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Abstract
Automated testing is most important to detect bugs before an application is deployed.
Fixing errors after deployment requires lots of resources and time. Fuzzing routines have
become an essential part of automated testing.
The JQF Platform contains both fuzzers for different utilities and a framework to build
a customised fuzzer. The Zest algorithm is a structured coverage-guided fuzzer delivered
by JQF. As all coverage guided fuzzer, Zest benefits from creating and mutating divers
inputs. To improve the input diversity on Zest, we augment the algorithm by a technique
called HashFuzz. HashFuzz divides the input space into different partitions to initiate a
more divers set of parent inputs. We implement a novel technique, HashedZest, building
the idea of HashFuzz on top of Zest. This leads to new saved valid inputs Zest would
not save by default and therefore and improved ability to detect bugs and coverage.
Within the scope of the thesis, three versions of HashedZest are introduced, implemented
and tested. We evaluate four fuzzers on five target programs and compare them among
their detected bugs, branch coverage, valid to invalid input share and the execution
speed. Although we cannot claim significant improvements in terms of bug detection
and coverage, the thesis carries out a novel technique with an increased share of valid to
total inputs and more promising findings for future work.
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1 Introduction
In the course of digitisation, software inherits many tasks done manually before. Thus
the amount and complexity of software increases as well as its maintenance costs [29].
Once software is deployed, fixing bugs and dealing with crashes require plentiful resources.
To assure a certain quality standard, static code analysis tools like Sonarlint are available
for almost every integrated development environment [28]. Sonarlint highlights bugs
and code vulnerabilities and makes suggestions to reduce cognitive complexity in terms
of clean code. Tools like Sonarlint reduce the number of bugs by avoidable coding mistakes.

Complementary to static code analysis, dynamic analysis reasons about behaviour of
an application during execution [1]. Fuzzers feeding a program with inputs and either
terminate when a crash is detected or continue recording the exposed errors until a
time limit is reached. The routine can also be interrupted manually. As fuzzers report
very few false-positive crashes and being versatile in terms of usability, they gain in
importance. Random fuzzers apply many inputs to their target program by generating
input files randomly [13]. They lack in producing valid test cases an application would
actually work with and hence detecting bugs. Feedback-Based fuzzers, or coverage-guided
fuzzer, collect coverage information during each execution and use them to generate valid
inputs [30]. There are many more types of fuzzers, but the last category we would like
to introduce are Mutation-Based fuzzers. Mutation-Based fuzzers require valid inputs
to mutate bits or bit-sequences. Valid inputs can be provided either due to initial seed
inputs or by generating them. To produce valid inputs on its own, the fuzzer needs
information provided by feedback-based fuzzing techniques.

It is obvious that coverage-guided fuzzers would benefit from enhanced input diversity
because it leads to unexplored branches. Furthermore new identified branches result
in a higher overall code coverage and therefore more spotted bugs. However, some
branches are guarded with conditions that are hard to meet. To increase the chance
of hitting those branches we need to enhance the input diversity. Mutational fuzzers
struggle to stick to a specific structure, those branches need. They rely on mutating
binary strings without considering the basic input structure. Grammar-based fuzzers
perform better as they generate structured test inputs. Zest, for instance, produces struc-
tured inputs as only certain bit sequences mutate while the overall input structure remains.

In the following HashedZest, a routine based on the coverage-guided fuzzer Zest , will
be introduced. It is augmented by HashFuzz, a technique to enhance input diversity [24].
Zest combines coverage-guided fuzzing and mutation-based fuzzing. As most fuzzers,
the performance of Zest highly relies on its input diversity [15]. The essential idea of
HashFuzz is to subdivide the input space into equal sized partitions. This is done by
performing an XOR-calculation on the binary input structure in order to compute a hash
key to access each partition. Zest is a fuzzer based on the JQF framework. JQF provides
a platform to use fuzzers for testing reasons or build a customised fuzzer in scope of
research. JQF enables us to modify the Zest guidance in order to implement HashFuzz
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on top of Zest. Therefore we will use HashFuzz to extend Zest by adding an input saving
criterion [34]. If the input is valid and the inputs’ key is not already represented in the
queue, it is saved. Therefore each partition of the input space is represented in the fuzzers
queue.

During the course of this thesis, three approaches are developed in order to implement
HashFuzz on top of Zest. It is assumed that HashedZest does exactly what HashFuzz
is supposed to do. An extra saving criterion guarantees that any partition of the input
space is represented in the queue. The subversion HashedZest+ resets the criterion after
a certain number of saved inputs. The idea is to save more valid inputs, Zest otherwise
would not add to the queue by default. The last approach, RoundRobin, splits the entire
queue into eight parts, one for each partition. The next input for fuzzing is picked
sequentially from another part of the input space. This approach is intended to provide
the highest diversification. On one hand, it is hard to predict how RoundRobin performs
as it used to beat Zest, HashedZest and HashedZest+ in terms of diversification. On the
other hand, subdividing the queue, keeping track of queue’s indices and manage their
responsibilities, demand many extra resources.

To answer the question, whether Zest benefits from the idea of HashFuzz, all implemen-
ted techniques are tested against Zest. Menendez and Clark (2022) demonstrated that
Fuzzers such as AFL and LibFuzz profit from HashFuzz [24]. To evaluate this hypothesis
three benchmarks: coverage, detected bugs and ratio of valid to total inputs, are used.
In terms of coverage we distinguish between coverage only achieved by valid inputs and
overall coverage. Zest, HashedZest, HashedZest+ and RoundRobin compete on the target
programs ant, bcel, closure, maven and rhino. Each algorithm was applied twenty times
for three hours on each target.

The following chapter introduces underlying fuzzing techniques of Zest as well as
the JQF framework. HashFuzz and Zest are explained in-depth also. Chapter three
outlines the fuzzers workflow within the augmented Zest guidance. Emphasis is put on
modifications made in order to implement HashedZest and its’ subversions. In chapter
four research questions, the experimental setup, the results and threats to validity will
be presented and discussed. Chapter five contains the conclusion and recommendations
for future work.
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2 Preliminary Work
2.1 Fuzzing
One of the earliest papers dealing with fuzzing was Miller et. al. in 1990 [26]. A fuzz
generator was introduced as a random character generator. Today, fuzzing is a dynamic
code analysis technique. Depending on the context, fuzzers come in various shapes with
different strengths and weaknesses. Nevertheless, they all perform the same essential
steps.

Figure 1: From [41]: The fundamental workflow of a fuzzer

Figure 1 shows every fuzzer begins with choosing an input to start with. This can
be either generated by itself or is provided by the user as seed. The system under test
(SUT), also known as target, is fed with the input. During the trial, information of the
programs behaviour is recorded. The collected data is analysed and used for generating
the next input. At the end, the detected bugs such as the inputs that triggered them are
carried out by the fuzzer as text file into an output directory. As diving into all different
kinds of fuzzers would go beyond the scope of this thesis, only a view types of fuzzers
are explained consecutively. To get an overview of the current state of fuzzing, we refer
to Manes et. al. [23]. To provide a brief overview on kinds of fuzzers and their various
applications, a few fuzzing techniques are presented briefly.

LangFuzz is a mixture of a generative and mutative fuzzer [17]. The algorithm modifies
existing input by randomly mutating it in two phases: first the fuzzer learns from input
files and divides them into fragments. Second random fragments of existing files are
replaced by the gathered fragments. This technique aims to generate input that is
common enough to pass the interpreter but also triggers exceptional behaviour. However,
it is a time-consuming and complex approach hash-based fuzzing could ease.

LibFuzzer is a coverage-guided fuzzer to test libraries [38]. The technique provides
fuzzed inputs for the library under test and gathers coverage information due to San-
itizerCoverage instrumentation [39]. Because LibFuzzer mutates inputs randomly, the
routine relies on seed inputs to meet syntactical complex requirements.
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The last technique introduced in this chapter, NeuFuzz, relies on a neural network to
spot vulnerable paths rather than aim for a high overall code coverage [46]. Firstly, the
model learns from a large amount of training data to distinguish clean and vulnerable
paths. This enables the fuzzer to prioritize inputs by there ability to cover vulnerable
paths. Subsequently, the fuzzer selects inputs that are more likely to be vulnerable.

2.2 Mutation-based Fuzzing
A random testing tool like QuickCheck generates inputs randomly [5]. Input produced
by random fuzzers often misses the syntactical requirements a program demands from its
inputs. To tackle this problem, mutation-based fuzzing relies on seed input, also known
as corpus [16]. The corpus consists of initial inputs provided by the user. The fuzzer
adds the seed to a set of interesting inputs. Every input within the set of interesting
inputs can be regarded as template for mutations, as parent input. A mutation-based
fuzzer now flips bits or bytes of the given initial input in order to mutate the parent and
generate so called children inputs or childs. Further, a set to keep track of the coverage
achieved so far, is initialized. If an input manages to increase the coverage, it joins the
set of interesting inputs. The seed scheduling regulates which interesting input is used
next. One way to perform seed scheduling is a graph centrality analysis to count the
paths reached by a certain seed input [40]. The fuzzing procedure terminates either if a
bug is detected or a certain time budget, determined by user, is consumed.

A well known mutation-based fuzzer is the american fuzzing loop (AFL) [47]. AFL is a
brute-force approach using genetic algorithms for mutations. There are three mutations
the algorithm can perform: overwrite, insert or delete bits. AFL can either flip single bits
or mutate entire sequences of bytes. The new generated input is stashed in the queue and
the fuzzer continues. The algorithm also collects information for each tested input file.
The remaining issus is, that some paths might be uncovered as they require a very specific
input. A genetic algorithm may takes too long to generate a fitting test case. Further
AFL fails to generate highly structured input. Often inputs do not pass the syntactical
stage of target programs. What is more, test cases generated by AFL lack in complexity.

