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Abstract. Research in modern science often relies on the use of scientific
workflow software. These kinds of systems support researchers in the con-
duction and automation of computationally heavy experiments, distributed
storage of experimental data and the analysis of it. Also, pre- and post-
processing tasks and visualizations can be part of workflows. To instruct
the workflow software, researchers have to create scripts that describe the
steps and tasks within a workflow. Such workflow steps often consist of
the execution of a third-party tool, that fulfils a task which is part of the
research process. Choosing parameter values for such tasks, is often a man-
ual and time-consuming endeavour. This thesis wants to examine a novel
approach in which the selection of these parameter values is automated
adaptively to the execution context. Scientist often have knowledge about
feasible ranges and sets of parameter values for their domain. We want to
define a data structure that allows workflow developers to document this
knowledge. Furthermore, the goal of this thesis is to extend the workflow
engine Nextflow in such a way that it takes in this data structure, adaptively
chooses values for parameters and restarts the corresponding task until no
anomaly is detected during execution. We were able to achieve this goal
with a working implementation. This was also capable of finding a correct
parameter(e-value) in a real world bioinformatics BLAST workflow, faster
than a human. It is concluded, that the implementation of these adaptive
parameters, can reduce the development time of scientific workflows if the
user specifies a feasible range of values for the parameter.
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1 Introduction

Many domains of modern science are bound to handling of vast amounts of data and
conducting of complex computer simulations, calculations and other forms of data
processing. As such, studies on important present research topics with impact on
everyday-life are often executed on large computer clusters and software systems. For
example, cancer-research in medicine[1] or simulations for climate change research[2].
It has been identified, that “In the future, the rapidity with which any given discipline
advances is likely to depend on how well the community acquires the necessary expertise
in database, workflow management, visualization, and cloud computing technologies”[3].
This recent shift to computer facilitated research has led to the new paradigm of “e-
Science”.
A core feature of this new paradigm is the use of so-called “scientific workflow manage-
ment systems”. This is software that supports researchers in the automation of their
various daily tasks, such as the execution of computer based experiments, storage and
distribution of experiment data, pre- and post-processing, analysis and visualization[4].
In this context, a workflow describes an arrangement of these research tasks and the
dependencies in-between them.
This work aims to devise a methodology that will accelerate the creation and use of
scientific workflows - thus ultimately benefiting the speed of research teams. Further-
more, it shall ease the development of workflows and as such boost the accessibility of
workflow software.

1.1 Motivation

A scientific workflow is usually constituted out of smaller work units that are often
called tasks. These typically resemble the execution of a third-party tool that a domain
scientist uses in his research work. The used tools can be very diverse. So are their
parameters, as they additionally di�er in type, structure, naming-conventions and
range of possible values. Even tools, that solve the same problems, can have di�erent
interpretations for parameters with the same name. It can thus be concluded, that
it can be a challenge for workflow developers to overview all the di�erent parameters
and configurations of third-party tools for their research branch. In addition to the
manifold appearances of parameters, it is also di�cult to find correct values for them[5].

Researchers usually have an idea of feasible ranges and sets of values for parame-
ters of their science domain. They have gained that knowledge through for example
past experiments, from articles of related research or their own logical deduction. But
during workflow development, trying out all these values one at a time until a favourable
one is found, is a very time-consuming e�ort, as the execution of scientific workflows
usually is bound to long computing times.
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1.2 Goal and Scope of the Thesis

In this thesis, the objective is to automate the selection of parameter values for tasks
within a workflow. Users of workflow software should be supported by an algorithm,
that will test values for a task parameter, until the task execution completes without an
error. Every time the execution fails, the parameter value should be adapted automati-
cally. As aforementioned, researchers usually have an understanding of feasible ranges
and bounds of valid values for task parameters. Hence, the focus of the thesis will be,
to harness this knowledge and (in worst case exhaustively) try out all elements inside
these bounds, until the third-party tool of a task has been executed successfully. If the
user has further knowledge about the structure of the values in-between the bounds,
he can choose a search strategy and/or input settings that tune the adaptation perfor-
mance. The focus of the thesis is set on anomaly detection, not parameter optimization.

The approach shall be implemented as an extension of the workflow system Nextflow
and only control single parameters of tasks and processes (and not hyperparameters of
the script). For this purpose, an appropriate data structure for the user knowledge
about the parameter space must be defined. Further, an algorithm for the adaptation
process has to be designed, that decides, how a task execution failure or success is
handled.

