re-generate features with
generator-based fuzzing.
Finally, it would be interesting to see how our approach works for grammar-based

fuzzing. We think that our technique might indeed work better here because you likely
do not have to implement the splicing and pattern mining per generator. Instead you
ideally only have to do it once. Namely, for the generic derivation tree of a word.
This could lead to a better tradeoff between the implementation effort and potential
benefits. Possibly one could generalize our generator-based approach so much that our
tree-based splicing has a similar degree of abstraction. However, we found it difficult
to explore within the time for this project. Grammar-based fuzzing might thus be an
interesting option to further explore our ideas as you could immediately employ it for
different input formats, provided that you have a corresponding grammar.

95

References
[AFH+19] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick

Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nau-
tilus: Fishing for deep bugs with grammars. In 26th An-
nual Network & Distributed System Security Symposium (NDSS),
Februar 2019. URL: https://www.ndss-symposium.org/wp-content/
uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf.

[Agg15] Charu C. Aggarwal. Data Mining: The Textbook. Springer International
Publishing, Cham, 2015. URL: https://link.springer.com/book/10.
1007/978-3-319-14142-8, doi:10.1007/978-3-319-14142-8.

[Ant] Apache Ant. https://ant.apache.org/. Accessed: 03.10.2022.

[BCD+18] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu,
and Irene Finocchi. A survey of symbolic execution techniques. ACM
Comput. Surv., 51(3), may 2018. doi:10.1145/3182657.

[BCE] Apache Byte Code Engineering Library. https://commons.apache.org/
proper/commons-bcel/. Accessed: 03.10.2022.

[BCR21] M. Boehme, C. Cadar, and A. Roychoudhury. Fuzzing: Challenges and
reflections. IEEE Software, 38(03):79–86, 2021.

[BNK16] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr. instru-
ment. In A Dictionary of Computer Science. Oxford University Press,
2016. URL: https://www.oxfordreference.com/view/10.1093/
acref/9780199688975.001.0001/acref-9780199688975-e-2611, doi:
10.1093/acref/9780199688975.013.2611.

[BPNR17] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roy-
choudhury. Directed greybox fuzzing. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’17,
page 2329–2344, New York, NY, USA, 2017. Association for Computing
Machinery. doi:10.1145/3133956.3134020.

[BPR19] M. Bohme, V. Pham, and A. Roychoudhury. Coverage-based greybox
fuzzing as markov chain. IEEE Transactions on Software Engineering,
45(05):489–506, may 2019. doi:10.1109/TSE.2017.2785841.

[CH00] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for
random testing of haskell programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ICFP
’00, page 268–279, New York, NY, USA, 2000. Association for Computing
Machinery. doi:10.1145/351240.351266.

96

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04A-3_Aschermann_paper.pdf
https://link.springer.com/book/10.1007/978-3-319-14142-8
https://link.springer.com/book/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8
https://ant.apache.org/
https://doi.org/10.1145/3182657
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-2611
https://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-2611
https://doi.org/10.1093/acref/9780199688975.013.2611
https://doi.org/10.1093/acref/9780199688975.013.2611
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/351240.351266

[Clo] Google Closure. https://developers.google.com/closure/compiler.
Accessed: 03.10.2022.

[CLO18] Sooyoung Cha, Seonho Lee, and Hakjoo Oh. Template-guided concolic
testing via online learning. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018,
page 408–418, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3238147.3238227.

[CT12] Keith D. Cooper and Linda Torczon. Chapter 5 - intermediate
representations. In Keith D. Cooper and Linda Torczon, editors,
Engineering a Compiler (Second Edition), pages 221–268. Morgan
Kaufmann, Boston, second edition edition, 2012. URL: https://www.
sciencedirect.com/science/article/pii/B9780120884780000050,
doi:https://doi.org/10.1016/B978-0-12-088478-0.00005-0.

[CXL+18] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie,
Xiuheng Wu, and Yang Liu. Hawkeye: Towards a desired directed grey-
box fuzzer. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, page 2095–2108, New
York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3243734.3243849.