Fairfuzz is an extension of AFL and aims to cover branches AFL can barely hit [22]. In
the first step, FairFuzz runs a few AFL-produced inputs to identify rare reached branches.
In the second step the algorithm produces test inputs targeting those rare branches. Over
time, FairFuzz develops a mutation strategy by figuring out which parts of the input
cannot be mutated in order to hit the target branch. This increases the probability to
generate an input meeting the condition of the target branch and, therefore, discover
new areas of the code.
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2.3 Generator-based Fuzzing and Property-based Testing
Generator-based fuzzing and Property-based testing are used as synonyms by Padhye et
al. [34] to describe the Zest fuzzing routine. Property-based testing was first mentioned by
Claessen and Hughes [5]. Before property-based testing was widely known, most fuzzing
techniques tried to identify bugs which force an application to crash. Property-based
testing asserts that the target program is doing the right thing. Given a certain input to
an application, a specific outcome is expected.

Imagine a method adding two integers. Assuming two integer values are provided, it
is highly unlikely this method causes a crash except its result grows so big, positive or
negative, it cannot be displayed or processed anymore. However, the method under test
is always adding one to its result and computes wrong values. Most fuzzers would not
report a bug because this behaviour will not cause a crash. By using property-based
fuzzing, we can detect this bug by providing a unit test. The unit test determines when
the test can be considered successful. An assertion, the output of the method has to
equal the sum of both provided integers, would be violated and therefore, reported as bug.

In order to assure a valid input syntactically, generator-based fuzzing uses standard
libraries to generate input of a certain type. In Java, the DOM -library produce syn-
tactical valid XML for example. This allows users to put an emphasis on semantic testing.

2.4 Coverage-Guided Fuzzing
Coverage guided fuzzing provides information, so called Trace Events, regarding the
coverage of each given input on a fuzzing target [33]. For instance, a BranchEvent records
a conditional branch, a CallEvent marks a methods invocation and an AllocEvent reports
a creation of a new object. During the fuzzing process, the tool creates a pool of testing
files and induces new files by mutation.

As shown in Figure 2, coverage-guided fuzzers carry out two sets. The set S is ini-
tialized in Line 1 with a corpus. S contains test inputs that fit syntactical constraints.
In Line 2, a set F is initialized to collect invalid inputs. Before the fuzzing loop starts,
the totalCoverage is introduced in Line 3. Now, for each input in S (Line 5), a certain
number of mutations will be generated and evaluated. Firstly, a candidate is produced in
Line 7 by mutating the current input. Secondly, the trials result is captured in Line 8. If
the result was a failure, the candidate is added to F (Line 10). Otherwise the candidate
joins S in Line 12 and contributes its coverage to the overall coverage achieved (Line 13).
In the following, a coverage-guided fuzzer is introduced as example those fuzzer can be
implemented.

BonsaiFuzz is a grammar-based fuzzing technique to generate compact test inputs
[45]. The key idea is to grow a corpus of concise test inputs bottom-up instead of redu-
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cing a generated test case. In order to so, BonsaiFuzz constructs small inputs based on
coverage-guided grammar fuzzing rather than fuzz test inputs and reduce them afterwards.

Figure 2: From [34]: Steps of Coverage-guided fuzzing

2.5 JQF
JQF is a platform for coverage-guided fuzzing with property-based testing in Java [33].
The audience are researchers and practitioners. For researches, JQF provides the guidance
interface as extension point. This allows researchers to implement standalone coverage-
guided fuzzer. To do so, researchers can extend an existing guidance or implement a
new one. Figure 3 show the JQF fuzzing loop. By adapting the guidance, the fuzzers
behaviour can be modified.

For instance, the guidance.getInput method in Line 5 determines, how the next input
is chosen. By implementing the getInput method from the JQF guidance interface, the
researcher can introduce a new procedure to fill the fuzzers queue. Furthermore, the
guidance set the configuration of a fuzzer like conditions, when a fuzzing routine will
stop. By default, the algorithm runs as long as it is interrupted by the user. The fuzzer
can stop when a test failure comes across or a certain timeout or number of trials is
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reached. However, the saving criteria for a interesting input, the benchmarks recorded
during the run and the way, how a new input is selected for fuzzing and much more can
be adjusted in the guidance. In addition, new functionalities can be implement here,
such as the calculation of hash values based on the inputs’ binary structure for instance.

Developers can use JQF with shipped guidances such as AFL or Zest. By default, JQF
uses the Zest algorithm to generate test inputs. A brief description, how this works, will
follow in chapter 2.4. To fuzz a method within a class, the practitioner can annotate a class
with Run with(JQF.class). The method the developer wants to test is annotated with Fuzz.

Figure 3: From [41]: The JQF fuzzing loop

Figure 3 illustrates the JQF fuzzing loop. In Line 1, the method to fuzz is set. JQF
provides many different fuzzers a tester picks from. Then, as long as the guidance as
inputs, the fuzzing loop runs. Because the guidance creates new structured inputs in case
the queue is empty, the guidance always has input. The routine continues by generating
the next input to fuzz in Line 5. To do so, three steps are executed:

1. Get an input from the guidance. If Zest is launched without seed input, the guidance
will return a new generated test case for the first iteration. Otherwise, the next
input from the queue is returned. At this point, the input is provided as byte
stream.

2. The SourceOfRandomness takes a arbitrary amount of bytes and change their values.
As the SourceOfRandomness is non-deterministic, the amount of bytes taken at
once such as their processing varies. For example the bytes read from the input
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stream could be converted to a character, an integer or something different. The
decision is pseudo-random. In section 2.6 a more detailed explanation is provided.

3. Finally, the generator maps the sequence returned by the SourceOfRandomness to
an array args

Now the fuzzer applies the input on the tested method in Line 7. The trial can be
considered as success, invalid or failure. The different possible outcomes are explained in
section 3.1.4. Before we continue to Zest itself, two fuzzers based on JQF are introduced
to give an idea of the various applications JQF can be used for.

PerfFuzz puts an emphasis on revealing performance bottlenecks on target programs
[21]. It extends AFL with performance feedback by mapping a value v with a key k on
the coverage map. Each key refers an edge an the code and a value v counting loop
executions or the amount of allocated memory for instance. If an input reveals new
coverage or provides a higher v for a certain k, the input is saved. PerfFuzz extends
JQF by adjusting the parameters to assess the result of a fuzzing trail. In particular,
the feedback of the by PerfFuzz implemented performance map is considered to evaluate
fuzzing trial outcomes.

BigFuzz for data-intensive scalable computing (DISC) applications [48]. Due to the
high latency of DISC-programs, BigFuzz abstracts the framework using specifications.
To do so, two steps are performed:

1. Build an acyclic graph of the data flow and search for method invocations corres-
ponding to data flow operators

2. Rewrite the application as simplified yet semantically-equivalent program

It will be easier to generate suiting tests for the resulting application. BigFuzz extends
the JQF functionality by adding trace events to keep track on data flow events.

2.6 Fuzzing with Zest
Zest is based on the feedback-directed testing framework JQF [34]. The fuzzer augments
the approach of coverage-guided fuzzing by two essential principles:

1. Zest distinguish between the totalCoverage and validCoverage. TotalCoverage keeps
track on the overall gathered coverage. ValidCoverage is an extra coverage counter
to keep track on all branches covered by valid inputs. The distinction allows to put
an emphasis on valid inputs in order to dig deeper into an applications semantic
stage by fuzzing [35].

2. To create fresh input, Zest merges the strengths of generator-based fuzzing and
mutation-based fuzzing. The algorithm implements a so called parametric-generator.
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As displayed in section 2.3, generator-based fuzzing uses libraries to provide syntactical
valid inputs. A generator produces a valid input file. Then, Zest identifies parameter
sequences and maps them wherever the bytes are in use. As shown in Figure 4, the
sequence foo is mapped for two locations. Although foo appears twice in the XML-file, it
is represented once as parameter sequence for further mutations. Accordingly, a single
bit flip on the sequence impacts both locations of the file. Zest collects those parameter
sequences bytes and gather them as parameter stream to the mutation engine. The
mutations only happen on the parameter stream with no harm the syntax. Furthermore,
Zest modifies XML-tags. To stick to the example, Zest can also introduce new tags
and therefore, increase the complexity of generated inputs. This allows Zest to test an
application under circumstances closer to the applications natural environment than
most other fuzzing techniques.

Figure 4: From [34]: How the parametric-generator mutates parameter sequences

To perform random mutations on the parameter sequences, Zest embed a technique
invented for Hashkell applications. QuickCheck is a library for random testing [5]. The
tool relies on target properties provided by the programmer in order to generate a huge
amount of random test cases. QuickChecks’ input generator is of interest for Zest to
perform random mutations on the parameter sequences. Because QuickCheck is invented
for Haskell programs, Zest relies on the junit-quickcheck library as adaptation for Java
[18]. This library allows Zest to perform byte-level mutations as sketched in Figure 4.
The mutation procedure consists of three main stages outlined in [34]:

1. Set a random number m as quantity of mutations applied on the parameter sequence

2. Set two more random numbers. The length of bytes to mutate l and an offset k to
determine where to begin the mutations on the selected byte sequence

3. Replace the bytes from position k to k+l with l randomly generated bytes

The parameters l and k follow a geometric distribution. Padhye et al. set the mean to
four because a four-byte integer is a frequently requested value.
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2.7 Hashfuzz
HashFuzz tries to enhance a fuzzers input diversity by subdividing the input space due
to universal hashing. In order to explain HashFuzz, we dive deeper into the concept of
universal hashing. Afterwards, the opportunity for fuzzing by using universal hashing is
demonstrated.