We want to investigate two research questions:

1. Feasability: Is it possible to create such an implementation?

2. Real world usefulness: Would such an implementation save time, during the
development of a workflow?

Undoubtedly, it is not possible to make a general statement about overall reduced
research process time, since every research project holds individual challenges.
Not in every workflow creation, a support for selecting parameters is needed.
Thus, we set the scope of the research question, to only focus on the process of
parameter selection during workflow development. The user should be supported
in that and the time needed, to find parameter values that allow successful task
execution should be reduced.
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2 Background

In the following chapter, the basic concepts and terms that are the fundament of the
thesis topic and pursued implementation are defined and explained.

2.1 Scientific Workflows and Workflow Software

The concept of workflows originated from the business world and later was adopted and
further enhanced by the scientific community. The Workflow Management Coalition
(WfMC) defined Workflows in 1996 as “the automation of a business process, in whole
or part, during which documents, information or tasks are passed from one participant
to another for action, according to a set of procedural rules”[4].
Workflows, that are subject to this thesis, describe complex compilations of computa-
tional experiments and pre- and post-processing tasks. In the last decades, numerous
software tools have emerged that support researchers in conducting of these operations.
Deelman and colleagues comment on these developments, and define: “All science
campaigns of su�cient complexity consist of numerous interconnected computational
tasks. A workflow in this context is the composition of several such computing tasks.
A workflow management system (WMS) aids in the automation of those operations,
namely managing the execution of constituent tasks and the information exchanged
between them.”[6].
Core part of a WMS is the workflow engine, which manages the orchestrated execution
of the tasks, according to a workflow definition. This is often expressed in a structured,
programming or domain specific language(see chapter 2.2). Although abstractly viewed,
many WMSs essentially serve the same purpose, each science branch has its own
preferred user interfaces and domain inherent specific features. There are also many
execution environments exist, for example: high performance clusters(HPC) or more
modern approaches with dynamic computation resource allocation on cloud servers.
Thus, a vast landscape of workflow software systems has been created. Ambitions to
define standardized interfaces to achieve interoperability, have been undertaken[7][8].

2.2 Domain Specific Languages and Nextflow

The workflow engine accepts a parsable description of the tasks it should execute
and the dependencies in-between them. In this thesis, we will call this description a
workflow script. A workflow system usually can accept di�erent types of scripts. Often,
these scripts are structured files, that contain the calculation steps and invocations
of third-party tools, including their parameters or requirements to the execution en-
vironment. The Pegasus system, for example, uses XML[9]. Some systems also o�er
an interface, that is programmable with a programming language, like the Fireworks
system by Python[10].
A domain specific language(DSL) is defined as “a computer programming language of
limited expressiveness focused on a particular domain” [11] To allow a fast research
process, many workflow systems created domain specific scripting languages, that are
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easy to use for researchers, that belong to this area. The programming language Groovy
can easily be modified, to create DSL’s[12].
The workflow engine Nextflow uses such a Groovy extension, to o�er an easily under-
standable scripting language for workflow developers and researchers. The program’s
documentation states: “The Nextflow syntax has been specialized to ease the writing
of computational pipelines in a declarative manner”[13]. More information on the
Nextflow system itself can be found in chapter 3.1.5.

2.3 Parameter Adaptation

First, some terms that are important in the context of the thesis, have to be distinguished
and their use explained:

• Execution success: In the context of this thesis, a success shall be the completion
of task execution with a returned result value. An anomaly or a failure is the
premature termination, usually also accompanied by an error object.

• Correct parameter value: Correct values for parameters, are those allowing a
successful execution. Incorrect ones are those that trigger anomalies.

• Parameter space: Usually this space is the entirety of all possible values a
parameter can be configured with. In the thesis, this term is also used to refer
to the set of parameter values, that a user wants to test out in the adaptation
process. Ideally, this should be significantly reduced in size in contrast to the
entire parameter space and exclude incorrect parameter values.

• Process: This keyword is used by Nextflow to declare a task in a workflow script.
Further, throughout the thesis, the term is used synonymously with the word
“task” and also sometimes refers to the Linux process of an executed task.

To our knowledge, there is no direct and complete feature of self-setting task parameters
that seek a successful task execution in the well-known[14][15] workflow engines, like
we pursue it in the thesis implementation. Though there are many similar approaches
and features, that are discussed in the next chapter.

