
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Automatic Generation of Runtime Monitors
from Structured Natural Language Using

Timed Automatons

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: Tim Jellinek geb. Sikatzki
geboren am: 27.05.1997
geboren in: Werdohl

Gutachter/innen: Prof. Lars Grunske
Prof. Genaína Rodrigues

eingereicht am: verteidigt am:

Contents
1 Introduction 4

2 Background 6
2.1 Cyber-Physical Systems . 6
2.2 Runtime Verification . 6
2.3 Temporal Logic . 7
2.4 Specification Patterns . 8
2.5 UPPAAL . 9
2.6 PSP-UPPAAL . 9
2.7 Body Sensor Network . 9

3 System 11
3.1 Concept . 11
3.2 Assumptions and Limitations . 11
3.3 Arduino Structure . 12
3.4 Monitor Architecture . 13
3.5 Monitor logic . 15
3.6 Generator . 16

4 Evaluation 22
4.1 Correctness of Generated Monitors . 22
4.2 Experimentation Setup . 24
4.3 Tested Properties . 25
4.4 Experimental Results . 28
4.5 The Clock and Real-time Constraints 30
4.6 Feasibility . 31

5 Discussion 32

6 Threats to Validity 33

7 Related Work 35

8 Conclusion and Future Work 38

3

1 Introduction

Safety-critical systems, such as aircrafts and trains are systems whose failure can
result in loss of life, significant property damage, or damage to the environment[21].
Unwanted behaviour, if not detected early, in the worst case can cause system failure.
This makes safety-critical systems a perfect fit for runtime verification. The approach
is used to verify the absence of specified unwanted behaviour in a system.[20, 30].
Runtime verification already established itself in the context of cyber-physical system[46,
27]. Though being an effective solution for behaviour monitoring, creating runtime
verification monitors, which verify the intended properties of the system specification,
can be a complex task. Most of the time, the user has to provide the system specification
in the specification language that is used to setup their runtime monitors. This
specification language can be based on regular expressions[36], rules[4], streams[24, 32,
11], LTL formulas and finite state machines[39]. Another design decision which needs
to be taken is whether the system is monitored from the inside or outside. Both of
these approaches have their own advantages and disadvantages. While having a built-in
monitor inside your system can have advantages for the data collection, because system
processes and monitoring processes can act on a schedule and synchronized clocks, we
have to instrumentalize the system to work with the monitor. If not done correctly, this
can lead to an altered behaviour of the monitored system, especially for cyber-physical
systems, where computation overhead can lead to unwanted latencies[44]. Therefore,
if a build-in monitor is planned, the system has to be designed with the additional
resources, the monitor occupies, in mind. The alternative to build-in monitors are
external monitors that do not have direct access to internal system values, but rely on
communication between the system and the monitor to receive important system events.
The advantage of those monitoring approaches is that they can be designed non-intrusive
if the natural system communication allows for it. The system behaviour can then be
observed without any interaction with the monitor. This approach leads to different
challenges, because timing and communication in asynchronous systems are non-trivial
tasks and can also require system instrumentation if it does not provide natural logging
or communication output. In this thesis, we tackle these challenges to present an
approach which provides access to runtime verification with low time and resource
investment. The idea is to automatically generate ready-to-use runtime verification
monitors with minimal effort and setup. We utilize the mapping from structured
natural language to Dwyer’s specification patterns[10] provided by Autili et al.[3] for
specification accessibility and compatibility. Additionally, we use PSP-UPPAAL[41], a
tool which provides a catalogue of UPPAAL observer for model checking, based on
these specification patterns. In Section 2 we present the background of our thesis and
explain concepts and approaches which will be relevant throughout the thesis. Then
we talk about our system concept, the architecture and design decisions in Section 3.
Afterwards, in Section 4 we propose our experiments and evaluation. Our runtime
verification generation is evaluated on a variation of the self-adaptive BSN[13] which is

4

implemented in Arduino1. We describe our experimentation setup and present research
questions which we address throughout the evaluation. In Section 5 we then talk
about challenges which occurred during the evaluation, before going over threats to the
validity of our approach in Section 6. Finally, we present similar approaches and related
ideas for runtime verification and monitor generation combined with their advantages
and disadvantages in Section 7. Here we will also explain the differences in comparison
to our approach and set our system into context, before then concluding the thesis and
talking about future research that can be done to improve our system in Section 8.

1https://github.com/carwehlm/masterthesis/tree/master/code/BSN

5

https://github.com/carwehlm/masterthesis/tree/master/code/BSN

2 Background
In this section we explain the basic concepts that are used within this thesis and talk
about preceding research that our approach relies on.

2.1 Cyber-Physical Systems
Cyber-physical system (CPS) is a term for systems which use software and hardware
components to interact with physical objects in the real world[17]. Nowadays, CPS
can be found in different domains, such as transportation[26] and healthcare sectors[9].
Implementing cyber physical systems leads to multiple design challenges as Hu et
al.[17] explains, two of them being:

Reliability and uncertainty Many CPS are inherently safety-critical systems[35],
because a system failure can have direct impact on the physical world. Due to their
interaction with an unpredictable environment cyber-physical systems have to take
additional uncertainties into account. Common uncertainties are missing knowledge
about the timing of inputs or about the state of the system[45].

Superdense Timing Superdense time revolves around the problem that "[...] time is
continuous in the real world but must become discrete in the cyber world."[17, p.11].
Superdense time models are used to combine discrete untimed sequences and order
them accordingly[17]. There are multiple different approaches that were proposed by
different authors[28].

2.2 Runtime Verification
To counteract the effects of the uncertainties in CPS as described in Section 2.1, runtime
verification is commonly used to achieve this goal. Runtime verification is an analysis
approach which utilizes formal methods to verify the behaviour of a system during
runtime. The approach itself can be split into two categories

• monitoring the system and its parameters

• analysis of monitored parameters with respect to specified properties

Monitoring There are multiple monitoring approaches that are used in runtime
monitoring [35, 29, 39]. A runtime monitor is an executable unit which runs alongside
the system. The goal of a runtime monitor is to observe the runtime behaviour of the
monitored system and verify this behaviour against a specified property. Considering
the design of a runtime monitor, multiple design decisions have to be taken into account.
Monitors should have minimal impact on the behaviour of their system[5]. Bartocci et
al.[5] give a good overview about different monitoring approaches which we will cover
here briefly.

6

Offline and online monitoring Offline monitoring is mostly known as logging,
where the verification of the specified property is done after the execution of the system.
In this approach, important system events do not have to be evaluated during runtime,
but are stored when they occur, which reduces the load on the running system and
makes the approach less intrusive compared to online monitoring approaches. One of
the disadvantages of offline monitoring is the delay in verification. Faulty behaviour
can only be detected after the execution of the system, which makes it impossible to
react to failures before the system finishes its execution. Online monitoring evaluates
the properties during system execution. This makes it possible to implement error
handling routines or manually adapt to faulty behaviour if it is detected. We divide
online monitoring into asynchronous and synchronous online monitoring[5].

Asynchronous and synchronous online monitoring In online monitoring, the
relation between the system and the monitor is relevant. In synchronous online
monitoring systems, the monitor and the monitored system are dependant on each
other. In these kind of systems, each component acts "in lock-step: every time the
system generates an event, it waits for the monitor to process it before proceeding
with its execution"[5, p.15]. One of the advantages of synchronous systems is that the
monitor does not have to keep track of new incoming events while still evaluating the
current one. The opposite of this is asynchronous online monitoring, where the monitor
and system act independent from one another. The advantage of this approach is the
less intrusive nature, where depending on the implementation, the system does not
need to interact with the monitor in any way.

Analysis of monitored parameters After monitoring important system events, the
analysis is also done by the monitor. For this, a specification language is used to define
the property which is evaluated. Many specification languages are based on temporal
logic to describe the intended behaviour of the system. This specification can then be
used to generate executable monitors.

2.3 Temporal Logic
Temporal logic can be used to specify properties of system behaviours over time[37].
The branch of logic adds temporal operators to the propositional logic. Because of its
ability to verify statements about processes and orders of event occurrences, it can be
used in model checking as well as runtime verification[37]. Two of the most popular
temporal logics are linear temporal logic (LTL) and computation tree logic (CTL)[14].
While linear temporal logic is used to specify properties over a single computation
path, CTL can express properties over a tree of all possible computation paths.

LTL Linear temporal logic is able to process and verify single paths. These paths, for
example, can be finite execution traces of a system, which were aggregated during its
execution, but also infinite traces in a system model. Huth et al.[18, p.175] propose

7

the following definition for the LTL syntax:

φ ::=>|⊥|p|(¬φ)|(φ ∨ φ)|(φ ∧ φ)|(φ→ φ)
|(Xφ)|(Fφ)|(Gφ)|(φUφ)|(φWφ)|(φRφ)

In this context, φ is a LTL formula and p is an atomic proposition. Compared to
propositional logic, LTL uses multiple temporal operators that perform on single paths,
such as finally(F), globally(G) and until(U). With these operators we can express
properties, for instance:

• Fφ (φ eventually holds)

• Gφ (φ always holds)

• φUω (φ holds until ω holds)

Operators can also be nested to create more expressive properties. For instance, the
property φ repeatedly holds can be expressed as GFφ.