XORSample [11] and UniGen [4] were invented to enhance the diversity of solutions a
deterministic solver would provide. Usually, the solver would return the first solution
found. But there are other possible solutions the tester might be interested in. There,
universal hashing is used to increase the diversity of solutions. Menendez and Clark sketch
the idea by example: Imagine a boolean function fx(x1, x2, x3) = x1⊕x2⊕x3. The tester
requires a solution satisfying fx. The solver works deterministic and, therefore, flips x1
first. The result already satisfies fx and the solver returns x1 = 1, x2 = 0, x3 = 0. If the
determistic solver is asked to find a solution for fx over and over again, the first solution
presented would occur disproportionately often. That is why UniGen and XorSample
force the solver to find different solutions for each partition of the input space. In order
to do so, the partitions of the input space must be accessed by an r-wise independent
hash function that satisfies:

Figure 5: From [24]: the uniform distribution for r-wise independent hash functions

The is represented as ki ∈ K and vj ∈ V as value. With regard to the example, fx

is a boolean function. Thus, the values of xi ∈ {0, 1} and |V | = 2. Gomes et al. [11]
defined a HXOR family. HXOR consists of hash functions execute XOR operations on
their values. Any function of HXOR is three-wise independent also proved by Gomes et
al. [11]. Accordingly, the input space is divided into |V |3 = 8 partitions. Back to the
example: the hash function hi represents one variable of fx. h1 can either be zero or one
such as x1. If x1 is set to zero, the solver must find a different solution. Consequently, the
solver will also try to find a solution by flipping x2 and x3. To define a hash function, two
parameter are require: An independent element b and a vector a. The vector provides
coefficients for each variable. Both parameter determine a hash function as follows:

Figure 6: From [24]: b and a determine the hash value on each variable

As see in section 2.4, coverage guided fuzzer would benefit from enhanced input diversity
because input diversity leads to unexplored branches. Furthermore, new identified
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branches result in a higher overall code coverage and therefore more spotted bugs. In
addition, some branches are guarded with conditions that are hard to meet. To increase
the chance of hitting those branches we need to increase the input diversity. In section
2.2 we explained that mutational fuzzers struggle to stick to the syntax while comply the
semantic constraints those branches need. They rely on mutating binary strings without
considering specific structures. Grammar based fuzzers perform better as they generate
structured test inputs. Zest, for instance, produces structured input and mutates only
certain parameter sequences while the overall input structure remains. Applying the idea
of HashFuzz to a structured fuzzer like Zest might symbiotic effects.

Figure 7: From [24]: Example of an modified program by adding artificial branches by
HashFuzz. Furthermore we can see the divided input space by those artificial
branches.

The input space would be divided as displayed in Figure 7. A hash function h consists
of the three concatenated hash values of hi. For example, we want to address the partition
bordering the purple, blue and orange line in the upper half of the input space. We
determine h1 = 1 as the upper half of the input space and h1 = 0 as the lower half.
Further everything on the right of the blue respectively orange line is set to h2 = 1 and
h3 = 1. To access desired partition, we need the hash function h = [h1 = 1, h2 = 0, h3 = 1]
which equals h = 101.
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3 Implementation
We implement a new concept called HashedZest and compare it along Zest. HashedZest
describes the approach to implement HashFuzz on top of Zest. Regarding to section
2.7, HashFuzz suggest to divide the input space into eight partitions. To access the
partitions, a hash function of the HXOR family is used. To receive a hash function, we
concatenate three hash functions hi as displayed by example on Figure 7. Each function
hi is calculated as shown in Figure 6. Figure 6 demonstrates how the random parameter a
and b are applied on a stream of values xj . Zest provides the mutating parameter as byte
sequence as mentioned in 2.6. In order to implement the idea of HashFuzz, we transform
the bytes into a bit sequence and calculate the hash keys on their binary structure.

This chapter aims to introduce the workflow of HashedZest, how the hash key calcula-
tion is implemented and further adjustments for the purpose of implementing HashedZest.
What is more, two additional approaches of HashedZest are implemented and tested too.
Their difference to HashedZest is demonstrated as well.

3.1 Workflow

Figure 8: HashedZest Guidance Workflow. Green: Extra method introduced by
HashedZest. Yellow: Methods already included at Zest. Red: Decisions
already part of Zest. Blue: Method already part of Zest but overridden at the
HashedZest guidance.
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The JQF framework delivers a guidance class for every fuzzer. In the following,
focus lies on Zest guidance, since implementation of HashedZest, HashedZest+ and
RoundRobin are based on Zest. There are many more classes and methods in use during
a fuzzing run such as classes to perform the parametric mutations explained in chapter
2.4. Those classes however, were not modified in this work, which is why they will not be
explained on greater detail. The overall workflow, displayed in Figure 8, results from the
evaluate method introduced in section 2.5. The following chapters demonstrates the steps
performed for each trial such as the tasks each method is responsible for. If a method is
adapted in order to implement HashedZest, those changes are highlighted as well.

3.1.1 Preprocessing

The method preprocessing is invoked within the constructor of the HashedZest guidance.
In order to implement HashedZest, a few extra calculations are performed compared to
Zest. As mentioned in chapter 2.7, HashFuzz divides the input space into eight partitions.
Each partition can be accessed by a hash key. The hash key lies in range of zero to
seven. The hash key depends on the binary structure of an input. Later on, the input is
represented as byte sequence. Each byte is an integer in range of zero to 255. According
to chapter 2.7, the hash key is calculated on the basis of the binary representation of
those bytes. To reduce the time exposure of those extra steps, the preprocessing eases
the hash value calculation. After preprocessing, HashedZest can map every possible byte
value to zero or one. To explain the procedure in detail, Algorithm 1 is explained by an
example byte value of 213.

In order to calculate the hash key, three different hash functions are applied. Algorithm
1 sketches the preprocessing of one hash function. The other two are preprocessed the
same way. A hash function hi with i ∈ [1, 3] consists of a random bit b and a binary
sequence of eight digits a as integer array. Both parameters were determined randomly in
Line 1 and 2. Zest provides the input as parameter sequence in form of an integer array
with values ranging from zero to 255, represented as possibleValues array in Algorithm 1.
Therefore, the length of a has to be eight. Otherwise a the multiplication in Line 6 will
not work as the input binary representation of each possible byte must equal the size of
a.

Initially, to generate eight bits randomly to determine a was attempted. This led
to non random sequences such as "0000 0000" and "1111 1111" that are two of three
sequences we need for hi. That is why a different approach is chosen: Firstly, an integer
from zero to 255 is generated by chance and is turned into a bit sequence. Secondly,
if the binary representation had less than eight digits, leading zeros were added up in
the end. Imagine a random integer generator returned 123. Its binary representation is
"111 1011". In order to assert a consists of eight digits, the leading zero was added and
continued with "0111 1011".
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Algorithm 1 preprocessing byte value calculation
Input:; possibleValues
Output: digit

1: a← randomBitSequence
2: b← randomBit
3: for each byteV alue ∈ possibleV alues do
4: binaryRepresentation← byteV alue
5: for each bit ∈ binaryRepresentation do
6: binaryRepresentation[i]← binaryRepresentation[i] · a[i]
7: end for
8: k = 0
9: while binaryRepresentation.size > 1 do

10: resultXOR← binaryRepresentation[k]⊕ binaryRepresentation[k + 1]
11: binaryRepresentation.set(k, resultXor)
12: binaryRepresentation.remove(k + 1)
13: if k + 2 ≥ binaryRepresentation.size() then
14: k ← 0
15: else
16: k ← k + 1
17: end if
18: end while
19: digit← binaryRepresentation[0]
20: end for

For the random bit b Math.round is applied on Math.random(). The result is of
type double, so it is casted to an integer for further processing. Because b is used in
observeGeneratedArgs later on, the three random bits b are stored in an array randomBit:
b1 for h1 in randomBit[0], b2 for h2 in randomBit[1] and b3 for h3 in randomBit[2]. Now
that the random parameters a and b are settled, each integer in possibleValues (Line 3) is
mapped to zero or one. In Line 4 the current byte is converted to the binaryRepresentation
array.