[DRRG14] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz.
Kameleonfuzz: Evolutionary fuzzing for black-box xss detection. In
Proceedings of the 4th ACM Conference on Data and Application Security
and Privacy, CODASPY ’14, page 37–48, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2557547.2557550.

[FR19] Gordon Fraser and José Miguel Rojas. Software Testing, pages 123–
192. Springer International Publishing, Cham, 2019. doi:10.1007/
978-3-030-00262-6_4.

[FV22] Philippe Fournier-Viger. Mining frequent sequential patterns using the cm-
spam algorithm (spmf documentation), 2022. Accessed: 03.09.2022. URL:
https://www.philippe-fournier-viger.com/spmf/CM-SPAM.php.

[FVGCT14] Philippe Fournier-Viger, Antonio Gomariz, Manuel Campos, and Rincy
Thomas. Fast vertical mining of sequential patterns using co-occurrence
information. In Vincent S. Tseng, Tu Bao Ho, Zhi-Hua Zhou, Arbee L. P.
Chen, and Hung-Yu Kao, editors, Advances in Knowledge Discovery and
Data Mining, pages 40–52, Cham, 2014. Springer International Publishing.

[FVHC+20] Philippe Fournier-Viger, Ganghuan He, Chao Cheng, Jiaxuan Li, Min
Zhou, Jerry Chun-Wei Lin, and Unil Yun. A survey of pattern mining in dy-
namic graphs. WIREs Data Mining and Knowledge Discovery, 10(6):e1372,

97

https://developers.google.com/closure/compiler
https://doi.org/10.1145/3238147.3238227
https://www.sciencedirect.com/science/article/pii/B9780120884780000050
https://www.sciencedirect.com/science/article/pii/B9780120884780000050
https://doi.org/https://doi.org/10.1016/B978-0-12-088478-0.00005-0
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1145/2557547.2557550
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1007/978-3-030-00262-6_4
https://www.philippe-fournier-viger.com/spmf/CM-SPAM.php

2020. URL: https://wires.onlinelibrary.wiley.com/doi/abs/10.
1002/widm.1372, arXiv:https://wires.onlinelibrary.wiley.com/
doi/pdf/10.1002/widm.1372, doi:https://doi.org/10.1002/widm.
1372.

[FVLG+16] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted
Gueniche, Azadeh Soltani, Zhihong Deng, and Hoang Thanh Lam. The
spmf open-source data mining library version 2. In Bettina Berendt,
Björn Bringmann, Élisa Fromont, Gemma Garriga, Pauli Miettinen, Niko-
laj Tatti, and Volker Tresp, editors, Machine Learning and Knowledge
Discovery in Databases, pages 36–40, Cham, 2016. Springer International
Publishing.

[FVLK+17] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing
Koh, and Rincy Thomas. A survey of sequential pattern mining.
Data Science and Pattern Recognition, 1(1), 2017. URL: https:
//www.philippe-fournier-viger.com/dspr-paper5.pdf.

[God20] Patrice Godefroid. Fuzzing: Hack, art, and science. Commun. ACM,
63(2):70–76, jan 2020. doi:10.1145/3363824.

[Han12] Jiawei Han. Data mining : concepts and techniques / Jiawei Han ;
Micheline Kamber ; Jian Pei. The Morgan Kaufmann series in data
management systems. Amsterdam [u.a.], 3. ed. edition, 2012.

[HGM+21] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Math-
ias Payer, and Antony L. Hosking. Seed selection for successful
fuzzing. In Proceedings of the 30th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2021, page 230–243,
New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3460319.3464795.

[HKZ22] Nikolas Havrikov, Alexander Kampmann, and Andreas Zeller. From input
coverage to code coverage: Systematically covering input structure with
k-paths. ACM Transactions on Software Engineering and Methodology,
February 2022. URL: https://publications.cispa.saarland/3572/.

[HMB17] Nigar Hashimzade, Gareth Myles, and John Black. Markov
chain. In A Dictionary of Economics. Oxford University Press,
2017. URL: https://www.oxfordreference.com/view/10.1093/
acref/9780198759430.001.0001/acref-9780198759430-e-3765, doi:
10.1093/acref/9780198759430.013.3765.