CTL The computation tree logic does not operate over a single path but rather
over all possible paths. As the name suggests these possible paths can be expressed
in a tree structure, therefore we talk about computation trees. In addition to the
operators described in LTL, CTL also adds the quantifying operators A and E to the
specification. A specifies that a property should hold in all possible paths, while E
specifies that there exists at least one computation path where the property holds. For
more information about the basics of CTL see [1]. CTL and LTL share an intersection
of properties which can be expressed by both specification languages.

2.4 Specification Patterns
Dwyer’s specification patterns[10] summarize a number of common system behaviour
properties, which can adjusted and used for the model verification of a system. Every
pattern provides formulas for every scope. The scope of a specification pattern describes
context where the pattern is expected. The patterns are specified in either LTL or
CTL. These patterns were extended by timed and untimed versions using Metric
Temporal Logic (MTL) and Timed CTL (TCTL) formulas[22] and by probabilistic
versions in Probabilistic LTL (PLTL) and Continuous Stochastic Logic (CSL)[15].
Autili et al.[3] aligned the basic patterns and their timed and probabilistic additions
with structured natural language. The authors also introduced new patterns on top of
Dwyer’s specification patterns2.

2An overview of all current patterns with their timed and probabilistic versions can be found here
http://ps-patterns.wikidot.com/

8

http://ps-patterns.wikidot.com/

2.5 UPPAAL
UPPAAL[42] is a tool which utilizes timed automatons to provide modelling as well as
model checking features. A UPPAAL model can consist of multiple timed automatons.
Each automaton is a structure of edges (transitions) and vertices (locations).

Locations Locations in UPPAAL are the vertices in automatons. Each location can
possess an invariant and a label. The invariants are constraints which must be satisfied
when the automaton wants to enter the location. The label can be used to identify a
location and to verify specific queries of the system. Every automaton contains exactly
one initial location which is the location, the automaton is in at the start of the system.
Another feature UPPAAL offers are committed locations. Whenever an automaton
enters a committed location, the rest of the system is locked until the committed
location is left. No other transitions in other automatons can be fired during this time.

Transitions Transitions are the edges in UPPAAL automatons. A transition can
possess guards, synchronisations and assignments. A guard is a constraint that has to
be satisfied before the transition can be fired. Synchronizes are used to synchronize
multiple edges using channels. Transitions can either be emitting or receiving. This is
denoted via ! (emitting) and ? (receiving)3. All receiving transitions have to synchro-
nize on emission. Assignments are variable assignments which will be executed when a
transition is fired.

Specification of the system is done using timed computation tree logic (TCTL).
TCTL[23] adds timed intervals to the logical operators used by CTL.

2.6 PSP-UPPAAL
In order to make model checking via temporal logic more accessible, the authors of
PSP-UPPAAL[41, 43] utilize the TCTL formulas of the specification patterns we
explained in Section 2.4 to provide ready-to-use specifications for systems that were
designed as UPPAAL models. The authors built UPPAAL observer templates for each
of the specification patterns if applicable. These UPPAAL observer can be integrated
into the system to handle the verification of specification pattern properties.

2.7 Body Sensor Network
The system under test for this thesis will be the Body Sensor Network (BSN). The
SA-BSN [13] is a self-adaptive version of the body sensor network. Self-adaptive systems
have the advantage that they can adjust themselves during runtime to counteract
uncertainties which can occur in cyber-physical systems as described in Section 2.1.
The system monitors the patient’s health status, while adapting itself to possible
uncertainties. Figure 1 depicts an overview of the architecture of the BSN. The system

3https://www.seas.upenn.edu/~lee/09cis480/lec-part-4-uppaal-input.pdf

9

https://www.seas.upenn.edu/~lee/09cis480/lec-part-4-uppaal-input.pdf

Figure 1: Architecture of the self-adaptive Body Sensor Network. Taken from Gil et
al.[13]

itself consists of multiple sensor nodes, each measuring separate vital parameters, such
as the heart rate and body temperature. Logs and system goals which should be
reached during the execution are stored in the knowledge repository component. These
are used by the strategy manager to generate an appropriate strategy, the strategy
enactor can then apply to the managed system. For the thesis, we use the Arduino
implementation of the BSN provided by Marc Carwehl in his master thesis4. The
components are connected via wires. Each sensor node as well as the central hub
and the adapting unit are programmed on independent Arduinos. The Arduino BSN
provides two sensors, one for the body temperature, another one for the pulse. This
implementation utilizes simulated data and does not operate with real patients.

4https://github.com/carwehlm/masterthesis/tree/master/code/BSN

10

https://github.com/carwehlm/masterthesis/tree/master/code/BSN

3 System
In this chapter we elaborate how our system is designed. Our system consists of two
components. The monitor, which is partly generated but also makes use of custom C++
classes we implemented to provide state machine support and the monitor generator.
First, we talk about the concept of our runtime monitors in Section 3.4, where we go
over the creation of our state machine in C++. Then, we explain how the generation
of monitors works in Section 3.6. As we provide a monitor generation tool, we will
refer to our system as Monerator throughout this thesis. The implementation of our
approach can be accessed at our github repository5 and can be freely used for future
research.

3.1 Concept
The concept of our system can be seen in Figure 2. The property configuration describes
user input. If the user has a specific property in mind, they have to look through the
specification patterns and decide which one seems fitting for their use case and then
provide this information by creating a property file. We explain the structure of our
generated monitors in detail in Section 3.4. In Section 3.6 we talk about the structure
of our generation tool and the design decisions we made.

3.2 Assumptions and Limitations
Before we explain the details of our system we need to talk about some assumptions
we make for our monitor generation. Our monitors are designed to be generated out of
the observers that are provided by PSP-UPPAAL[33]. We do not intend to capture all
UPPAAL features in our generator, only the ones that are used by the observers.
Furthermore we assume, that transitions are taken as soon as possible in the monitor.
We make this assumption for two reasons. One, in comparison to UPPAAL, our
monitor does not have to wait for another system component to finish before it can
take a transition therefore it can always take the transition as long as the relevant
guards and invariants are satisfied. Second, it makes the implementation simpler.
Additionally we also assume that the observer always contains a location with the
ERROR label. This is, because we are not able to check the formulas in the queries of
the UPPAAL observer. Therefore we later show how to add an ERROR location to an
observer so that it’s formula becomes A[] not Observer.ERROR, which means that
the automaton should not hold in the ERROR location.
Another limitation that we need to mention is that we can only verify safety properties
and timed liveness properties. During the runtime verification we can only analyse
finite execution traces. We can not make statements about future events that may
occur. Therefore we can verify that an event occurs during the execution or that an
event occurred after a set time interval. We can not verify that an event eventually

5https://github.com/timsik/Monerator

11

https://github.com/timsik/Monerator

Figure 2: Overview of our presented workflow. The User and PSP-UPPAAL Catalogue
lanes are background work, while the Monerator lane depicts the contribution
of the thesis.

occurs without any time constraints, because we work with finite execution traces.
Liveness properties can only be verified by analysing execution traces with possibly
infinite length. Note that most of the runtime approaches have to deal with this
limitation and it is not exclusive to our system.

3.3 Arduino Structure
We use Arduino as our hardware solution and therefore have to adapt our monitor
architecture to the Arduino syntax. An Arduino sketch, which is the term for Arduino
programs, consists of four components. These will be referenced as header, globals,
setup and loop components. The header component covers the libraries, which are
utilized in the sketch. The globals component covers all global variable and function

12

declarations, which are required for the setup and loop components. Every Arduino
sketch initially contains an empty setup() and loop() function. The setup component
is specified inside the setup() function. The setup() function is called once at the
start of an Arduino and is used to initialize global variables with specific values and
execute statements which should be only executed once. The loop component is
specified inside the loop() function. While an Arduino is running and after executing
the setup(), it will start to repeatedly call the loop() function.
This structure influences the conception of our monitor architecture as well as the
design decisions we made for our monitor generator.

3.4 Monitor Architecture
Our runtime monitors are expressed as a set of states which represent the UPPAAL
locations and a set of transitions. These sets make use of a set of automatically
generated helper functions that represent the guards, invariants and assignments of
our model.

Figure 3: Class diagram of the monitor

Figure 3 shows a class diagram that depicts the relation between the states, transitions
and the state machine. We go over each of the elements in the following paragraphs.

3.4.1 States

States represent the locations of the UPPAAL observer model. Each state consists of a
state number, a label, a set of its outgoing transitions as well as the information if it is
a committed or error state.
The state number is their unique identifier that is provided by the UPPAAL model.
Each of the states is added to the states array by using its state number as index.
That way the objects can be referenced from the monitor by calling states[stateNr].