Sticking to our example, 213 is converted to "1101 0101". This happens in two steps.
213 is converted into a binary string by the Integer.toString(213 ,2) function. The second
property of Integer.toString determines the radix. Afterwards, each character is mapped
back to its numeric value and added to an integer array. Now, the hash function is
applied on the byte value due the multiplication with the random bit sequence a bit by
bit in Line 6:
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• binaryRepresentation[0] = 1 · 0 = 0

• binaryRepresentation[1] = 1 · 1 = 1

• binaryRepresentation[2] = 0 · 1 = 0

• binaryRepresentation[3] = 1 · 1 = 1

• binaryRepresentation[4] = 0 · 1 = 0

• binaryRepresentation[5] = 1 · 0 = 0

• binaryRepresentation[6] = 0 · 1 = 0

• binaryRepresentation[7] = 1 · 1 = 1

The output of Line 6, 0101 0001, is assigned to binaryRepresentation. The next step
is to reduce binaryRepresentation on one bit. Therefore, the XOR operation is applied
on adjacent bits in Line 10. The XOR operation returns one, if both adjacent bits have
not the same value or zero, if adjacent bits are equal. The variable k, introduced in Line
8, keeps track on the index of the binaryRepresentation array. The result is stored at
position k (Line 11) and the bit at the following position is removed (line 12). As the
size of binaryRepresentation shrinks, Line 11 to 14 make sure k cannot grow out of index.
Line 7 checks whether the binaryRepresentation is reduced on one bit successfully. For
binaryRepresentation, it works like this:

1. 0⊕ 1 = 1

2. 0⊕ 1 = 1

3. 0⊕ 0 = 0

4. 0⊕ 1 = 1

At this point, k equals three while binaryRepresentation is reduced on size five. Thus,
k is resetted to zero. The final result is (1 ⊕ 1) ⊕ (0 ⊕ 1) = 1. The result is added to
the global array digit at the position of the byte processed. Regarding our example,
firstDigit[213] = 1. The global arrays represent the hash functions later on: h1 is
represented by firstDigit, h2 by secondDigit and h3 by thirdDigit. Every position in an
array represents a possible byte value of the parameter stream representing the input
later on. The hash key calculation is located in theobserveGeneratedArgs method. This
method is introduced in section 3.1.3 were we explain how the hash key is assembled.
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3.1.2 GetInput

The first step of each fuzzing trial starts with is the selection of an input to continue
with. The getInput method determines either getting an input from the queue or creating
a new one. If the queue is empty, a new input is generated considering the feedback
information Zest gathered so far. In case the queue is not empty, getInput calls a method
getTargetChildrenForParent. This method determines how many children a given parent
input should gather. To do so, getTargetChildrenForParent considers the baseline of
mutations per parent set by the user. It is common to set 100 to 300 mutations as
baseline [32]. A 100 children were set as standard. Nonetheless there are reasons to
increase parent input for more mutations. If the parent input for instance achieves a
high coverage, the number of children is adjusted:

newNumberOfChildren = numberOfChildrenBaseline · parentCoverage

maxCoverage
(1)

The variable maxCoverage represents the coverage accomplished so far. To avoid
division by 0, this option is initiated only, if any coverage is achieved so far. If an input is
favored, this is another reason to increase the number of maximum mutations per parent
input. An input is preferred, when it is responsible for covering one branch at least. If
an input is favored, the integer favoredMultiplier scales up the number of children. The
favoredMultiplier is defined in the guidance, and by default set to 20:

newNumberOfChildren = numberOfChildren · favoredMultiplier (2)

Now, the amount of children that stem from current parent input is compared to the
number of children the input already has. In case the number of maximum children for
this input is not reached yet, another child is generated to continue. Otherwise the next
input is selected from the queue and the number of current children is resetted to 0. The
parent input is now used to fuzz a new input. Therefore, the parent input is used as
template and mutates in the parametric generator explained in section 2.6. The method
returns an input stream.

To transform the current input into an input stream, the method createParameterStream
is invoked. Firstly, createParameterStream casts the input to a linear input. Secondly,
the method attempts to read a byte value as integer from the linear input. If the attempt
fails, a random value is generated and returned. The returned integers are collected as
randomFile in the FuzzStatement method of JQF mentioned in section 2.5.
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3.1.3 ObserveGeneratedArgs

Within the JQF framework, this method is intended to observe the parameter sequence
representing the input before it is applied on the tested program. In Zest guidance, this
method is not implemented from the JQF guidance interface. In terms of HashedZest,
the hash value for the current input is calculated here. As the standard HashedZest is
only interested in covering each partition of the input space at least once. To prevent
unnecessary calculation, the hash key generation is guarded by a boolean allKeysCovered.
This boolean is "false" by default and becomes true if any key was saved at least once.
To save resources, the hash key calculation is only performed as long as allKeysCovered
is false.
According to chapter 2.7, the hash key is calculated from three independent hash functions
hi. Every hi returns a value either zero or one. The results of each function are
concatenated as string and converted to an integer in range of zero to seven. The hash
functions are represented by the preprocessed arrays firstDigit, secondDigit, and thirdDigit.
They map each byte of the input sequence to zero or one. The procedure performs the
following steps:

1. The observeGeneratedArgs is invoked with an input as argument. At this point, the
input consists of all characters, even those to obtain the demanded input structure
by the target.

2. To continue, the input is casted from parameterByteStream to LinearInput. A
LinearInput comprises only the parameter sequences mutated by the input generator.
The casting turns the input into a integer array containing the parameter as byte
value: inputArray = [23, 210, 1, 199]

3. Let firstDigit be: ”firstDigit” = [0, 1, .., 1, .., 0, ..1, ..]. This array represents the
hash function h1 and was generated during the preprocessing explained in section
3.1.1.

4. The input array is mapped on firstDigit: firstDigit[1] = 1, firstDigit[23] = 1,
firstDigit[199] = 0, firstDigit[210] = 1

5. This leads to a mapped input array: inputArray = [1, 1, 0, 1]

6. As hi returns a single number zero or one, the inputArray is reduced by the XOR
operation: firstKeyDigit = (1⊕ 1)⊕ (0⊕ 1) = 0⊕ 1 = 1

7. We map secondDigit, and thirdDigit the same way and receive a binary string.
Image the mapping of secondDigit equals zero and thirdDigit equals one

8. The three numbers are concatenated as string of "101"

9. The binary string is converted to an integer which represents the current hash key:
Integer.parseInt("101", 2) = 5

10. Concluding, the global string currentKey is set to five.
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3.1.4 HandleResult

After a fuzzing trial is finished, the collected information are reviewed. A trial can have
four different outcomes:

1. SUCCESS: The generated input was valid and Therefore, the trial completed
successfully without unexpected errors. As mentioned in section 2.3, the tester
determines what is the expected outcome under determined circumstances.

2. FAILURE: In case the trail threw an unexpected error, the trial is assessed as fail.

3. INVALID: The tester provides handwritten assertions as sketched in section 2.3. If
those assertions are violated, the trial result is INVALID.

4. TIMEOUT: In case the trial exceeds a certain time limit. Within the scope the
thesis, no such time out is determined.

In case the result was SUCCESS or INVALID, the input might be saved. The circum-
stances to save an input are displayed in section 3.1.5. If the checkSavingCriteria method
returns at least one reason to save the input, it is saved in the saveCurrentInput method.

The method handleResult has a second important task to perform: different inputs can
trigger the same bug. Counting a detected bug multiple times is prevented by the error
deduplication. We realise this functionality by implementing the approach of Boehme
et. al. [3]: To identify duplicated bugs, the root cause and parts of the stack trace must
be saved. As the first stack trace entries are usually the same, the last three entries are
more appropriate for deduplication. On each of the last three entries, the hash code is
stored in an integer array trace. The hash code of the root cause is stored in trace as well.
Finally, the hash code is calculated on trace. The set errors contains the hash code of
each detected bug until now. If errors does not contain the hash code of trace, the code is
added and the detected bug is considered for further processing. The error deduplication
was also modified for Zest in order to conduct our research.

3.1.5 CheckSavingCriteria

This method returns a list of strings reasonsToSave to the handleResult method. Reasons
to save input are added to the list. If the list is empty, the current input will not be saved.
When a saving criteria is met, a short string is added. By default, checkSavingCriteria
has three reasons to save an input:

1. The runcoverage contributes new explored branches to the overall coverage, "+cov"
is added to the string.

2. The valid coverage was increased, "+valid" is added item The coverage bits were
updated, "+count" is added
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Another saving criterion is introduced with regard to implementing HashedZest. If the
hash key of the current input is not represented in the queue yet, the saving criterion
"+ partition" is added to the string. Afterwards the current hash key is stashed in a set
coveredKeys of all keys saved up to this point. When the size of coveredKeys is eight,
every key is saved at least once. Therefore, the allKeysCovered boolean introduced in
3.1.3 is set true and no further hash value calculation is performed.

3.1.6 SaveCurrentInput

The method performs multiple tasks. SaveCurrentInput is responsible to add interesting
inputs to the queue. If the checkSavingCriteria method returned a not empty string to
handleResult, the current input is added to the queue. During the trial of the current
input, information such as the coverage accomplished and the inputs’ responsibilities are
tracked. When an input is saved, this information is added to the inputs’ properties. At
the end, the current input is saved in the output directory as text file.

3.2 Additional Concept: HashedZest+
The proposed technique Hashed Zest will add a maximum of eight inputs to the queue.
For target programs such as ant, the queue contains around 150 inputs after one hour.
On one hand, it seems reasonable that eight extra saved inputs might have a significant
impact on the fuzzers’ behaviour. On the other hand, closure produces many more
inputs. It is hard to imagine eight extra inputs can make a difference. This technique
suggests to reset the criterion after a certain number of inputs is saved. Determining
the correct number of saved inputs is a matter of balance. With a more frequent reset,
more redundant input would be added, contributing nothing new to coverage. Mutating
them is less promising than the regular saved input. A less frequent reset of the saving
criterion will diminish the effect on target programs like ant. Thus resetting the criterion
every 100 saved inputs in the saveCurrentInput method was agreed upon and is further
explained in 3.1.6.