[Hol] Paul Holser. junit-quickcheck: Property-based testing, junit-
style. Accessed: 28.08.2022. URL: https://pholser.github.io/
junit-quickcheck/site/1.0/.

98

https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1372
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1372
http://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1372
http://arxiv.org/abs/https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1372
https://doi.org/https://doi.org/10.1002/widm.1372
https://doi.org/https://doi.org/10.1002/widm.1372
https://www.philippe-fournier-viger.com/dspr-paper5.pdf
https://www.philippe-fournier-viger.com/dspr-paper5.pdf
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3460319.3464795
https://publications.cispa.saarland/3572/
https://www.oxfordreference.com/view/10.1093/acref/9780198759430.001.0001/acref-9780198759430-e-3765
https://www.oxfordreference.com/view/10.1093/acref/9780198759430.001.0001/acref-9780198759430-e-3765
https://doi.org/10.1093/acref/9780198759430.013.3765
https://doi.org/10.1093/acref/9780198759430.013.3765
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/

[JQF] Jqf + zest: Semantic fuzzing for java. https://github.com/
rohanpadhye/JQF. Accessed: 03.10.2022.

[Kan19] Mehmed Kantardzic. Data Mining: Concepts, Models, Methods, and
Algorithms. John Wiley & Sons, Ltd, 3 edition, 2019. doi:https:
//doi.org/10.1002/9781119516057.

[KHSZ20] Alexander Kampmann, Nikolas Havrikov, Ezekiel Soremekun, and Andreas
Zeller. When does my program do this? learning circumstances of
software behavior. In ESEC/FSE 2020, June 2020. URL: https:
//publications.cispa.saarland/3107/.

[KRC+18] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, page
2123–2138, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3243734.3243804.

[Lem21] Caroline Lemieux. Expanding the Reach of Fuzz Testing. PhD
thesis, EECS Department, University of California, Berkeley, May
2021. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/
EECS-2021-43.html.

[LKBS21] Steffen Lüdtke, Roman Kraus, Ramon Barakat, and Martin A. Schneider.
Attack-based automation of security testing for iot applications with ge-
netic algorithms and fuzzing. In 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security Companion (QRS-C), pages
92–100, 2021. doi:10.1109/QRS-C55045.2021.00023.

[LS17] Andreas Löscher and Konstantinos Sagonas. Targeted property-based
testing. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2017, page 46–56,
New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3092703.3092711.

[LS18] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strat-
egy for increasing greybox fuzz testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, page 475–485, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3238147.3238176.

[LSL21] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. Constraint-
guided directed greybox fuzzing. In 30th USENIX Security Sym-
posium (USENIX Security 21), pages 3559–3576. USENIX Associ-
ation, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/lee-gwangmu.

99

https://github.com/rohanpadhye/JQF
https://github.com/rohanpadhye/JQF
https://doi.org/https://doi.org/10.1002/9781119516057
https://doi.org/https://doi.org/10.1002/9781119516057
https://publications.cispa.saarland/3107/
https://publications.cispa.saarland/3107/
https://doi.org/10.1145/3243734.3243804
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-43.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-43.html
https://doi.org/10.1109/QRS-C55045.2021.00023
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3238147.3238176
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu

[LZZ18] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity,
1, 12 2018. doi:10.1186/s42400-018-0002-y.

[Mat] Matplotlib. https://matplotlib.org/. Accessed: 04.10.2022.

[Mav] Apache Maven. https://maven.apache.org/. Accessed: 03.10.2022.

[MdCH18] João Mendes Moreira, André C. P. L. F. de Carvalho, and Tomáš
Horváth. Frequent pattern mining. In A General Introduction to
Data Analytics, chapter 6, pages 125–150. John Wiley & Sons, Ltd,
2018. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119296294.ch6, doi:https://doi.org/10.1002/9781119296294.
ch6.

[MHH+21] V. M. Manes, H. Han, C. Han, S. Cha, M. Egele, E. J. Schwartz, and
M. Woo. The art, science, and engineering of fuzzing: A survey. IEEE
Transactions on Software Engineering, 47(11):2312–2331, 2021.