2.3.1 Search Strategy

Every time, a task with an adaptive parameter fails, the parameter value gets adjusted.
The search strategy defines the policy that is used to decide which parameter value
is used next, during the adaptation process. Since the thesis is only concerned with
anomaly detection and not with performance optimization, cost functions for task
execution will not be researched. Thus, a large part of traditional research on parameter
selection approaches, based on gradients or combinatorial optimization, is excluded.
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3 Related work

In this chapter, related research and preliminary work is discussed. Current popular
workflow engines and their feature sets are examined to show that the thesis approach is
novel. Furthermore, existing workflow engine features that achieve similar functionality
like adaptive parameters get explored.

3.1 Feature Sets of Current Workflow Engines

Surveys of the feature sets of popular workflow engines have been done[9][16]. Di�erent
engines try to implement di�erent capabilities, appropriate to the domain they are
operated in(and the use cases and requirements inherent to the domain). Hence, a
large landscape of workflow systems have been created and are still further developed.
In the next section, some of the most capable and most used engines are presented. As
the research for this thesis has been pursued, no system with an implementation of
the exact approach anticipated in the introduction was found. However, some of the
engines are capable of executing workflow scripts that could emulate the behaviour of
adaptive parameters.

3.1.1 Galaxy

Galaxy is a popular workflow engine, used especially in the biomedical and bioinfor-
matics domain. It o�ers easy accessibility via browser and allows running workflows in
the cloud [17].
As opposed to “task” (as it is called in this thesis), a step in a workflow in Galaxy
is referred to as a “tool”. Parameters and input data for tools, are set manually on
the web GUI or are propagated output from previous workflow steps[18]. Loops and
conditionals are not possible in a workflow[19]. Some tools have the capability to get
dataset collections as an input to perform so-called “batch operations” [17]. In that way,
a task can be executed repeatedly with di�erent parameters. This feature is similar to
the goal of this thesis, but lacks support for parameter bounds, as all values that shall
be tried out and the ordering has to be specified explicit. Further, not all tools have
configured there parameters to support dataset collections.

3.1.2 Pegasus

The workflow system Pegasus “is used intensively by various research communities,
e.g. astronomy, biology, computational engineering”[14]. It o�ers special features, like
optimized scheduling algorithms and provenance data for debugging.
Workflow descriptions are stored in XML or YAML format and can be created with
an API available in Java, Python or Perl. Pegasus uses this abstract definition of the
workflow, to create a WEP(workflow execution plan) with concrete tasks and necessary
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data transfers for the executing system. Task dependencies are also part of the WEP
and determine, among other things, the flow of data between task outputs and inputs.
Parameters are set either with fixed values in the workflow description or are outputs
of previous tasks[20]. According to our researched work on Pegasus and its application
documentation([21]), no special data structure for bounded or adaptive parameters is
available.
Nevertheless, fault discovery and recovery features are built in. After fault detection,
a failed task can get retried a fixed number of times automatically. Also, a workflow
can be resubmitted, so that past calculated results of successful tasks don’t have to
be computed again. Further, it is possible to specify an additional alternative data
source[15].
Another feature called “hooks” allows to add routines that get executed if specific
triggers are induced[22]. Also, with Variable Expansion, placeholders in the task
script and parameters can be substituted at runtime[23]. The combination of those
functionalities allows, to implement a form of adaptive parameters, but all logic for
setting the parameter values has to be programmed explicit in the hook.

3.1.3 Kepler

Although a little bit older, but therefore also more stable, Kepler is a scientific workflow
system based on the Ptolemy II engine and is used in many di�erent domains[24].
Kepler is Java based and open source. A GUI is used to create workflows that can
contain interleaved, conditional sub-workflows and loops(through so-called repeat tasks).
Data flows between the output ports of tasks, to the input ports of tasks. These data
channels can have di�erent types, like: String, Integer, Files. Additionally, a task can
have parameters, that are set to a fixed value. What makes Kepler unique as a workflow
system, is that one can choose the model of computation for every workflow. This
sets the execution semantics of the workflow. Example models are: Process Network,
Synchronous Data-Flow or Discrete Events [25]. In the current version of Kepler(2.5),
no parameter bound data type is supported for task parameters. However, it is possible
to implement own custom logic(like adaptive parameters) by extending the task classes
in Java. Also, exception handling is user defined, which allows actions like resubmission
and starting alternative tasks on anomalies, but no built-in parameter adaptation.
Figure 1 contains an example screenshot, that visualizes Kepler features in a geology
rock classification workflow.