3.3 Additional Concept: Round Robin
RoundRobin aims to maximize the diversification. HashedZest and HashedZest+ aim
that each partition of the input space is represented by at least one input in the queue.
The major difference between RoundRobin and its competitors is, that the inputs are
saved in a hash map instead of the queue. At the linear queue, there is no guarantee that
an input of each partition of the input space is fuzzed frequently. The map consists of eight
partitions, one for each hash key as illustrated in Figure 9. In method getInput, a new
parent input is chosen from the map to add it to the queue. We feed the linear queue with
inputs from the hash map because Zest tracks properties such as input responsibilities.
To manage those properties on a map instead of a linear queue was considered as too
expensive. The new parent is to be picked from a different queue. As explained in 3.1.2,
the method getInput is responsible to select or create the next parent input. For Zest,
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HashedZest and HashedZest+, the method works the same way. As sketched in section
3.1.2, a new parent input is chosen when it achieved its’ maximum number of children.
In that case, the next input of the queue is identified by taking the next saved input as
long as the end of the queue is not reached yet. Otherwise, the queue starts again with
the first saved input. In order to implement RoundRobin, the getInput method is modified.

Algorithm 2 displays the changes made on getInput in case a new parent has to be
picked. To pick an input from the map, the parentKey integer and index have to be
defined. The parentKey integer tracks the partition the current parent input belongs to.
It is increased by one in order to get the next parent input from a different partition
(Line 9). As the input space is divided into eight areas, the parentKey has to remain
within a range of zero to seven. This is asserted by Line 1 and 2. At the beginning of a
run, possibly not every partition of the map contains at least one input.

Algorithm 2 modified getInput
1: if parentKey + 1 == 8 then
2: parentKey ← 0
3: else
4: parentKey ← parentKey + 1
5: end if
6: while inputMap(parentKey).isEmpty do
7: if parentKey + 1 == 8 then
8: parentKey ← 0
9: else

10: parentKey ← parentKey + 1
11: end if
12: end while
13: index← indexOfPartitions(parentKey) + 1
14: if index ≥ inputMap.size then
15: index← 0
16: end if
17: indexOfPartitions← index
18: nextParent← inputMap(parentKey, index)
19: queue← nextParent

Therefore, Line 6 - 10 guarantee that the parentInput is selected from a non-empty
partition of the map. Because the path illustrated in Algorithm 19 is only entered when
the hash map contains at least one input, the loop will always terminate. Now, the
parentKey is settled, the index needs to be identified.
The common Zest algorithm increments the queues’ index or reset the index to zero when
the end of queue is reached. A structure is required, that keeps track of each partition
with their indexes. The indexOfParts array provides this functionality. In Line 13, the
indexes are drawn from the array. As the index was incremented, the index could lie out
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of the range for the current part. Line 14 - 16 reset the index to zero, if the end of the
current partition is reached. In Line 17, the index is updated in indexOfParts. Now that
the parentKey integer and the index are defined, the parentInput is selected from the
map (line 18). In the end, the parentInput is added to the queue.

To implement RoundRobin, the saveCurrentInput method, introduced in section 3.1.6,
needs minor modifications too. Zest, HashedZest, HashedZest+ and RoundRobin start
with an empty queue. For any algorithm but RoundRobin, the first saved input is added
to the queue. But for RoundRobin, interesting inputs are saved in a map and added
to the queue later on. Thus, the first partition an input is stored has to be identified.
As mentioned in section 3.1.6, the numSavedInputs counter tracks the amount of inputs
saved so far. If saveCurrentInput is invoked and numSavedInputs equals zero, the first
input will be saved. The hash key generated for the current input is set as first parent
key. The input is added straight to the queue also as first parent input. Further the
indexOfPartitions is increased at the position of the current key. The last extra step
performed in saveCurrentInput method is to save the current input in the map.

Figure 9: The hash map to save interesting inputs as circle and a snippet of the linear
queue. The hash keys are displayed as binary string to connect with the
explanations regarding the hash key calculation in 3.1.3. The index represents
the value stored in indexOfPartitions array. For partition 4 the index set to
zero because the end of the partition was reached. The queue contains the
parent indices and the partition the parent belongs to.

24



4 Evaluation
The thesis intends to answer the following research questions:

RQ1: Will an implementation of HashedZest lead to an significant increased cover-
age compared to Zest? (chapter 4.5.1)

RQ2: Will an implementation of HashedZest lead to significant more identified bugs as
compared to Zest? (chapter 4.5.2)

RQ3: Will an implementation of HashedZest be able to generate a significant higher
share of valid inputs compared to Zest? (chapter 4.5.3)

RQ4: Do the extra steps performed by HashedZest’ implementations lead to a sig-
nificant reduced execution speed? (chapter 4.5.4)

RQ1 and RQ2 compare how Zest, HashedZest, HashedZest+ and RoundRobin perform
in terms of coverage and bug detection. In addition, RQ3 and RQ4 aim to answer how
outcomes in RQ1 and RQ2 are achieved, in more detail.

In order to increase expressiveness of the results, the principles of Klees et al. [19] are
applied to the testing setup as well as the evaluation of results. Klees et al. suggest to
conduct multiple runs for each tested approach for a minimum time limit of three hours
for instance. Furtermore, significant relevance needs to be investigated by statistic test
such as the t-test or Mann-Whitney-U-Test[9]. How the principles of Klees et al. are
considered during the experiment is lined out in the following section.
What is more, we try compare our results to Menendez and Clarks’ observations [24]. In
order to do so, three main differences between their experimental setup and our approach
should be considered:

1. Menendez and Clark tested their approach on targets such as C-ares[42], LibPNG
[37],LibXml2 [44], Pcre2 [14] and Re2 [12]. These targets are based on C respectively
C++. We use five common java applications to test our techniques. Most of the
targets use different input files: while bcel, closure and rhino work with JavaScript-
files, Menendez and Clarks targets work with png and regular expressions. Because
LibXml2 and maven/ant deal with XML input files, it seems most reasonable to
compare our results on this target programs.

2. The authors apply HashFuzz on unstructured fuzzers such as AFL [47], LibFuzz
and Fairfuzz [22]. Zest is a structured fuzzer. It will be interesting to see if fuzzers
like Zest can also benefit from HashFuzz.

3. Menendez and Clark do not provide any information on their experimental setup
in terms of timeouts or runs performed. Regarding Klees et al. [19], it is possible
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Menendez and Clark only performed a single run for each technique. This would
make it even harder to compare our results.

4.1 Introduce Testing Setup
For the sake of external validity, five target programs Apache Ant, Apache Byte Code En-
gineering Library (bcel), Google Closure Compiler, Apache Maven and Mozilla Rhino are
tested. The JQF-Framework contains all of them as they the most common testing targets
in Java. Zest, HashedZest, HashedZest+ and RoundRobin are compared along them. All
algorithms run twenty times for three hours with each target. The algorithms will only
terminate when the time budget is consumed. To avoid running each execution sequential
for 300 hours, the terminal multiplexer tmux is used to make 20 runs at the same time.
At each window of tmux, a script is executed to run one algorithm for three hours on each
target program sequential. As common notebooks can barely handle a single run, this
tests are conducted at the computing centre of the Humboldt University of Berlin. To
guarantee comparability through all runs, we booked a server with 256 GB RAM exclus-
ive. The server is equipped with an AMD EPYC 8813P 64-Core Processor, 1.5 GHz CPU.

Zest is a well performing fuzzer, even without seeds. For each execution no seeds
are provided. JQF can be used with two different instrumentations: Fast and Janala
[31]. Janala is JQFs’ default coverage instrumentation. It estimates the map size by
saving branch IDs’ in an array. This could lead to collisions and harms the fuzzers
performance. The Fast instrumentation is not keeping track on the map and therefor
less collision-prone. All algorithms use the Fast instrumentation instead of Janala. It is
still possible to compare the coverage by counting the branches reached.
Every run saves its collected data at a plotdata.txt-file. For all executions, those files
are downloaded for further processing. The tables and figures below are generated by
python scripts. The scripts also calculate the mean, standard deviation and median
displayed at all tables below. The last line of the plotdata.txt-file contains the values of
each benchmark when timeout is reached.

The values of interest are coverage, bugs detected, valid inputs to total inputs ratio
and the total inputs. All benchmarks ask for the final result at the end of each trial.
Therefore, an array values captures the value at the last row for the requested benchmark
over all twenty runs. Only exception is the execution speed, capture in order to answer
RQ4, where the median of each run is stored in values. Each algorithm has its own array
to collect the result. The arrays are reset for every new benchmark or target program.
Then, numpy works out the mean, standard deviation and median on the values array.

To identify significant outcomes, the Mann-Whitney-U-Test is applied on the value
arrays of each algorithm [9]. We use a significance level of α = 0.05. Higher significance
levels are highlighted in the following tables.
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4.2 Mann-Whitney-U-Test
The Mann-Whitney-U-Test, also known as Wilcoxon signed-rank test, outlines the signi-
ficance of two small (n < 30) samples [8]. The test is used for three reasons: Firstly, we
have twenty runs for each algorithm on each target as raw data. Consequentially, with a
sample size of n = 20, the compared samples are small. What is more, we cannot assume
a standardised normal distribution for the performance of fuzzers [19].
Python provides the scipy.stats library. The library contains the mannwhitneyu property,
which computes significance of results [10].