[MKC20] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. Ankou: Guiding
grey-box fuzzing towards combinatorial difference. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 1024–1036, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3377811.3380421.

[MS06] G. Misherghi and Z. Su. Hdd: hierarchical delta debugging. In Software
Engineering, International Conference on, pages 142–151, Los Alamitos,
CA, USA, may 2006. IEEE Computer Society. URL: https://doi.
ieeecomputersociety.org/10.1145/1134285.1134307, doi:10.1145/
1134285.1134307.

[NG22] Hoang Lam Nguyen and Lars Grunske. Bedivfuzz: Integrating be-
havioral diversity into generator-based fuzzing. In Proceedings of the
44th International Conference on Software Engineering, ICSE ’22, page
249–261, New York, NY, USA, 2022. Association for Computing Machin-
ery. doi:10.1145/3510003.3510182.

[NNTH+21] Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser, Jack W. Davidson,
and Matthew Hicks. Breaking through binaries: Compiler-quality in-
strumentation for better binary-only fuzzing. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1683–1700. USENIX Asso-
ciation, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/nagy.

[Num] Numpy. https://scipy.org/. Accessed: 04.10.2022.

[Pay19] Mathias Payer. The fuzzing hype-train: How random testing triggers
thousands of crashes. IEEE Security & Privacy, 17(01):78–82, 2019.

100

https://doi.org/10.1186/s42400-018-0002-y
https://matplotlib.org/
https://maven.apache.org/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119296294.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119296294.ch6
https://doi.org/https://doi.org/10.1002/9781119296294.ch6
https://doi.org/https://doi.org/10.1002/9781119296294.ch6
https://doi.org/10.1145/3377811.3380421
https://doi.ieeecomputersociety.org/10.1145/1134285.1134307
https://doi.ieeecomputersociety.org/10.1145/1134285.1134307
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/3510003.3510182
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://scipy.org/

[PLS+19a] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon. Va-
lidity fuzzing and parametric generators for effective random testing. In
2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 266–267, 2019.

[PLS19b] Rohan Padhye, Caroline Lemieux, and Koushik Sen. Jqf: Coverage-guided
property-based testing in java. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019,
page 398–401, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293882.3339002.

[PLS+19c] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. Semantic fuzzing with zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, page 329–340, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293882.3330576.

[Rhi] Apache Rhino. https://github.com/mozilla/rhino. Accessed:
03.10.2022.

[RLPS20] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen.
Quickly generating diverse valid test inputs with reinforcement learning.
In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE ’20, page 1410–1421, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3377811.3380399.

[Sci] Scipy. https://scipy.org/. Accessed: 04.10.2022.

[SGS+16] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In Network & Distributed
System Security Symposium (NDSS), Februar 2016. URL:
https://www.ndss-symposium.org/wp-content/uploads/2017/09/
driller-augmenting-fuzzing-through-selective-symbolic-execution.
pdf.

[SN07] P. K. Srimani and S. F. B. Nasir. Context-Free Grammars and Context-
Free Languages, page 304–376. Foundation Books, 2007. doi:10.1017/
UPO9788175968363.010.

[Zal14] Michal Zalewski. American fuzzy lop, 2014. Accessed: 27.08.2022. URL:
https://lcamtuf.coredump.cx/afl/.

101

https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3330576
https://github.com/mozilla/rhino
https://doi.org/10.1145/3377811.3380399
https://scipy.org/
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1017/UPO9788175968363.010
https://doi.org/10.1017/UPO9788175968363.010
https://lcamtuf.coredump.cx/afl/

A. Appendix

102

JQ
F

C
ra
sh
JQ

F

Ex
te

nd
s

Ze
st
G
ui
da
nc
e

H
itT
ra
ck
in
gG

ui
da
nc
e

Ex
te

nd
s

In
pu

tT
ra
ck
in
gG

ui
da
nc
e

Ex
te

nd
s

Fe
at
ur
eG

ui
da
nc
e

Ex
te

nd
s

C
ra
sh
Tr
ac
ki
ng

G
ui
da
nc
e

C
ra
sh
Sp

lic
in
gG

ui
da
nc
e

Ex
te

nd
s

N
oE

xp
C
ra
sh
Sp

lic
in
gG

ud
ai
nc
e

Ex
te

nd
s

Ex
te

nd
s

C
ra
sh
C
LI

Fu
zz
St
at
em

en
t

C
ra
sh
Fu

zz
St
at
em

en
t

Ex
te

nd
s

«i
nt

er
fa

ce
»