13

The label is used to determine the error state of the state machine. Aside from that it
mostly exists to provide the same functionality of the original UPPAAL model.
The outgoing transitions as well as the information about the error and committed
attributes are used to traverse the state machine during runtime.
One thing we miss in our state class are the invariants. For the invariants, we chose to
directly generate them in form of functions. We then store those functions in an array,
where the index resembles the state number of the state which contains the invariant in
the UPPAAL model. We chose this approach because finding a way to encapsulate the
conditional strings we extracted from the UPPAAL model in an attribute, which can
be evaluated, seemed like a greater challenge. Since our monitors have the requirement
to be automatically generated and executable without human intervention, the focus
of our generated code relies on functionality. This is why we chose to handle invariants
in the way we explained earlier.

3.4.2 Transitions

Transitions in our state machine represent the transitions in the UPPAAL model. Each
transition in our state machine contains a number of attributes. These are the target,
the source, the synchronisation and the id. We will go over those one by one.

The target and source attributes are equivalent the state numbers of the target and
source state of the transition. Those attributes are mainly used for state machine
traversal. The synchronisation attribute corresponds to a string that is either empty or
resembles one of the events, the monitor receives from the system. A transition with
a synchronisation has to be triggered if the corresponding event is detected. Similar
to the invariants of states, we created function arrays for the guards and assignments
of each transition. If we want to access these functions, we need a unique identifier
for our transitions. Such an identifier is not provided in our UPPAAL observers and
therefore we add an id attribute to every transition on creation.

3.4.3 State machine

The state machine class keeps track of the current position in the state machine, as
well as managing its initial state. Additionally it provides the functionality to switch
between states. This reduces the amount of redundant code that has to be generated.

3.4.4 Event Handling

For event handling we use the SoftwareSerial[40] library in our Arduino context
to receive events of our system under test. The monitor expects to receive either
P_reached? or P_left? events, where P is a placeholder for the variables which are
used in the specification pattern of the monitor. We provide a map that holds Key-
Value-Pairs of associated variables. Each time we receive an event, the associated
variables for this event are changed accordingly. An example event map is shown in
Table 1.

14

Key Value
P_holds 0
P_held_once 0
S_holds 0
S_held_once 0

Table 1: Event map for two events P and S. Respective signals are
P_reached?/P_left? and S_reached?/S_left?

Each time we receive an event it is pushed to the back of a double-ended queue
(deque) which we use to keep track of the occurring events. If the monitor is ready to
process the next event, it is then popped out of the front of the queue.

3.5 Monitor logic
The state machine itself functions in multiple steps. First, the state machine is build.
All states and transitions will be initialized and the event handler and clock will be set
up. Right afterwards the monitoring process is started. We will go over those steps in
detail in the following paragraphs.

3.5.1 Build

The building stage handles the initialization of our state machine. For Arduino, most of
this happens in the setup() function of the monitor file. In this function, we initialize
the transitions and states, with all the information they need. Each state and transition
is created with its specific attributes as explained in Section 3.4. During this step,
we also add the states to the states array and the transitions to the list of outgoing
transitions of their respective source states. We also populate our guard, invariant and
assignment arrays with their functions. The event handling is also prepared during this
stage. We start the event handler so it is able to process incoming events. Additionally
we also fill the event map with Key-Value-Pairs which are expected to be set during
runtime.

3.5.2 Monitoring Process

Our monitoring process is realized as a loop which keeps track of multiple things at
the same time. In our context, the loop() function of our Arduino file is a perfect fit
for the processing.
One important thing to keep track of is the time. We implement a clock which uses
the millis() function of Arduino to keep track of the time the monitor is running,
while giving us the option to reset the clock itself. The millis() function returns
the time in milliseconds that the Arduino is running. After about 50 days, the time
overflows6, the function resets to zero and potentially breaks the monitor. Right now,

6https://www.arduino.cc/reference/de/language/functions/time/millis/

15

https://www.arduino.cc/reference/de/language/functions/time/millis/

we implemented no solution for this issue. Resetting the monitor once every 50 days
serves as a work around though. Algorithm 1 shows the loop running in our monitor
executable. Line 1 covers our event handling as described in Section 3.4.4. Here we
fill our event double edged queue and update our event map entries. Lines 2 and 3
update the clock, set the ∗_holds variables to the value of the respective key in the
event map and update the placeholder variables. The placeholder variables are copies
of the variables that are used in assignments. In UPPAAL the guards and invariants
are validated after making the assignment, so we need to have a way to revert those
assignments by saving the initial values in placeholders. The next line checks if we
currently are in an error state. If so, the monitor returns an error message every second
until the monitor gets reset manually.

Algorithm 1: Monitoring Loop
inputs : observer.transitions
outputs :Transitions for the Monitor
// running through the loop

1 HandleIncomingSignals();
2 SetClock();
3 SetVariablesAndPlaceholder();
4 CheckForErrorState();
5 foreach transition ∈ currentState.outgoingTransitions do
6 ExecuteAssignment();
7 if transition can be fired then
8 prioritizeSyncTransition();
9 switchState(transition.target);

10 end
11 else
12 resetAssignments();
13 end
14 end

3.6 Generator
In this section we explain the generation part of our system. Figure 4 shows an example
of how the resulting state machine of our generation looks compared to the observer
we specified as input. Note that we use the label of the initial state to specify the
invariant. This is just used for illustration. The invariants are not stored at the same
place as the labels.

16

Figure 4: Timed Recurrence Observer with the Globally Scope on the left and its
generated state machine on the right

Our generator works with a property file as input. Figure 5 shows an example
property file for the RecurrenceGloballyTimed Observer

Figure 5: Property file for the Recurrence Globally Timed Observer

This file provides information about the specification pattern, which is needed. Our
generator is split into three classes we created in the context of this thesis. We chose this
split to separate the data and display from our program logic. We describe each class
in detail in the later sections. The TemplateHandler class parses the data provided by
the property file to be used by the generator. The FileHandler manages the structure
of the generated file. It provides the functionality to specify the generation path as
well as the monitor name. It also handles the content of the monitor. The largest
part of the generator is the Monerator class which manages the other classes, inherits
the generation logic and also contains the main function where our monitor is finally
generated.

3.6.1 Preservation of Information

When generating a monitor from the original UPPAAL observer we want to preserve
all of the information that is necessary for the functionality of original observer. This
property comes in handy when we later talk about the correctness of our monitor
in Section 4. An UPPAAL automaton mostly consists of four components. Those
components are the declarations, the locations, the transitions and the queries. Inside
the declarations, the variables that will be used by the observer, such as the clock
and the channels or constraining variables, are declared. The locations component
defines the locations of the automaton, each with their respective invariant, label

17

and location id. In the transitions component, we define the transitions of the
automaton with their respective assignments, guards and synchronizations. The query
component contains the formulas that are checked by UPPAAL during the model
verification. We already talked about our limitations with those formulas in Section 3.2
and because of the fact that we cannot verify formulas other than A[] not ERROR, we
do not include the formula in our observer. Figure 6 shows the XML content of the
RecurrenceGloballyTimed observer, where the four components are annotated. We
use a forked version of JUppaal[25] to transform this XML file into Java objects which
we then utilize to generate our monitors. In the following, we provide pseudocodes of
the process for the monitor generation. The declarations component is generated in
two steps. All declaration variables which need a value, timing constraints for example,
are generated from the property file, because they require user input. The observer
specific values, the clock for example, are always generated and initialized with zero.
An exception to that is the nxtCmt flag which is initialized with one if the initial state
is also marked as committed.

18

Figure 6: Annotated UPPAAL Observer XML

19

Algorithm 2: Generating Transitions
inputs : observer.transitions
outputs :Transitions for the Monitor
// generate transitions

1 foreach tra ∈ observer.transitions do
2 init new transition;
3 generate id for transition;
4 set transition source to tra.source set transition target to tra.target

HandleGuard(tra.guard);
5 HandleAssignment(tra.assignment);
6 add tra to outgoing transitions of its source state
7 end

The transition generation shown in Algorithm 2 follows a similar procedure compared
to the declarations. We iterate over every possible transition of the observer and add the
information to our monitor by utilizing the classes we already mentioned in Section 3.4.
The transitions are special in a way that we add information to the system. Each
transition receives a unique id, which is not provided by the observer. We use this to
call the guards and assignments of each transition. We also utilize the information of
the source state to add the transition to its outTrans list.

Algorithm 3: Generating States
inputs : observer.locations
outputs : States for the Monitor
// generate states

1 foreach loc ∈ observer.locations do
2 init new state;
3 set state id and label to loc.id and loc.label;
4 if loc is initial location then
5 set init flag in state
6 if loc is committed then
7 set committed flag in state

// assign loc invariant to state
8 HandleInvariants(loc.invariant);
9 end

The state generation described in Algorithm 3 needs to keep track of the attributes,
if the location is committed for example, provided by each location which mostly can
be depicted as boolean flags. Additionally we have to handle its invariant similar to
how we handle the guards of our transitions. Additionally to that, we initialize a
statemachine object with the initial state as parameter.

20

3.6.2 Template Handler

The TemplateHandler extracts data from the property file which specifies the pattern
used and for the monitor generation as well as the value of the time constraints that
can occur in timed specification patterns. The TemplateHandler is initialized with its
attribute pathToTemplate, which is the path of the property file. It uses the property
information to determine which UPPAAL observer is needed and provides the name of
the observer file to the generator. The time constraints and events specified by the
property file will also be provided to the generator.