4.3 Effect Size Computation by Vargha and Delaney
While the Mann-Whitney-U-Test sets whether two techniques differ significantly in
performance, the effect size provides information on how meaningful the actual difference
between two competing techniques is. This is why the Vargha and Delaney effect size
measurement is reported together with the p-value [43]. Unlike other effect size tests’
like Cohens D [6], Vargha and Delaney’s test does not assume a standardised normal
distribution. The test is implemented as library of Menzies [25] test implementation.
The test returns a standardised effect size (VD) range from zero to one. According to
Vargha and Delaney, the result VD(A,B) of the collected data from two fuzzers A and B
can be interpreted as follows:

• V D = 1→ complete stochastic dominance of A over B

• V D > 0.71→ huge effect, A is much better than B

• V D > 0.64→ medium effect, A is better than B

• V D > 0.56→ small effect, , A is slightly better than B

• 0.45 < V D < 0.55→ no effect

• V D < 0.44→ small effect, B is slightly better than A

• V D < 0.36→ medium effect, B is better than A

• V D < 0.29→ huge effect, B is much better than A

• V D = 0→ complete stochastic dominance of B over A

For the sake of simplicity, we report the magnitude of VD from 0.5. In the following the
VD ranging from 0.5 to 1 and describe the direction of the effect textual. Consequently,
an effect size VD < 0.55 implicit a not noteworthy effect.
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4.4 Results
4.4.1 RQ1: Coverage

RQ1 aims to answer the question, whether any implementation of HashedZest achieves
a significant higher coverage than Zest. In the context of Zest, the branch coverage is
recorded [7]. The branch coverage aims to traverse each branch at least once. That is
why trace events, mentioned in section 2.4, are recorded in Zest. The fuzzer gathers the
information to satisfy branch conditions, guarded by an if-statement for instance, over
time. This enables the fuzzer to produce inputs to cover new branches. Zest distinguishes
between two types of coverage: valid coverage and total coverage. The valid cover-
age represents the coverage achieved by valid inputs. These inputs met the syntactical
requirements of the target program. The total coverage keeps track of all branches reached.

Target Algorithm Mean Std Median

ant

Zest 4644.80 36.57 4640
HashedZest 4656.40 21.80 4653.5

HashedZest+ 4659.35 36.74 4654.5
RoundRobin 4657.10 27.16 4656

bcel

Zest 6772.05 198.22 6656
HashedZest 6797.60 212.66 6925.5

HashedZest+ 6700.90 182.83 6596
RoundRobin 6655.80 235.67 6598

closure

Zest 34492.90 222.16 34461.5
HashedZest 34622.80 290.94 34520.5

HashedZest+ 34519.05 262.21 34545.5
RoundRobin 34288.10 310.07 34321.5

maven

Zest 2981.35 121.05 2982
HashedZest 3010.65 102.12 2993

HashedZest+ 3016.55 107.00 3040
RoundRobin 2841.40 123.08 2848.5

rhino

Zest 9346.35 96.64 9362
HashedZest 9412.05 105.53 9386

HashedZest+ 9374.45 121.65 9387.5
RoundRobin 9346.85 54.69 9348.5

Table 1: Mean, standard deviation and median for total coverage as number of branches
detected.

Table 1 lists coverage achieved as mean, standard deviation and median. As mentioned
in section 4.1, we use the Fast instrumentation instead of the default Janala. Therefore
we compare the absolute number of paths achieved rather than how much of the map is
covered. No implementation of HashedZest managed to achieve a significant advantage
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over Zest. We observed significant differences between HashedZest and its’ implementa-
tions.

HashedZest+ achieves an advantage over RoundRobin on closure (p < 0.05, VD >
0.64) and maven (p < 0.001, VD > 0.79). Thus, we have a medium effect on closure and
a huge effect on maven. HashedZest also reaches significant more total coverage than
RoundRobin on closure (p < 0.01, VD > 0.64), maven (p < 0.001, VD > 0.71) and rhino
(p < 0.05, VD < 0.54). The gap in performance between HashedZest and RoundRobin
on rhino can be considered as significant, but not relevant. Zest also performs better
on maven compared to RoundRobin (p < 0.01, VD > 0.71). In the end, RoundRobin
lacks in overall coverage compared to Zest, HashedZest and HashedZest+. The other
techniques perform similar in terms of total coverage.

Target Algorithm Mean Std Median

ant

Zest 3956.50 195.12 4042
HashedZest 3976.20 206.37 4084.5

HashedZest+ 3973.05 224.73 4088
RoundRobin 4050.45 142.93 4073

bcel

Zest 4451.80 32.67 4444
HashedZest 4471.20 103.51 4444

HashedZest+ 4451.75 46.34 4440
RoundRobin 4440.85 21.65 4442

closure

Zest 31441.95 1376.92 31618
HashedZest 31842.50 1386.17 32656

HashedZest+ 31479.85 1382.43 31575.5
RoundRobin 31522.85 1385.28 32267.5

maven

Zest 2180.30 132.38 2205.5
HashedZest 2198.30 102.90 2180.5

HashedZest+ 2184.40 143.74 2205.5
RoundRobin 2058.25 149.44 2054.5

rhino

Zest 8632.10 118.80 8617
HashedZest 8653.95 141.72 8586

HashedZest+ 8619.10 146.10 8579
RoundRobin 8577.80 112.10 8549.5

Table 2: Mean, standard deviation and median for valid coverage as number of branches
covered by valid Inputs.

In terms of valid coverage the results almost remain the same. Zest shows a significant
advantage over RoundRobin with a medium effect on maven (p < 0.05, VD > 0.64).
Compared to RoundRobin, HashedZest (p < 0.01, VD > 0.71) and HashedZest+ (p <
0.05, VD > 0.71) achieve a huge effect on maven. What is more, HashedZest also demon-
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strates medium advantage over RoundRobin on rhino (p < 0.05, VD > 0.64). Regarding
the total coverage, RoundRobin catches up a little bit as no significant disadvantages
on closure are recorded. We cannot make any reasonable comparisons between Zest,
HashedZest and HashedZest+ due to the lack of significant differences.

In conclusion, Zest does not benefit from HashFuzz in terms of coverage. At least a
minor significant advantage of HashedZest+ over Zest, in terms of valid coverage, was
expected. However, HashedZest+ was supposed to fuzz more valid inputs and therefore
gain more valid coverage. How many extra inputs are saved by the approaches and the
share of valid to total inputs is demonstrated in section 4.3.3. RoundRobin uses the
same saving criteria as HashedZest+. Remarkably, Zest, HashedZest and HashedZest+
show a significantly increased performance on closure, maven and rhino compared to
RoundRobin. We assume the execution speed of RoundRobin is responsible for this
outcome. RoundRobin performs many extra steps in comparison with Zest. In section
4.3.4 we expound the fuzzers performance regarding execution speed.

Menendez and Clark observed statistically significant improvements on their targets,
mentioned in section 2.7 [24]. For AFL [47] and Fairfuzz [22], Menendez and Clark claim
an advantage provided by HashFuzz. AFL recorded an increased branch coverage of 4.8
%, FairFuzz 1.9 %. The absence of information on the effect size on LibXml2 makes
it hard to compare their outcomes with our results. They only deliver the total effect
size over all targets of 0.516 for AFL and 0.508 for FairFuzz. Accordingly, the effect
on LibXml2 can barely exceed a small advantage of their modified techniques over the
regular implementations of AFL and FairFuzz. Consequently, our results fit into this
picture.

4.4.2 RQ2: Bugs

RQ2 aims to answer the question, whether any implementation of HashedZest detects
significant more bugs than Zest. Regarding Klees et al. [19], counting unique failures
requires error deduplication such as described in section 3.1.4. Because error deduplication
is implemented for all fuzzers in the handleResult method, detected bugs are considered
as unique failures.

Figure 10 depicts an overview of bugs detected by Zest, HashedZest, HashedZest+ and
RoundRobin over time. Usually, fuzzing ant, maven and bcel results in only a few bugs
identified ([20], [36]). On these targets, all introduced techniques perform similar. On
bcel, closure and rhino, RoundRobin seems to struggle the more time passes. In relation
to ant and maven, more inputs are saved for these targets as illustrated in the following
chapter. Maintaining the hash map to save inputs may consumes too many resources.
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Figure 10: The amount of unique failures over time. For each graph illustrates the results
over all twenty runs of its’ fuzzer
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Zests’ performance on closure highlights the importance of timeouts for the evaluation
of fuzzers. While HashedZest, HashedZest+ and RoundRobin continually grow in detec-
ted bugs, Zest exposed more than half of its bugs before half of the given time budget was
consumed. Then the graph flattens. When the time budget is consumed, Zest, HashedZest
and HashedZest+ are almost equal in the total amount of detected bugs. An a longer
run time on each target would be very interesting to see if the course of the graphs continue.

Table 3 depicts the unique failures exposed after three hours. Once again, no implement-
ation of HashedZest can achieve a significant advantage over Zest. What stands out, is
the performance of RoundRobin on closure. Zest, HashedZest and HashedZest+ perform
significantly better (p < 0.001, VD > 0.71). Since the VD = 0.91 for the fuzzers in compar-
ison with RoundRobin, they almost accomplished stochastic dominance over RoundRobin.
HashedZest also demonstrates a significant advantage over RoundRobin on rhino (p
< 0.05, VD > 0.56). Both targets, rhino and closure, dealing with JavaScript files as input.

Target Algorithm Mean Std Median

ant

Zest 2 0 2
HashedZest 2 0 2

HashedZest+ 2 0 2
RoundRobin 2 0 2

bcel

Zest 3.50 1.24 4
HashedZest 3.65 1.24 4

HashedZest+ 3.50 1.16 3
RoundRobin 3.20 1.33 3

closure

Zest 1628.65 149.81 1654.5
HashedZest 1630.90 159.16 1655.5

HashedZest+ 1606.60 130.05 1608.5
RoundRobin 1455.40 71.81 1456.5

maven

Zest 0 0 0
HashedZest 0 0 0

HashedZest+ 0 0 0
RoundRobin 0 0 0

rhino

Zest 663.80 91.13 671
HashedZest 692.85 88.92 702

HashedZest+ 674.15 90.64 677.5
RoundRobin 621.25 99.82 652.5

Table 3: Mean, standard deviation and median for unique failures exposed.