G
ui
da
nc
e

Ex
te

nd
s

C
ra
sh
M
ut
at
in
gG

ui
da
nc
e

Ex
te

nd
s

Pa
tte

rn
M
in
er

A
lg
oC

M
SP

A
M

«A
bs

tra
ct

»
G
en
er
at
or

Fe
at
ur
eG

ra
ph

Fe
at
ur
eN

od
e

Fi
gu

re
28
:
C
la
ss

di
ag
ra
m

of
jq

f-
cr

as
h’
s
fu
zz
in
g
fra

m
ew

or
k

103

«Abstract»
G
enerator

Extends

XM
LTrackingG

enerator

+ generate(): Xm
lD

ocum
ent

«Abstract»
Xm

lN
ode

Elem
entN

ode

Extends

A
ttributeN

ode

Extends

TextN
ode

Extends

C
dataN

ode

Extends

Xm
lD
ocum

ent

- root: Elem
entN

ode

+ toString()

<<Interface>>
FeatureInput

Figure
29:

C
lass

diagram
ofour

X
M
L
generator

and
input

104

«A
bs

tra
ct

»
G
en

er
at
or

Ex
te

nd
s

Ja
va
Sc

rip
tT
ra
ck
in
gG

en
er
at
or

+
ge

ne
ra

te
():

 J
av

aS
cr

ip
tD

oc
um

en
t

«A
bs

tra
ct

»
Ja
va
Sc

rip
tN
od

e

St
at
em

en
tN
od

e

Ex
te

nd
s

Ja
va
Sc

rip
tD
oc

um
en

t

- r
oo

t:
St

at
em

en
tN

od
e

+
to

St
rin

g(
)

B
re
ak
N
od

e

C
on

tin
ue

N
od

e

Ex
pr
es
si
on

St
at
em

en
tN
od

e

<<
In

te
rfa

ce
>>

Fe

at
ur
eI
np

ut

IfN
od

e

Ex
pr
es
si
on

N
od

e

Li
te
ra
lN
od

e

B
in
ar
yN

od
e

Fu
nc

tio
nN

od
e

...

...
...

Fi
gu

re
30
:
C
la
ss

di
ag
ra
m

of
ou

r
Ja
va
Sc
rip

t
ge
ne
ra
to
r
an

d
in
pu

t

105

<<Interface>>
FeatureInput

+ getFeatureG
raph(): FeatureG

raph

+ splice(FeatureG
raph featureG

raph): boolean

+ getParam
eterList(): List<Integer>

FeatureN
ode

- type: String

- payload: String

- childList: ArrayList<FeatureN
ode>

FeatureInput

- root: FeatureN
ode

+ getFeaturePaths(): ArrayList<FeaturePath>

A
rrayList<String>

FeaturePath

Extends

Xm
lD
ocum

ent
JavaScriptD

ocum
ent

Figure
31:

C
lass

diagram
ofour

classes
for

abstract
tree-feature

representation

106

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den 4. Oktober 2022

107

	Introduction
	Motivation
	Research Questions
	Outline

	Background
	Fuzzing
	Introduction to Fuzzing
	Fuzzer Categorization

	Generator-based Fuzzing
	Property-based Testing
	JQF
	The Zest Algorithm

	Pattern Mining
	Sequential Pattern Mining
	Graph-based Pattern Mining

	Related Work
	Fuzzing with Input Features
	FairFuzz
	Template-Guided Concolic Testing
	K-Paths

	Directed Fuzzing
	Further mentions

	Generator-based Fuzzing with Input Features
	Motivation
	The Approach
	Implementation

	Evaluation
	Evaluation Setup
	Experimental Results
	Discussion

	Conclusion
	Appendix