3.6.3 File Handler

The FileHandler class generates the monitor file using the information provided by the
generator. It serves as a class to adjust the structure of the monitors generated by the
Monerator class. The class provides functions to generate code based on the attributes
of our Monerator class. This can be utilized to adapt the monitor to other environments
than Arduino. Unfortunately this only specifies the Arduino body (header, globals,
build, setup) and not the content of the generated code. Therefore we are limited to
the C++ code generated by the Monerator class but can alter the context in which
the code is embedded.

3.6.4 Monerator

The Monerator handles the generation of the monitor by making use of the TemplateHandler
and FileHandler classes. It also contains the main function for our system, where the
other classes are initialized and configured. This class implements the algorithms we
described in Section 3.6.1.

21

4 Evaluation
For the evaluation we present five research questions we try to answer in this section.
The questions are located in Table 2.

RQ1 Are the generated monitors correct?
RQ2 How many properties can we express?
RQ3 How much memory is needed for the monitor?
RQ4 How long does the monitor generation take?
RQ5 How fast can we detect errors?

Table 2: Overview of our research questions

4.1 Correctness of Generated Monitors
In this section we elaborate on how we mitigate the risk of our generated monitors
to be incorrect which will also answer our research question RQ1 (Are the generated
monitors correct?). Therefore we make the assumption that if we can show that there
exists an isomorphism between the observer and the generated monitor then they
have the same behaviour. We first explain, how we contain the necessary information
to recreate a functional copy of the initial observer out of the generated monitor to
show that there is no information loss in our generation. Then, we will show that an
isomorphism between the observer and the generated monitors exists.

4.1.1 Problem with Information Conservation

We lose no information during the generation of our runtime monitors when using an
untimed specification pattern, as we show in Section 3.6.1, but we have to alter some
of the information to make up for our timing issues, when we take timed specification
patterns into consideration. This makes a difference for systems that rely on these
precise time constraints and therefore we can not guarantee that our monitors are
correct. What we can do though is to show that the rest of the functionality of our
monitor should still be the same by using an untimed specification pattern as example.
Also note that the timing issues do only partially affect the correctness of our approach.
With more research and optimization in the future and a possible swap to another more
efficient hardware, we could get the grace interval close to 0ms (while never reaching
exact timings, see Section 4.5). The faster we get through optimization the smaller the
risk of possible deviating behaviour between our approach and the original UPPAAL
observer gets.

4.1.2 Isomorphism

Isomorphism in graph theory is a property which can be utilized to show that multiple
graphs share the same behaviour. Two graphs are isomorph if:

22

• there exists a bijection between both

• the structure is preserved

We use the definition of Hiseah et al.[16] for isomorphism of two labelled graphs
G(V,E, LV , LE, l) and G′(V ′, E ′, L′

V , L
′
E, l

′). We need to find a bijective function
f : V → V ′ such that:[16]

∀u ∈ V, l(u) = l′(f(u)) (1)
∀u, v ∈ V, (u, v) ∈ E ↔ (f(u), f(v)) ∈ E ′ (2)
∀(u, v) ∈ E, l(u, v) = l′(f(u), f(v)) (3)

The authors of this definition use graphs which have vertices and edges with unique
identifiers, because labels can sometimes be used for multiple vertices and edges. The
labelling function l is then used to retrieve the label of an element using the unique
id. For example, for a vertex with the label ERROR and id 2 the labelling function
would be l(2) = ERROR. Similar, for an edge with the label a, source id 3 and target
id 5 the labelling function is l(3, 5) = a.
We want to use this definition for our UPPAAL models and state machines, therefore we
define the labels of vertices LV as tuple (Label, Invariant, CommittedF lag, InitialF lag)
and the labels of edges LE as tuple (Guards, Updates, Synchronizations). The la-
belling function l will therefore also be defined as l(u) ∈ LV and l(u, v) ∈ LE for u and
v being ids of two different vertices in G. In Section 3.6.1 we explain how we preserve
the information of our untimed UPPAAL observers during monitor generation. Because
the states keep the identifier of their origin location and the number of vertices also
stays the same, our bijective function is defined as f(u) = u for u being the id of any
vertex in G. Our labelling functions l and l′ return the same values in both graphs for
the same parameters. This is due to the fact, as we describe the generation process in
Section 3.6.1, that all content of our labels in the untimed UPPAAL observer are copied
to the generated monitor. We show the isomorphism between the UPPAAL observers
and their generated counterpart by utilizing the properties of isomorphism (1)(2)(3).

(1) ∀u ∈ V, l(u) = l′(u) = l′(f(u)) X

The second property states that each edge between two vertices u and v in G also
exists between the vertices f(u) and f(v). Our generation algorithm also copies the
edges of the UPPAAL observer using the identifiers of the target and source locations
and new target and source states. Therefore, for each edge (u, v) in E (set of edges in
G) there also exists a generated edge (f(u), f(v)) in E ′ (set of edges in G′).

(2)∀u, v ∈ V, (u, v) ∈ E ↔ (f(u), f(v)) ∈ E ′ X

The third property specifies that for every edge in E, the generated edge in E ′ as
specified in property (2) inherits the same label as its UPPAAL counterpart. Showing
this property applies to our monitors is trivial because we already showed the equality

23

of labels for vertices in property (1). As for the labels of transitions, the generated
transitions also copy the label of their origin, similar to the vertices as specified above
and in the algorithms in Section 3.6.1.

4.2 Experimentation Setup
Our experiments are based on Arduino. Our system produces executable code that
is compatible with Arduino and we also use an implementation of the BSN that was
build with Arduino[6].

Figure 7: Setup of our experimentation system

Figure 7 shows our experimentation setup where each of the Arduinos is annotated
with its programmed component. We chose Arduino as our monitor hardware mainly
because of its advantages in size and convenience to use. An Arduino as monitor does
not require a lot of space and also has a low power consumption. The programming
language for Arduinos is C++ which makes it easy to adapt our source code to other
hardware environments for further usage outside of the Arduino context. In its current
state, the BSN for Arduino partially does not provide sufficient logging for the properties
we want to verify. If that were the case we would have used an additional Arduino as
adapter to transform the logging output to events that can be used by the monitor.
Without the logging, we instrumentalize the BSN directly by adding the correct
structured events needed by the monitor into the correct places of the BSN. That way,
we simulate actual logging, which would need to happen anyway for our monitor to
work. Additionally, we don’t have redundant implementation work by having to add
logging to the BSN first, before creating an adapter which transforms the logging to

24

usable event logs for our monitor.
We evaluate multiple properties, which will be discussed in Section 4.3. For each
property, we altered the basic centralhub or sensor implementation separately. This
is done because by monitoring multiple properties on the same system would lead
to the need of adding at least one adapter Arduino and also one additional Arduino
per property. Our adapter would just emulate the one to one interaction between the
centralhub and the monitor, therefore we would not gain a significant advantage for
our evaluation despite the necessity of additional hardware.

4.3 Tested Properties
This section will provide information about our evaluation scenario and at the same
time will attend to the research question RQ2 (How many properties can we express?).
We tested our approach by creating properties for our BSN system. Table 3 shows
what properties we try to evaluate. We also provided the specification pattern, the
property is related to. Note that these are not the only patterns our approach can
transform into a runtime monitor. Our system should be able to verify any property
that is based on one of Dwyer’s specification patterns[10] and also complies with the
limitations we proposed in Section 3.2. In Section 2.5 we already mentioned that the
UPPAAL observers are based on the TCTL formulas of the specification patterns. This
could be a constraint for the number of properties we can express, because we can only
validate single execution paths and not all CTL/TCTL functions can be expressed
in CTL/MTL. Fortunately, the way we require the observers to be constructed in
Section 3.2, we only need to validate the query A[] not ERROR which is the UPPAAL
notation for AG¬ERROR. This formula is equivalent to the LTL formula G¬ERROR
which makes it possible for us to verify this behaviour with finite execution traces.
Therefore, we are limited to the existence of an observer for the specification pattern,
which satisfies the assumptions from Section 3.2 we mention.

P01 Globally, sensor sends message, holds repeatedly [every
2200ms].

Recurrence Globally Timed

P02 Globally, sensor sends message, then in response centralhub
receives message eventually holds [1200ms].

Response Globally Timed

P03 Globally, once centralhub receives sensor data it remains so
for less than 5200ms.

Maximum Duration Globally

P04 Globally, centralhub detects emergency, then it must have
been the case that sensor detects emergency [has occured]
before centralhub detects emergency [holds].

Precedence Globally Timed

P05 After sensor starts, it is always the case that sensor is alive
[holds]

Universitality After

Table 3: Properties verified in the thesis

P01 This property verifies if the sensor, which the monitor is connected to, sends a
message to the centralhub atleast once every 2200ms. The UPPAAL observer is shown

25

in Figure 8. The sensors are programmed to send a message to the centralhub every
2000ms. We give the sensor additional 200ms to compensate for a delay in reception
and transmission of the message. For this property, we added one P_reached? and one
P_left? event to the sensor when he starts to send its data to the centralhub.

Figure 8: UPPAAL Observer for the Recurrence globally timed pattern.