3.1.4 Fireworks

Fireworks is a workflow software that is often used “for running high-throughput
calculation workflows at supercomputing centers” e.g. for computational chemistry
and materials science calculations[10].
In this system, workflow definitions are formulated in python scripts. A step in a
workflow is called a “Firework” and is described by a python command or JSON file,
that specifies a set of tasks that shall be executed and also values for their parameters.
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Fig. 1: Example Kepler geology workflow

Workflow developers are able to implement adaptive parameters using the python
script. But again, the logic has to be implemented fully, and there exists no data
structure in Fireworks, that is already built-in, that simplifies the implementation of
parameter adaptation.

3.1.5 Nextflow

Nextflow focuses on scalability and reproducibility. It is designed specifically for
bioinformaticians familiar with programming[26]. A variation of groovy is used as a
domain specific language, to formulate workflows[13]. A task is also referred to as a
“process” in this language. Nextflow implements a dataflow model in which data gets
passed between in- and outputs of processes, that depend on each other. So-called
Channels are employed for this connection. Channels can further be supplied with
fixed collections of values.
In that way, tasks get executed every time when parameters and input data are available
in connecting channels. With a channel supplied by fixed input data, it is not possible
to test a range of values for correct parameters. As soon as a process is executed with
an incorrect parameter, the workflow stops executing. It is not possible to predict,
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which value is handled from the Channel first, since this depends on the order, in which
the OS schedules the processes. So, during the development of a Nextflow script, it
is not feasible to use a Channel to test out multiple values for a task. The Nextflow
application would have to be started with the same workflow repeatedly, which would
cost a lot of time.
To provide the dataflow model, Nextflow also makes the restriction, that a process
is only allowed to be declared and used once in a workflow. So, although groovy
constructs like conditionals and loops exist, it is not possible with them to traverse
a range of values and start a process repeatedly with parameters set to these values.
Thus, no simple way to implement adaptive parameters is given.

3.2 Similar Approaches for Thesis Use Case

3.2.1 Workflow features supporting parameter selecting

Popular and modern workflow engines o�er helpful features to find correct and optimal
parameters, or to even fill in values for task parameters automatically in di�erent
scenarios.

Workflow Steering and Parameter Fine Tuning

Current workflow engines o�er a feature called ”Workflow steering”, that is used to fine
tune parameters in workflows. For that, usually, a technique called Checkpointing is
implemented: A workflow execution is stopped in certain conditions(e.g. on a breakpoint
or if a maximum number of task-retries is reached) and the already computed part of
the workflow is saved.
That way, the part does not have to be executed again and multiple parameters can
be tried out for the current task, in shorter time[9] [27][5].
Nextflow implements checkpoints(“-resume”) and task retries on errors [28] [29].

Workflow Provenance

Data Provenance is a record of the history of the creation of a data object[9].
Gil et al. present an approach, using provenance metadata for the workflow system
”Wing”, including automatic parameter setup. Nextflow implements various prove-
nance features[30]. It has to be researched, if this approach is compatible with the
implementation restrictions, given in the introduction.

3.2.2 Dynamic Workflows

Some workflow engines(e.g. Fireworks) support ”dynamic workflows”, that are able
to modify themselves during execution. The conditional nature of this feature is also
used, to create “self-healing” systems, for example to react on execution failures or to
start refinement calculations [10]. So, the workflow engine can independently(without
manual human intervention) decide to start additional processes.
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This o�ers the user the possibility to create its own adaptive routines and parameter
selections. As stated in the introduction, a goal of this thesis is to conceive a dedicated
data structure for parameter bounds. In the thesis it is pursued, to o�er the user a
simple interface to implement adaptive parameters in their workflow scripts. Thus, in
contrast to Fireworks approach, it should be possible to define those without having to
create own adaptive program logic.

3.2.3 Workflow Optimization

Another field of research is the workflow optimization: Tasks get reordered in a
workflow, unneeded task get deleted, or performance creating tasks get inserted, to
increase overall execution e�ciency and decrease resource use and execution time[31].
The optimizations that some workflow schedulers do, can be separated into two groups:

• Static: Those are applied before the execution.

• Dynamic: Those are applied during execution.

There is not much research on task parameter optimization or automatic value selection
during these optimization phases. Some work is done on hyperparameters[32].

3.2.4 Using Application Parameter Databases

For a lot of third-party tools and software, the parameter structure and also valid,
correct or popular values for parameters are already documented.

CLI Autocompletion

A related but more pragmatic field, is addressing the autocompletion of CLI commands.
For a given part of a command string, possible endings(with a high chance of being
useful for the user) shall be suggested.
In many terminals and shells, configuration files and scripts exist, that store valid
parameter values for CLI applications and are used to o�er completion[33]. Some shells
(like [34]) o�er auto suggestions, based on command history and completions.
The website fig.io uses more advanced approaches, like a large open database of auto
completions for CLI applications[35].
Also AI models are used, to create whole commands from textual descriptions[36].