A possible justification might be RoundRobin struggles with detecting bugs on targets
demanding JavaScript files. RoundRobins’ modifications are close to HashedZest+.
However, HashedZest+ shows no lack in performance in comparison to HashedZest and
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Zest. What is more, bcel also processes JavaScript files. The significant differences in
performance, recorded on rhino and closure, do not occur here. Consequently, it seems
unlikely the significant worse outcomes of RoundRobin can be explained by the type
of files a target program needs for this particular case. Another reason might be the
handling of many saved inputs, having a negative effect on RoundRobins’ execution speed.

Menendez and Clark recorded significant improvements for AFL and FairFuzz in terms
of bug detection. The fuzzer combines AFL and HashFuzz exposed eight instead of one
bug. FairFuzz increased its crash count from eleven to seventeen. Although AFL found
700% more errors, the effect size over all eight targets equals 0.562 which outlines a small
effect. With a VD of 0.539, the impact of HashFuzz on FairFuzz is even less.

To be in line with Menendez and Clarks’ outcomes, an implementation of HashedZest
used to demonstrate significant advantages on ant or maven. This is not the case. Our
observations do not lead to an significant conclusion. Regarding Figure 10, the course of
time suggests that HashedZest and its’ subversion could benefit from an increased time
out. Another possible explanation for the absence of significant results is, Menendez
and Clark augmented unstructured fuzzers with HashFuzz. We modified Zest, a highly
structured fuzzer that may not benefit as much as an unstructured fuzzer from this
approach of input diversification.

While all fuzzers perform alike on ant and maven, they differ on bcel, closure and rhino.
To conclude, that fuzzers augmented by HashFuzz only benefit on certain targets, longer
trials of each approach are necessary. Also adding new targets, that require different
inputs, would substantiate this hypothesis.

4.4.3 RQ3: Ratio valid to total inputs

RQ3 aims to answer the question, whether any implementation of HashedZest generates
a significant bigger share of valid to total inputs than Zest. As displayed in 3.4.2, the
counter for valid inputs is increased at the handleResult method. An input is considered
as valid if the testers assertion were not violated and no unexpected exception were
thrown. In 3.4.3, the extra saving criterion introduced by HashedZest, was explained.
An input is only saved, if it is valid and belongs to an empty partition of the hash
map. HashedZest and its’ implementations aimed to save extra interesting inputs with a
unique binary structure in order to increase Zests’ performance. It was assumed, Zest
could benefit from more saved valid and diverse inputs in terms of total coverage, valid
coverage and bug detection. Section 4.3.1 and 4.3.2 demonstrated, that no significant
improvements were recorded. This chapter tries to figure out whether the introduced
criterion had a positive impact in terms of saved valid inputs on HashedZest and its’ sub
versions. Therefore, we distinguish between the overall saved inputs in Table 4 and the
ratio of valid to total saved inputs in Table 5.
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The most important conclusion drawn from Table 4 is, that HashedZest+ carries out
significant advantages over Zest in terms of saved inputs. The advantages are present on
all five target programs. With a significance level of p < 0.01 on closure, we can claim
HashedZest+ saved more inputs than Zest. Furthermore, a higher significance level of p
< 0.001 is achieved for ant (VD > 0.71), bcel (VD > 0.71) , maven (VD > 0.56) and
rhino (VD > 0.56). Therefore, the extra saving criterion and its resetting caused at least
a medium effect on the saved inputs by a fuzzer over all targets.

Target Algorithm Mean Std Median

ant

Zest 469.60 15.59 475.5
HashedZest 471.00 17.31 469.5

HashedZest+ 512.75*** 16.23*** 514.5***
RoundRobin 507.65*** 18.91*** 509.5***

bcel

Zest 972.10 20.09 973
HashedZest 969.70 20.09 969

HashedZest+ 1041.95*** 33.78*** 1046***
RoundRobin 1040.20*** 28.94*** 1040***

closure

Zest 4831.80 155.53 4855
HashedZest 4794.20 100.76 4810.5

HashedZest+ 4967.70** 110.02** 4970.5**
RoundRobin 4653.30 149.86 4682.5

maven

Zest 627.55 32.37 637.5
HashedZest 637.00 28.56 635

HashedZest+ 695.05*** 34.98*** 692.5***
RoundRobin 617.95 38.01 617

rhino

Zest 1508.90 48.27 1512.5
HashedZest 1563.50** 68.59** 1561.5**

HashedZest+ 1690.65*** 45.01*** 1690***
RoundRobin 1579.05*** 49.08*** 1592.5***

Table 4: Mean, standard deviation and median of saved inputs. Outcomes of HashedZest,
HashedZest+ and RoundRobin with a significant advantage over Zest, are
annotated with *, ** or ***.
* p < 0.05 ** p < 0.01 *** p < 0.001

As mentioned in section 3.1, HashedZest aims to ensure that each partition of the
input space is represented at least by one input. Bearing in mind, the queue can consist
of thousands of inputs after a three hour run, it was questioned whether eight extra saved
inputs would make any difference. But on rhino HashedZest, was able to exceed Zest (p
< 0.01, VD > 0.71). Nevertheless, to put the idea of adding extra valid inputs to the
queue a little further by implementing HashedZest+, the advantages grow. Remember
HashedZest+ enables to re-activate the extra saving criterion every 100 saved inputs.
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The comparison of HashedZest and HashedZest+ shows the impact of resetting the saving
criteria. HashedZest+ demonstrates a significant improvement over HashedZest on all
targets (p < 0.001, VD > 0.71). Because RoundRobin performed as good as HashedZest+
on ant, bcel and rhino, we cannot claim this advantage regarding all competitors. On one
hand, RoundRobin outperformed Zest and HashedZest on ant, bcel and rhino, achiev-
ing a huge effect (p < 0.001, VD > 0.71). On the other hand, RoundRobin lacked in
performance on closure and maven compared to Zest and HashedZest (p < 0.01, VD >
0.71). A possible explanation for the behaviour on closure might be minor execution
speed of RoundRobin. In section 4.3.2 we suggested a huge amount of saved inputs could
lead to difficulties in handling the hash map. Since RoundRobins’ hash map contains
less inputs on maven than on rhino or bcel, the deduction seems to be incorrect. The
type of demanded input by the target also does not matter because maven uses XML
files, closure JavaScript. For both types RoundRobin achieved significant advantages on
ant, bcel and rhino. From the recorded data, we cannot provide an explanation for this
behaviour.

However, HashedZest+ achieved significant advantage over Zest on all targets. There-
fore, the impact of the extra saving criterion to save more valid inputs is significant.
As the introduced saving criterion only allows to save valid inputs, we expect that
HashedZest+ also provide a significant advantage in terms of the valid to total inputs
ratio.

Table 5 illustrates that Zest, HashedZest and HashedZest+ have a similar share of valid
to total inputs. Although HashedZest and its implementations saved so many extra inputs,
the ration of valid to total inputs remains the same. This is an unexpected outcome,
since the extra saving criterion only saves valid inputs. Table 4 shows that HashedZest+
stores significant more inputs in queue than Zest on all targets. As explained at 3.1.4,
an input is only saved if its’ result is "SUCCESS" or "INVALID". Therefore, the extra
amount of saved inputs must have been invalid. In that case, children from the additional
saved valid inputs must be evaluated as "INVALID". Thus, they would not be saved
because of our introduced saving criterion. A default saving criteria only acknowledge an
invalid input as interesting when its runcoverage is not a subset of the coverage explored
so far. Consequently, the extra invalid saved inputs must have reached new areas of
the code. In that case, HashedZest+ used to demonstrate significant improvements in
terms of overall coverage, discussed in section 4.3.1. Because the data do not support
this hypothesis, we cannot reason the recorded behaviour.
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Target Algorithm Mean Std Median

ant

Zest 0.31 0.04 0.31
HashedZest 0.30 0.03 0.30

HashedZest+ 0.28 0.04 0.27
RoundRobin 0.30 0.05 0.29

bcel

Zest 0.24 0.01 0.24
HashedZest 0.24 0.01 0.23

HashedZest+ 0.23 0.01 0.23
RoundRobin 0.23 0.01 0.23

closure

Zest 0.55 0.01 0.55
HashedZest 0.55 0.01 0.55

HashedZest+ 0.55 0.01 0.55
RoundRobin 0.56*** 0.01*** 0.56***

maven

Zest 0.18 0.01 0.18
HashedZest 0.18 0.01 0.18

HashedZest+ 0.17 0.02 0.17
RoundRobin 0.17 0.02 0.18

rhino

Zest 0.57 0.02 0.58
HashedZest 0.58 0.02 0.58

HashedZest+ 0.58 0.02 0.58
RoundRobin 0.59*** 0.02*** 0.59***

Table 5: Mean, standard deviation and median of the share of valid to all saved inputs.
Outcomes of HashedZest, HashedZest+ and RoundRobin with a significant
advantage over Zest, are annotated with *, ** or ***.
* p<.05 ** p<.01 *** p<.001

However, RoundRobin achieves significant advantages on closure (p < 0.001, VD
> 0.71) and rhino (p < 0.001, VD > 0.64) compared to Zest. Because RoundRobin
also shows significant improvements over Zest in terms of saved inputs on rhino, this
is the impact we tried to achieve by all implementations of HashedZest. Furthermore,
an improvement in this ratio was expected to lead to more identified bugs or coverage
explored. As outlined in section 4.3.1 and 4.3.2, RoundRobin performs significant worse
than Zest on closure and rhino. We earlier mentioned that a reduced execution speed
could explain this observation. If the data support this assumption, is outlined in the
following chapter.
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4.4.4 RQ4:

RQ4 investigates the impact of execution speed, caused by the modifications made on
Zest in order to implement HashedZest, on the fuzzers ability to detect bugs and branches.
Fuzzers rely on many executions to gather information about their target program and
explore areas of the code. Therefore, a reduced execution speed caused by HashedZests’
functionalities could explain the lack of advantages in terms of coverage and bug detection.