P02 This property monitors if we get a response from the centralhub, when the sensor
sends data. Its UPPAAL observer is depicted in Figure 9. We want to make sure, that
information of the sensor actually reaches the centralhub for further processing. This
was a challenge because we had to handle the messages of multiple devices. We therefore
instrumentalized our monitor to emulate an adapter that handles the communication.
The sensor and the centralhub use pins to notify the adapter of occurring events. Digital
pins in Arduino can have the values LOW and HIGH. The adapter translates the pin
values into fitting events, the monitor can evaluate.

Figure 9: UPPAAL Observer for the response globally timed pattern.

P03 The property checks how long it takes the centralhub to evaluate the information
send by the sensor and calculate the risk. The centralhub collects data and evaluates the
risk based on the vital parameters observed by the sensors. If calculation time is delayed,
the centralhub also takes more time to report its results. The maximum duration
pattern observer of PSP-UPPAAL does not provide an error state. As mentioned in
our assumptions in Section3.2 our generated monitors require an error location to
check whether an error occured or not. Therefore we changed the initial observer by

26

adding an ERROR location and extending the original observer with fitting guards. Both
observers are shown in Figure 10.

Figure 10: Original observer without error location (left) and the adjusted observer
with error location (right)

P04 The property monitors, that the centralhub receives data from the sensor, if the
sensor send data beforehand. This property does not work well with runtime monitoring
because as shown in Figure 11 it has no looping behaviour. If P_reached? is received
first, the state machine transitions to the error state. Receiving a S_reached? first on
the other hand will satisfy the property and the state machine transitions to a state
without outgoing edges. We evaluate this property by starting the monitor with or
without faulty behaviour and measuring the time it takes to get from the start of the
monitor to the error or succeeded state. Note that the state is not labelled. We
use the term succeeded state to denote the state, which is not an error state, but
also does not have any outgoing transitions. As communication adapter, we again
instrumentalized our monitor to listen on specific pins and receive events based on the
pin state.

Figure 11: UPPAAL observer for the precedence globally timed pattern

P05 Figure 12 shows the UPPAAL observer of our property P05. This property
ensures, the sensor is always online after its initial start-up. If the sensor fails, the
monitor notifies the user. We utilize the Vin pin on the Arduino which is always HIGH
if the Arduino has power. The sensor starts event is emulated by the adapter if the
Vin pin is HIGH and to check if the sensor is still alive, we send the P_left? when the
Vin is LOW.

27

Figure 12: UPPAAL observer for the universality after timed pattern

4.4 Experimental Results
This section contains our results of the evaluation combined with problems which
occurred during the evaluation.

4.4.1 Memory Usage

Here we will answer the research question RQ3 (How much memory is needed for
the monitor?). Table 4 shows the memory usage of our monitors. We provide the
memory allocation of the dynamic and programmable memory of the Arduino. The
percentages are based on the maximum memory of an Arduino Uno. The Arduino Uno
has 32KB of programmable memory, which is used to store the code of our monitor
and 2KB of static random access memory which is used to create and manipulate
variables during runtime7. The memory usage of all the monitors is similar, which is
not surprising because they share most of their code. The differences in memory can
be explained with the different number of states and transitions, but also the varying
guards, invariants and assignments. As shown, there is still enough space for more
complex properties on the Arduino Uno. If necessary for future work, we still have
the option to upgrade to the Arduino Mega which provides 256KB of programmable
memory and 8KB of static random access memory. The overhead generated through
the monitor is always an entire Arduino. We do not utilize the full memory space of the
Arduino, but we also can not use the remaining capacity for anything else. Additional
functionality would alter the precision and behaviour of our monitor.

Property Dynamic Memory (%) Programmable Memory (%)
P01 1223 Bytes (59%) 10392 Bytes (32%)
P02 1267 Bytes (61%) 10708 Bytes (33%)
P03 1229 Bytes (60%) 10398 Bytes (32%)
P04 1211 Bytes (59%) 10528 Bytes (32%)
P05 1221 Bytes (59%) 10520 Bytes (32%)

Table 4: Memory usage of our monitor on an Arduino Uno

4.4.2 Generation Time and Detection Time

We measured the generation time of our monitors to answer the research question
RQ4 (How long does the monitor generation take?). This does not include initial

7https://www.arduino.cc/en/Tutorial/Foundations/Memory

28

https://www.arduino.cc/en/Tutorial/Foundations/Memory

installations or the start of the gradle daemon. Figure 13 depicts the average generation
time for each of the selected properties.

Figure 13: Measured time of the monitor generatiion

We generated each monitor ten times and deleted the monitor file before every
execution. None of the monitors took longer than a second to be generated. Having
short generation times adds to the accessibility of our lightweight approach. The
variance in our measurement could occur due to caching. Each time we adjust a
monitor configuration or change the desired property, the generation is about 100ms
longer.
The next time we measured was the detection time or time till error of our runtime
monitors in the context of research question RQ5 (How fast can we detect errors?).
Figure 14 shows the average time until the error state is reached on every monitor.

Figure 14: Measured time of the error detection

The error was introduced to the system by manipulating the hardware. This was
achieved by either removing the cable or pulling the voltage of a pin to ground. Note
that simply removing a cable from a pin does not necessary result in the pin voltage

29

being LOW. An unconnected pin will have a floating voltage if not declared as pull-up pin
or connected to ground. Therefore removing a cable does lead to "random" behaviour
of the pin. The start point of the measurement was always the state which was directly
connected to the error state. The properties we evaluate do not have more than
one incoming transition in their error state. If multiple paths to the error state
existed, we would have to measure multiple scenarios separately. Using other states
as measurement starting point would lead to deviations in detection times because
the state machine could idle in some of those states which would artificially increase
the measured times. Therefore, to reach comparable values, we only took the last
transition into consideration and measured the time it took until the state machine
switched to the error state.

In case of property P04, where we have no looping behaviour and the initial state is
directly connected to the error state, we use the start of the monitor as starting point
for our measurement. We made this decision, as we do not print the current state of
our state machine, if no transition is fired, to keep the traffic low. As expected, the
detection time of the timed properties is close to their time constraints. The variance
can occur due to delay in the serial output of the Arduino monitor as well as delay
due to the time the monitor loop requires to evaluate the error.
Property P04 varies the most, covering almost the whole interval from 0ms to

2000ms. This can be explained when we look at the process of the system. The
property fails, if the centralhub sends a message that it received data from the sensor,
before the sensor even sends the data. We removed the connection between the monitor
and the sensor to force a property failure. The sensor still sends data to the centralhub
every 2000ms and therefore the centralhub will also notify the monitor every 2000ms.
Because there is no loop and we need to start the serial monitor which does print
everything with the current timestamp, we always hit the error state somewhere in the
two second interval.
For property P05 we did not measure the time between two states, but rather the

time between the incoming event, that the sensor became unavailable, and the switch
to the error state. The times measured were all between 1ms and 1.2ms with the
exception of one outlier at 2.5ms.

4.5 The Clock and Real-time Constraints
The non-intrusive approach does not have access to the internal clock of the monitored
system, which means that the monitor needs to provide its own clock to handle timing
constraints. The hardware we use for our experiments does not provide parallelism
in any way. These characteristics make precise time management challenging. If our
implementation is not fast enough, the time it takes to generate a new clock value can
be too long so that we possibly miss specific time intervals, which are necessary for the
verification. Having to deal with real-time properties is a common challenge in runtime
verification[38]. As we describe in Section 2.1, we are working with continuous times in
the physical world and therefore guarantee to verify a guard like time == 100ms in a
state machine at the exact time. There is always at least a minimal deviation because

30

of time continuity, so we can only try to get as close as possible to the time constraint,
by creating efficient code and using fast and lightweight hardware if feasible. There
are multiple possible improvements for time management on Arduino, one of them
being Interrupt Service Routines (ISR)8. When a hardware interrupt is triggered, the
hardware interrupts the current execution and saves the system state to execute the
related ISR. This trigger could be an external clock or the internal time register for
example[2]. This creates multiple challenges. When we update the clock via ISRs, we
can still miss timestamps, because our loop can take too long. Another idea would be
to handle the state machine traversal and guard checking via ISRs. There we need to
find a fitting trigger for the interrupts and a solution to keep track of the current state
in our state machine.
All of this needs more research and could lead to future work.

4.6 Feasibility
In this section we take a look at the feasibility of the system. We already mentioned
timing issues in earlier Sections 4.5 and 4.1.2. These pose a risk to the correctness of
our state machine, as well as the feasibility. As stated in the Introduction in Section 1
runtime verification can be beneficial for safety-critical systems. Especially in systems
with natural high reliability requirements, dealing with monitor deviations of up to
150ms can change the behaviour and poses an unnecessary risk. This is the case for
any system that requires precise behaviour in the millisecond range. In those cases,
our approach is no feasible addition to the system and should not be the only runtime
verification in place. There are better alternatives, which either use more efficient
hardware [35] or are build into the system to keep track of internal variables and even
apply error handling routines to reduce manual intervention[32, 29]. Therefore, the idea
of creating a system which automatically generates runtime monitors for safety-critical
systems should not be the goal for this thesis. Furthermore we want to set the focus
on the accessibility of our system and build a foundation for future research in this
scientific field.

8https://www.arduino.cc/reference/en/language/functions/external-interrupts/
attachinterrupt/

31

https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

5 Discussion
In this section we want consider some challenges which occurred during our experiments.
First of all, the communication of the Arduinos via SoftwareSerial and via an adapter
works, but can be unreliable. Sometimes we had to restart the monitor multiple times
for it to recognize the changes of pin voltages of the communication partner. This can
be fixed by adding delays to the sender, so that the receiver has more time to recognize
the transmission. One of the problems was, that we were not allowed to make large
changes to the underlying Arduino BSN, if we wanted to keep its functionality. The
BSN implementation also uses communication and therefore schedules its transmissions
in a way that the sensors do not send messages at the same time for example. This
made changes to the transmission time difficult. For P04 we had to add 50ms delay
to achieve some reliability to the monitor. Having a logging component built into the
monitored system can also increase the reliability, but has to be adjusted from system
to system.
Another problem was that we had to deal with message loss. Especially in P03, the
monitor sometimes received faulty strings _reached? and _left?, where the last one
made the monitor detect an error. At this point in time, we do not provide a solution
for this. A solution could be to manually map pins of the monitor to specific events and
work with voltages, but we would still need to receive information from the monitored
system on the adapter.

An additional challenge we had during the evaluation was the output of our monitor.
The only output our monitors produce are the processed events and the target state,
if a transition is fired. We could not generate output with more information value
because the monitor is not able to print the information fast enough compared to the
loop frequency. This led to monitor crashes. As a consequence, we reduced the amount
of output printed as described above.

32

6 Threats to Validity
In this section we talk about possible threats to the validity of this thesis. We therefore
split the threats in different parts, the internal, external and construct validity.

Internal Validity We made changes to the BSN so it can output events that occur
during its runtime. These changes are only minor additions and our approach would
need some kind of logging component in any case, but we can not be sure that they did
not alter the behaviour of our monitored system. Therefore it could be the case that
our approach does not work with the original implementation on the Arduino platform.
Another threat is the possibility of message loss that can occur with our hardware,
as discussed in Section 5. This threat can lead to faulty verification results because
important events were either faulty or not received at all. In addition to that the
synchronisation of the monitor with the monitored system posed another threat. It
could happen, that the monitor misses important events such as rising edges of pins
because the calculations take too long. This threat can be mitigated by implementing
an efficient adapter to handle those signal changes and transforming them into the
specific events for the generated monitor.
We also added a grace period to our time constrained guards to compensate for the
inaccuracy of our monitor time handling. We already addressed this issue in Section 4.5
combined with possible solutions for future work. This problem poses less of a threat
to the correctness of our monitor but more to the efficiency.
In addition to that, our experiments only cover five specification patterns. Though we
tried to choose a wide spectrum of different patterns, there can still exist a specification
pattern, for which our monitor generation produces faulty code. Defining properties
for each pattern, adjusting the events sent by the BSN and running the experiments
for every possible pattern would not have been feasible in the time frame of this thesis.

External Validity We were only able to test our approach on the BSN system. Though
we are confident, that the generation of runtime monitors should work with any system,
because it utilizes the generalisation the specification patterns provide, we can not be
sure that this is actually the case without testing it on more than one system.

Construct Validity Our approach utilizes multiple systems. Each of those systems
poses a threat to the validity of our system. First, we rely on the correctness of Dwyer’s
specification patterns. If the pattern does not mirror the desired requirement, our
monitor also will not verify the correct requirement. These specification patterns are
renown and widely used for requirement specifications and as groundwork for further
research[20, 3] and therefore pose a small risk to our approach.
For our implementation we use the custom Arduino libraries ArxContainer9 and
SoftwareSerial10. The ArxContainer library is a lightweight implementation of the

9https://www.arduino.cc/reference/en/libraries/arxcontainer/
10https://docs.arduino.cc/learn/built-in-libraries/software-serial

33

https://www.arduino.cc/reference/en/libraries/arxcontainer/
https://docs.arduino.cc/learn/built-in-libraries/software-serial

C++ standard library container structures we use for an implementation of map, deque,
vector and array. SoftwareSerial is used to provide additional serial pins for the
communication between Arduinos. The libraries are still maintained regularly and we
tested all functions used to make sure they work as intended. However we can not rule
out that there may occur faulty software behaviour because of those libraries.

34

7 Related Work
In the runtime verification context there already exist a bunch of approaches for
automatic runtime monitor generation. In this section we take a look at different
approaches for runtime verification monitors and talk about the differences to our
approach. One system which is closely related to the idea of our approach, is the OGMA
system[29]. This system acts as a bridge between the Formal Requirements Elicitation
Tool (FRET)[12] and COPILOT[7]. Similar to Dwyer’s specification patterns[10], which
we use to generate logical formulas from structured natural language, FRET is used
and extended by OGMA to generate a formal component specification out of "specialized
natural language"[12]. This specification is then utilized to configure a COPILOT
monitor. The generated COPILOT monitors are no standalone executable application
and are designed with the idea in mind to be embedded inside the monitored application
so they can access and alter the system variables to handle property violations. Those
violation handlers have to be manually written by the user. The authors provide a
depiction of their workflow which can be seen in Figure 15.
Though a lot of similarities exist between our approaches there are also significant

differences between them. OGMA utilizes stream-based monitoring. Stream-based
monitoring utilizes arithmetic operations on streams and evaluates streams to determine
whether a property failed or not. The advantage of stream-based monitoring is the
expressiveness of the data the monitor can evaluate. While our approach is based on
boolean events and therefore needs precise events to validate a property, streams provide
the ability to evaluate other data such as integers and aggregate this information. This
enables them to verify different properties, without additional effort. Another difference
is the way we handle updates on our monitors. The COPILOT monitors need to access
the external variables of the system, which is why the authors advice the user to embed
the monitors into the application. Even if built outside the system, the monitor still
relies on having on-demand access to the variables in specific time intervals, because
COPILOT utilizes sampling-based monitoring[31][32].

Sampling-based monitoring is done by updating the information, the monitor receives
from the monitored system on predefined time intervals. This type of monitoring can
solve the timing issues we presented earlier, because the monitor can act on those
intervals without the need to listen to events between those times. While this approach
can be prone to error, because the sampling could lead to omitted information, the
authors propose a solution to this by making the monitor and the monitored "system
share the same global clock and providing static periodic schedule"[31]. This property
makes the monitors invasive by nature, which differs vastly from our approach. Our
event-based approach has the advantage of not intervening with the monitored system
by just catching communication traffic. That way, we do not interfere the monitored
systems performance or behaviour in any way. This also leads to the problem that we
need to process events when they arise and therefore we are unable to do sampling-based
monitoring, which would solve our timing issues.

While OGMA does not address the issues we are trying to solve in our thesis, because of
the invasive nature of their monitors it looks like a powerful tool for embedded runtime

35

Figure 15: Workflow for automatic monitor generation out of structured natural lan-
guage proposed by Perez et al. [29]

monitor verification, because it also allows for direct error handling by providing the
option to specify handler functions for violated properties.

Another approach that actually utilizes event-based monitoring for unsynchronized
systems is the specification language RTLola[34]. RTLola is an extension of the specifi-
cation language Lola[8] which adds real time monitoring and works with asynchronous
systems. The authors wrote multiple papers describing the workflow with RTLola[35].
The approach also uses natural language that is converted into logical formulas for their
property specification. The authors provide compiler for FPGA and RUST monitors
and a pre-compiled interpreter[11]. RTLola utilizes input streams for its monitoring
to produce corresponding output streams based on the underlying specification. The
interval in which new values are processed for the output streams can be configured
either by providing a frequency or setting the computation to event-based. In case
of the event-based monitoring new values for the output stream are generated only if
new values arrive in the input stream. While working with unsynchronized systems,
the authors still assume that the events from different components are received in the
correct order, respective to their time stamps.
Another real-time based approach from Leucker et al.[24] also addresses stream-based
monitoring. This approach also takes asynchronous events but does not rely on an
arrival order of events from different components. The authors use TeSSLaa[19] as
their specification language of choice.
None of the mentioned real-time based approach which work with asynchronous systems
provide automatic monitor generation. Each of the monitor specifications has to be
specified manually using the specification language provided.
Another approach which does not utilize stream-based runtime verification is MESA[39].
MESA is a non-intrusive runtime verification framework which utilizes the communica-
tion messages of different actors in the system to verify properties. These properties
can be specified using temporal logic and finite state machines[38]. Similar to our
approach they verify the specified property by traversing the state machine based on
the monitored messages. Another similarity to our system is that MESA, according to its
authors, "[...] is not suitable for verifying hard real-time systems where there are time

36

constraints on the system response."[38]. There also exist differences between their
system and our approach. Compared to us, they provide a much higher reliability by
utilizing a multi-step publish/subscribe communication combined with hardware that
has much higher computation power. Our advantage compared to their approach on
the other hand is, that we do not rely on an manual state machine specification which
was designed for one property only, because we can utilize the specification patterns
and the observer models provided by PSP-UPPAAL.