Target Algorithm Mean Std Median

ant

Zest 34.77 4.27 34.97
HashedZest 33.96 3.76 33.91

HashedZest+ 36.38 5.84 36.67
RoundRobin 36.86 4.83 36.59

bcel

Zest 64.58 1.33 64.30
HashedZest 64.01 1.09 63.89

HashedZest+ 66.73 1.14 66.47
RoundRobin 64.10 0.83 64.20

closure

Zest 52.43 3.33 52.79
HashedZest 51.58 3.69 53.08

HashedZest+ 51.20 2.91 51.67
RoundRobin 48.60 2.04 49.32

maven

Zest 75.65 1.31 75.40
HashedZest 81.62*** 1.90*** 81.57***

HashedZest+ 81.95*** 1.68*** 81.86***
RoundRobin 63.99 1.55 64.67

rhino

Zest 53.25 3.52 54.35
HashedZest 56.90** 4.38** 58.06**

HashedZest+ 55.24* 4.36* 56.04*
RoundRobin 49.11 3.78 50.47

Table 6: Mean, standard deviation and median of executions per second. Outcomes of
HashedZest, HashedZest+ and RoundRobin with a significant advantage over
Zest, are annotated with *, ** or ***.
* p<.05 ** p<.01 *** p<.001

RoundRobin performs significant worse than Zest on closure (p < 0.001, VD > 0.71),
maven (p < 0.001, VD = 1) and rhino (p < 0.001, VD > 0.71). On all three targets,
the effect size ranges from VD 0.91 to 1. We conclude the modifications in order to
implement RoundRobin have a huge impact on the fuzzers performance. This could
explain why RoundRobin missed to achieve significant advantages over Zest in section
4.3.1 and 4.3.2 on closure, maven and rhino. The data do not answer why this lack of
speed is not visible on ant and bcel. The amount of saved inputs do not explain this
relationship because the map contained less inputs for maven as compared to bcel. On
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both targets, RoundRobin has a decreased ratio of valid to total inputs while holding a
significant advantage in terms of total inputs saved compared to Zest. Regarding closure
and rhino, it seems like a higher share of valid inputs slow RoundRobin down. The
outcomes for maven do not support this idea. RoundRobin demonstrated a lower share
of valid inputs, but also a significant reduced execution speed compared to Zest.

Remarkably, HashedZest and HashedZest+ achieved significant more executions per
second on maven (p < 0.01 , VD = 1) and rhino (p < 0.05, VD > 0.71) than Zest. This
results are surprising because the effect is not visible on other target programs. The
implementation of HashedZest+ and RoundRobin differ in the methods saveCurrentInput
and getInput. Because we only applied small changes in saveCurrentInput, we assume
the gap in execution speed stem from the adjustments made in getInput. On bcel (p <
0.001, VD > 0.64), closure (p < 0.001, VD > 0.64), maven (p < 0.001, VD = 1) and
rhino (p < 0.001, VD > 0.71) HashedZest+ shows a significant higher execution speed
than RoundRobin. However, this relation is not present on ant. Nevertheless, we can
conclude the implementation of the getInput method is responsible for the gap between
HashedZest+ and RoundRobin.

Now all research questions were discussed, it is time to draw final conclusions. Firstly,
we perceive RoundRobin as interesting target for further modifications. Although the
technique lacks in execution speed on all targets but ant, only two significant disad-
vantages to Zest were exposed: valid coverage on maven and bug detection on closure.
Eliminating the disadvantages in terms of execution speed could lead to significant
benefits provided by RoundRobin over Zest.

HashedZest and HashedZest+ perform very similar. Only in terms of saved inputs,
a significant gap was recorded. It is not surprising HashedZest+ demonstrates an ad-
vantage here since the same criterion used by HashedZest is reset over time. This minor
adjustment did not carry out other significant effects.

Neither HashedZest nor HashedZest+ provide benefits compared to Zest. In terms of
overall coverage, valid coverage and bug detection, no significant differences were exposed.
Regarding Figure 10, a longer duration of the fuzzing runs could lead to further insights
whether the observed similarity of Zest, HashedZest and HashedZest+ in terms of bug
detection and coverage achieved remain.
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4.5 Threats to Validity
4.5.1 Internal Validity

Although we aimed to provide a certain quality of research, there is one part of testing
to improve at least. As Klees et al. said, "Fuzzing performance can vary over the course
of a run. This means that short timeouts (of less than 5 or 6 hours, [...]) may paint a
misleading picture. [...] AFL outperformed AFLFast at 6 hours, with statistical signific-
ance, but after 24 hours the trend reversed." [19]. Therefore, running Zest, HashedZest,
HashedZest+ and RoundRobin over 24 hours would lead to more meaningful outcomes.

HashedZest tried to increase detected bugs and coverage due to increased diversification
of valid input for Zest. We did not observe this correlation, because neither HashedZest
nor HashedZest+ displayed improvements in terms of the ratio valid to total inputs.
It probably needs a different saving criteria to ensure a higher input diversity. The
execution speed is mentioned as confounding variable, because RoundRobin achieved
a higher share of valid inputs on certain targets, but due the lack of speed this had no
impact on the coverage or bug detection. Furthermore, we only considered the branch
coverage in terms of richness. Zest recorded, how many branches where traversed at
least once. Regarding to Nguyen and Grunske [27], the evenness is also important. The
evenness expresses the distribution of hits for each branch. To reach a guarded branch
often by a novel technique, could be considered as improvement. Recording the evenness
of HashedZest, HashedZest+ and RoundRobin may expose strengths we did not observe
because of the absence of data.

4.5.2 External Validity

A possible threat to validity is the lack of extra target programs. We used five real world
java applications also tested in [34]. The targets are dealing with popular input files
such as XML and JavaScript. Using more divers target programs demanding different
types of inputs would increase the external validity. Further the tests where conducted
at the computing centre of the Humboldt University of Berlin in order to provide a solid
external validity. We assume, testers would run our techniques on comparable machines
rather than notebooks or desktop PCs’.

4.5.3 Construct Validity

To outline significant results, we use the Mann-Whitney-U-Test to identify significant
gaps in certain benchmarks for each algorithm. Thus, the test is used six times on
each target. Overall we compute the significance level 30 times over the course of our
research. Although the data differs from target the target, the possibility of a false-positive
significance must be named as threat to construct validity [2].
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5 Conclusion
We introduced the idea of HashedZest as extension for the structured fuzzer Zest. In
order to tackle the problem of input diversity, we split the input space into eight parts,
as suggested by Menendez and Clark [24]. Three versions of HashedZest were introduced,
implemented and tested: HashedZest, HashedZest+ and RoundRobin. HashedZest and
HashedZest+ differ in the implementation of the extra saving criterion. RoundRobin
maintains a hash map for saved inputs and feeds the queue by switching the partition
every time a new parent input is required. We evaluated our findings with the help of
Mann-Whitney-U-Test in order to prove differences between the algorithms in terms of
our benchmarks overall coverage, valid coverage, bug detection, valid to total inputs ratio
and execution speed. The Vargha and Delayney test outlined meaningful results. Finally
we cannot demonstrate improvements of at least one implementation of HashedZest in
terms of coverage or bug detection over Zest. Nonetheless, the fuzzers achieved remarkable
results in terms of execution speed and valid to total input ratio. The implementations
of HashedZest were expected to be slower than Zest due to extra calculations regarding
hash keys. Remarkably on maven and rhino, HashedZest and HashedZest+ outperformed
Zest. What is more, speed in combination with the extra saved valid inputs had no
impact on the valid to total input ratio, bug detection or coverage achieved.

Although HashedZest was not shown to be a superior approach, further research should
focus on refining the idea of HashFuzz for structural fuzzers such as Zest. For example
the input space could be divided into more than eight partitions. This modification needs
a different way to calculate hash keys. Every novel technique demonstrated its strengths
and weaknesses during the research. Two directions for improvements were carried out
in section 4.3.3 and 4.3.4:

1. HashedZest and HashedZest+ achieved an increased execution speed on certain
targets, but they do not demonstrate a better ratio of valid to total inputs than Zest.
An increased ratio with no harm to the execution speed could lead to significant
results.

2. RoundRobin struggles the other way around. The lack in execution speed might
prevent significant improvements on performance regarding Zest. The implementa-
tion of the getInput method is considered to be responsible for this. The fix of this
issue with no harm to the share of valid inputs, could also be promising for future
work.

Beside the implemented fuzzers, the experimental setup also gives room for improvement.
A longer timeout as suggested by Klees et. al. [19] could draw an entire different picture.
Namely, the diversified input of HashedZest, HashedZest+ and RoundRobin increased
the amount of bugs exposed and valid coverage.
Further research could also benefit from introducing different benchmarks. To compare
coverage in terms of evenness, mentioned in section 4.3.1, rather than richness, could
also provide further insights into how HashFuzz effects Zest.
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