37

8 Conclusion and Future Work
In this thesis we presented an approach to automatically generate executable code
for runtime montiors on lightweight hardware with limited memory. We showed how
to build C++ state machines based on UPPAAL models. This enabled us to verify
properties, which were specified for the system model, during runtime. We also pro-
vided examples of the generation process and used a BSN implementation on Arduinos
for our monitored system, which we also used for our evaluation. Our experiments
showed that our system generates correct runtime verification monitors for untimed
specification patterns with minimal configuration, given an UPPAAL observer from
PSP-UPPAAL exists. We presented the short generation time of our monitors and
showed that the memory capacity of an Arduino Uno is sufficient to cover them.
The simplicity of the approach makes runtime verification accessible for a variety of
systems which have no runtime verification implemented yet but already made the ef-
fort to specify the requirements for their system using Dwyer’s specification patterns[10].

We also reflected on the systems limitations and drawbacks. While producing seemingly
correct monitors for untimed properties, our approach struggles with precise time con-
straints. Right now, we are not able to evaluate specific guards or invariants without
any deviation, because we work with unsynchronized systems and our monitors utilize
hardware that does not provide parallelization. We also are vulnerable to message loss
between the monitor and the system. We proposed solution ideas to overcome these
issues, which present a good opportunity for future work.
Another future addition to our system can be the evaluation of formulas of the UPPAAL
generator. The addition would remove our reliance on error states and therefore widen
the range of different properties, we can monitor without altering the original UPPAAL
observer.
In addition to that, when working with self-adaptive systems, the idea of adaptive
system requirements comes into mind. The possibility to change the runtime monitors
during runtime based on the adjustments made by the adapting component can lead
to more dynamic and precise verifications. Applying this property to our monitor
generator and therefore creating monitors that adapt their constraints and specifications
during runtime, is also an interesting idea for future work.
We already mentioned the advantages of stream-based monitors in the related work
Section 7.

38

References
[1] R. Alur, C. Courcoubetis, and D. Dill. “Model-Checking in Dense Real-Time”.

In: Information and Computation 104.1 (May 1993), pp. 2–34. issn: 08905401.
doi: 10.1006/inco.1993.1024. url: https://linkinghub.elsevier.com/
retrieve/pii/S0890540183710242 (visited on 10/22/2022).

[2] Arduino Tutorial - Timer. EXP Tech. url: https://www.exp-tech.de/blog/
arduino-tutorial-timer (visited on 09/25/2022).

[3] Marco Autili et al. “Aligning Qualitative, Real-Time, and Probabilistic Prop-
erty Specification Patterns Using a Structured English Grammar”. In: IEEE
Transactions on Software Engineering 41.7 (July 2015). Conference Name: IEEE
Transactions on Software Engineering, pp. 620–638. issn: 1939-3520. doi:
10.1109/TSE.2015.2398877.

[4] Howard Barringer et al. “Rule-Based Runtime Verification”. In: Verification,
Model Checking, and Abstract Interpretation. Ed. by Bernhard Steffen and Giorgio
Levi. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2004,
pp. 44–57. isbn: 978-3-540-24622-0. doi: 10.1007/978-3-540-24622-0_5.

[5] Ezio Bartocci et al. “Introduction to Runtime Verification”. In: Lectures on
Runtime Verification: Introductory and Advanced Topics. Ed. by Ezio Bartocci
and Yliès Falcone. Cham: Springer International Publishing, 2018, pp. 1–33.
isbn: 978-3-319-75632-5. doi: 10.1007/978- 3- 319- 75632- 5_1. url:
https://doi.org/10.1007/978-3-319-75632-5_1.

[6] carwehlm/masterthesis. GitHub. url: https : / / github . com / carwehlm /
masterthesis (visited on 09/19/2022).

[7] Copilot: Stream DSL for hard real-time runtime verification. original-date:
2015-06-09T23:48:41Z. Aug. 31, 2022. url: https://github.com/Copilot-
Language/copilot (visited on 09/01/2022).

[8] Ben D’Angelo et al. “Lola: Runtime Monitoring of Synchronous Systems”.
In: 12^th International Symposium on Temporal Representation and Reasoning
(TIME’05). event-place: Burlington, Vermont. IEEE Computer Society Press,
June 2005, pp. 166–174.

[9] Nilanjan Dey et al. “Medical cyber-physical systems: A survey”. In: Journal of
Medical Systems 42.4 (Mar. 10, 2018), p. 74. issn: 1573-689X. doi: 10.1007/
s10916-018-0921-x.

[10] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns in
Property Specifications for Finite-State Verification”. In: Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA,
USA, May 16-22, 1999. Ed. by Barry W. Boehm, David Garlan, and Jeff Kramer.
ACM, 1999, pp. 411–420. doi: 10.1145/302405.302672.

39

https://doi.org/10.1006/inco.1993.1024
https://linkinghub.elsevier.com/retrieve/pii/S0890540183710242
https://linkinghub.elsevier.com/retrieve/pii/S0890540183710242
https://www.exp-tech.de/blog/arduino-tutorial-timer
https://www.exp-tech.de/blog/arduino-tutorial-timer
https://doi.org/10.1109/TSE.2015.2398877
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://github.com/carwehlm/masterthesis
https://github.com/carwehlm/masterthesis
https://github.com/Copilot-Language/copilot
https://github.com/Copilot-Language/copilot
https://doi.org/10.1007/s10916-018-0921-x
https://doi.org/10.1007/s10916-018-0921-x
https://doi.org/10.1145/302405.302672

[11] Peter Faymonville et al. “StreamLAB: Stream-based Monitoring of Cyber-
Physical Systems”. In: Computer Aided Verification. Ed. by Isil Dillig and
Serdar Tasiran. Vol. 11561. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2019, pp. 421–431. isbn: 978-3-030-
25539-8 978-3-030-25540-4. doi: 10.1007/978-3-030-25540-4_24. url:
http://link.springer.com/10.1007/978-3-030-25540-4_24 (visited on
09/19/2022).

[12] FRET: Formal Requirements Elicitation Tool. original-date: 2019-11-26T04:56:57Z.
Aug. 25, 2022. url: https://github.com/NASA-SW-VnV/fret (visited on
09/01/2022).

[13] Eric Bernd Gil et al. Body Sensor Network: A Self-Adaptive System Exemplar
in the Healthcare Domain. 2021. arXiv: 2103.14948 [cs.SE].

[14] Valentin Goranko and Antje Rumberg. “Temporal Logic”. In: The Stanford
Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2022. Metaphysics
Research Lab, Stanford University, 2022. url: https://plato.stanford.edu/
archives/sum2022/entries/logic-temporal/ (visited on 10/26/2022).

[15] Lars Grunske. “Specification patterns for probabilistic quality properties”. In:
2008 ACM/IEEE 30th International Conference on Software Engineering. 2008,
pp. 31–40. doi: 10.1145/1368088.1368094.

[16] Shu-Ming Hsieh, Chiun-Chieh Hsu, and Li-Fu Hsu. “Efficient Method to Perform
Isomorphism Testing of Labeled Graphs”. In: Computational Science and Its
Applications - ICCSA 2006. Ed. by Marina L. Gavrilova et al. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 422–431. isbn:
978-3-540-34080-5. doi: 10.1007/11751649_46.

[17] Fei Hu. Cyber-physical systems. Taylor & Francis Group LLC, 2014.
[18] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and

Reasoning about Systems. Google-Books-ID: eUggAwAAQBAJ. Cambridge
University Press, Aug. 26, 2004. 326 pp. isbn: 978-1-139-45305-9.

[19] Hannes Kallwies et al. “TeSSLa – An Ecosystem for Runtime Verification”.
In: Runtime Verification. Ed. by Thao Dang and Volker Stolz. Vol. 13498.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2022, pp. 314–324. isbn: 978-3-031-17195-6 978-3-031-17196-3. doi:
10.1007/978-3-031-17196-3_20. url: https://link.springer.com/10.
1007/978-3-031-17196-3_20 (visited on 10/06/2022).

[20] Aaron Kane. “Runtime Monitoring for Safety-Critical Embedded Systems”. In:
2015. doi: 10.1184/r1/6721376.v1.

[21] J.C. Knight. “Safety critical systems: challenges and directions”. In: Proceedings
of the 24th International Conference on Software Engineering. ICSE 2002.
Proceedings of the 24th International Conference on Software Engineering. ICSE
2002. May 2002, pp. 547–550.

40

https://doi.org/10.1007/978-3-030-25540-4_24
http://link.springer.com/10.1007/978-3-030-25540-4_24
https://github.com/NASA-SW-VnV/fret
https://arxiv.org/abs/2103.14948
https://plato.stanford.edu/archives/sum2022/entries/logic-temporal/
https://plato.stanford.edu/archives/sum2022/entries/logic-temporal/
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1007/11751649_46
https://doi.org/10.1007/978-3-031-17196-3_20
https://link.springer.com/10.1007/978-3-031-17196-3_20
https://link.springer.com/10.1007/978-3-031-17196-3_20
https://doi.org/10.1184/r1/6721376.v1

[22] S. Konrad and B.H.C. Cheng. “Real-time specification patterns”. In: Proceed-
ings. 27th International Conference on Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on Software Engineering, 2005. ICSE
2005. ISSN: 1558-1225. May 2005, pp. 372–381. doi: 10.1109/ICSE.2005.
1553580.

[23] Daniela Lepri, Erika Ábrahám, and Peter Csaba Ölveczky. “Timed CTL Model
Checking in Real-Time Maude”. In: Rewriting Logic and Its Applications. Ed.
by Franciso Durán. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2012, pp. 182–200. isbn: 978-3-642-34005-5. doi: 10.1007/978-3-
642-34005-5_10.

[24] Martin Leucker et al. “Runtime verification of real-time event streams under non-
synchronized arrival”. In: Software Quality Journal 28.2 (June 2020), pp. 745–
787. issn: 0963-9314, 1573-1367. doi: 10.1007/s11219-019-09493-y. url:
https://link.springer.com/10.1007/s11219-019-09493-y (visited on
10/02/2022).

[25] Kasper Luckow. JUppaal. original-date: 2016-02-02T22:51:25Z. May 19, 2020.
url: https://github.com/ksluckow/juppaal (visited on 09/14/2022).

[26] Saraju Mohanty. “Advances in Transportation Cyber-Physical System (T-CPS)”.
In: IEEE Consumer Electronics Magazine 9 (July 1, 2020), pp. 4–6. doi:
10.1109/MCE.2020.2986517.

[27] Anik Momtaz. “Runtime Verification for Distributed Cyber-Physical Systems”.
In: 2021 40th International Symposium on Reliable Distributed Systems (SRDS).
2021 40th International Symposium on Reliable Distributed Systems (SRDS).
ISSN: 2575-8462. Sept. 2021, pp. 349–350. doi: 10.1109/SRDS53918.2021.
00044.

[28] James Nutaro. “Toward a Theory of Superdense Time in Simulation Models”.
In: ACM Trans. Model. Comput. Simul. 30.3 (May 2020). issn: 1049-3301.
doi: 10.1145/3379489. url: https://doi.org/10.1145/3379489.

[29] Ivan Perez et al. “Automated Translation of Natural Language Requirements
to Runtime Monitors”. In: Tools and Algorithms for the Construction and
Analysis of Systems. Ed. by Dana Fisman and Grigore Rosu. Cham: Springer
International Publishing, 2022, pp. 387–395. isbn: 978-3-030-99524-9.

[30] Lee Pike, Sebastian Niller, and Nis Wegmann. “Runtime Verification for Ultra-
Critical Systems”. In: Runtime Verification. Ed. by Sarfraz Khurshid and
Koushik Sen. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2012, pp. 310–324. isbn: 978-3-642-29860-8. doi: 10.1007/978-3-642-29860-
8_23.

[31] Lee Pike et al. “Copilot: A Hard Real-Time Runtime Monitor”. In: vol. 6418.
Nov. 1, 2010, pp. 345–359. isbn: 978-3-642-16611-2. doi: 10.1007/978-3-
642-16612-9_26.

41

https://doi.org/10.1109/ICSE.2005.1553580
https://doi.org/10.1109/ICSE.2005.1553580
https://doi.org/10.1007/978-3-642-34005-5_10
https://doi.org/10.1007/978-3-642-34005-5_10
https://doi.org/10.1007/s11219-019-09493-y
https://link.springer.com/10.1007/s11219-019-09493-y
https://github.com/ksluckow/juppaal
https://doi.org/10.1109/MCE.2020.2986517
https://doi.org/10.1109/SRDS53918.2021.00044
https://doi.org/10.1109/SRDS53918.2021.00044
https://doi.org/10.1145/3379489
https://doi.org/10.1145/3379489
https://doi.org/10.1007/978-3-642-29860-8_23
https://doi.org/10.1007/978-3-642-29860-8_23
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26

[32] Lee Pike et al. “Copilot: monitoring embedded systems”. In: Innovations
in Systems and Software Engineering 9.4 (Dec. 2013), pp. 235–255. issn:
1614-5046, 1614-5054. doi: 10 . 1007 / s11334 - 013 - 0223 - x. url: http :
//link.springer.com/10.1007/s11334-013-0223-x (visited on 09/19/2022).

[33] Property Specification Patterns for UPPAAL. original-date: 2021-01-12T15:55:13Z.
Dec. 16, 2021. url: https://github.com/hub-se/PSP-UPPAAL (visited on
09/06/2022).

[34] RTLola. url: https://www.react.uni-saarland.de/tools/rtlola/ (visited
on 09/05/2022).

[35] Maximilian Schwenger. “Monitoring Cyber-Physical Systems: From Design to
Integration”. In: Runtime Verification. Ed. by Jyotirmoy Deshmukh and Dejan
Ničković. Cham: Springer International Publishing, 2020, pp. 87–106. isbn:
978-3-030-60508-7. doi: 10.1007/978-3-030-60508-7_5.

[36] Koushik Sen and Grigore Roşu. “Generating Optimal Monitors for Extended
Regular Expressions”. In: Electronic Notes in Theoretical Computer Science
89.2 (Oct. 2003), pp. 226–245. issn: 15710661. doi: 10 . 1016 / S1571 -
0661(04)81051-X. url: https://linkinghub.elsevier.com/retrieve/
pii/S157106610481051X (visited on 10/06/2022).

[37] Sanjit A Seshia. “Introduction to Temporal Logic”. In: (), p. 28.
[38] Nastaran Shafiei, Klaus Havelund, and Peter Mehlitz. “Actor-Based Runtime

Verification with MESA”. In: Runtime Verification. Ed. by Jyotirmoy Deshmukh
and Dejan Ničković. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 221–240. isbn: 978-3-030-60508-7. doi:
10.1007/978-3-030-60508-7_12.

[39] Nastaran Shafiei, Oksana Tkachuk, and Peter Mehlitz. “MESA: Message-Based
System Analysis Using Runtime Verification”. In: (), p. 16.

[40] SoftwareSerial Library | Arduino Documentation. url: https://docs.arduino.
cc/learn/built-in-libraries/software-serial (visited on 09/11/2022).

[41] Thomas Vogel and Marc Carwehl. Property Specification Patterns for UPPAAL.
original-date: 2021-01-12T15:55:13Z. Dec. 16, 2021. url: https://github.
com/hub-se/PSP-UPPAAL (visited on 08/18/2022).

[42] UPPAAL. url: https://uppaal.org/ (visited on 09/20/2022).
[43] Thomas Vogel et al. A Property Specification Pattern Catalog for Real-Time

System Verification with UPPAAL. Rochester, NY, Dec. 21, 2021. doi: 10.
2139/ssrn.3990519. url: https://papers.ssrn.com/abstract=3990519
(visited on 10/17/2022).

42

https://doi.org/10.1007/s11334-013-0223-x
http://link.springer.com/10.1007/s11334-013-0223-x
http://link.springer.com/10.1007/s11334-013-0223-x
https://github.com/hub-se/PSP-UPPAAL
https://www.react.uni-saarland.de/tools/rtlola/
https://doi.org/10.1007/978-3-030-60508-7_5
https://doi.org/10.1016/S1571-0661(04)81051-X
https://doi.org/10.1016/S1571-0661(04)81051-X
https://linkinghub.elsevier.com/retrieve/pii/S157106610481051X
https://linkinghub.elsevier.com/retrieve/pii/S157106610481051X
https://doi.org/10.1007/978-3-030-60508-7_12
https://docs.arduino.cc/learn/built-in-libraries/software-serial
https://docs.arduino.cc/learn/built-in-libraries/software-serial
https://github.com/hub-se/PSP-UPPAAL
https://github.com/hub-se/PSP-UPPAAL
https://uppaal.org/
https://doi.org/10.2139/ssrn.3990519
https://doi.org/10.2139/ssrn.3990519
https://papers.ssrn.com/abstract=3990519

[44] Jean-Paul A. Yaacoub et al. “Cyber-physical systems security: Limitations,
issues and future trends”. In: Microprocessors and Microsystems 77 (Sept. 2020),
p. 103201. issn: 0141-9331. doi: 10.1016/j.micpro.2020.103201. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340599/ (visited on
10/26/2022).

[45] Man Zhang et al. “Understanding Uncertainty in Cyber-Physical Systems: A
Conceptual Model”. In: Modelling Foundations and Applications. Ed. by Andrzej
Wąsowski and Henrik Lönn. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 247–264. isbn: 978-3-319-42061-5. doi:
10.1007/978-3-319-42061-5_16.

[46] Xi Zheng et al. “BraceAssertion: Runtime Verification of Cyber-Physical Sys-
tems”. In: 2015 IEEE 12th International Conference on Mobile Ad Hoc and
Sensor Systems. 2015 IEEE 12th International Conference on Mobile Ad Hoc
and Sensor Systems. Oct. 2015, pp. 298–306. doi: 10.1109/MASS.2015.15.

43

https://doi.org/10.1016/j.micpro.2020.103201
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340599/
https://doi.org/10.1007/978-3-319-42061-5_16
https://doi.org/10.1109/MASS.2015.15