The nf-core Pipeline Library

The nf-core library is a collection of ”collaborative, peer-reviewed, best-practice analysis
pipelines”[37].
Part of the pipeline documentation is also the process configs and tunable third-party
tool parameters(most often CLI options)[38]. In so-called ”nextflow schema”-files, also
community approved default values are stored[39]. (an example scheme: [40])
This data may be used as a source for good parameter values and can otherwise also
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be a training set, for learning an association between parameter name and common
values.

3.2.5 Machine Learning Approaches

The use of machine learning techniques to improve workflow engines has been studied[5].
There are approaches that try to reduce the number of job executions for parameter
space explorations[41]. Those harness data from previous workflow executions and
execution cost functions, to prune the parameter space. Neither is generally available
in the realm of this thesis’s implementation.
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4 Implementation

The Nextflow engine that executes the workflows, was programmed in Groovy and
is publicly available under the Apache 2.0 Licence[42]. To add adaptive parameters
to the codebase, di�erent implementation approaches are possible. First, it has to be
decided, which information a data structure describing an adaptive parameter has to
hold. This is described in chapter 4.1. The following chapter identifies, how Nextflow
can be extended, to adjust the workflow execution to allow repeated task executions
with adapted parameter values. Di�erent strategies, for choosing the next value to be
tested, will be studied. In the last chapter, it will be elaborated, how the adaptation
process will handle the di�erent task execution results. The complete extended version
of the Nextflow code base can be found on GitLab: https://gitlab.informatik.hu-
berlin.de/freudeto/bachelor-thesis.git

4.1 Data Structure

As stated in the introduction, this thesis will focus on enabling a Nextflow user, to
specify his knowledge of a possible range of values for a task parameter. This specified
space can then be traversed, to test out these values until a favourable parameter value
is found for the task. A data structure representing this parameter space, can have
di�erent appearances, depending on the data type of the parameter.

Nextflow can parse and execute workflows that are formulated in the Nextflow scripting
language. This domain specific language(DSL) is an extension of Groovy and as such
employs the typical data types, i.e. integers, float, booleans and strings. In the realm
of this thesis, the parameter spaces, that get explored adaptively, get divided into:

• Numerical spaces: These shall be specified by the user by supplying the bounds
of an interval. A lower and upper bound given with integers, represent a finite set
of possible values that can be traversed by the adaptive algorithm. Using floating
point numbers for the bounds, an additional discretization is needed first.

• Categorical spaces: These shall be given directly by an array of possible values.
The user can specify a list of values, even of di�erent data types.
Example: A user wants to supply a boolean “false” value as a parameter to a
program, but does not know the representation of the boolean state for the program
argument. He could supply the categorical space [false, ”false”, 0, null]. As such,
the adaptation algorithm should automatically choose the correct representation.
This example is also used as an experimental setup in chapter 5.2.

Since the Nextflow DSL is based on a dataflow model, parameters of tasks in workflows
get supplied via input channels. These channels can have di�erent types. The scope of
the thesis, only focusses on the val input type.
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4.1.1 Adaptive Parameter Specification

To enable the user to capture his knowledge about a parameter space, three callable
methods have been added to the Nextflow scripting language. The BaseScript class,
which inherits from the groovy.lang.Script, is the foundation for every Nextflow
script. As such, a user creating a Nextflow script can access the methods of BaseScript.
For the identified use cases of numerical and categorical parameter spaces, the following
three methods have been added to BaseScript and allow specifying an adaptive
parameter:

• adaptparam int(String forProcess, int from, int to, String
withSearchStrategy, Integer startAt=null)

• adaptparam float(String forProcess, double from, double to,
int maxSteps, String withSearchStrategy, Double startAt=null)

• adaptparam categorical(String forProcess, ArrayList categories)

In Table 1, the signatures of the instantiating methods are explained in more detail.
Also, an example of usage is shown in listing 1.

Name Purpose
forProcess Contains the name of the process, in which the adaptive param-

eter should be used.
from Gives the lower bound of numerical parameter spaces.
to Gives the upper bound of numerical parameter spaces.
maxSteps (Is only used in adaptparam float) Is used to discretize continous

intervals, that are given by floating point numbers. The resulting
set, contains maxSteps elements, drawn equidistantly from the
interval.

withSearchStrategyName of the searchStrategy for the adaptation process. Since
only two searchStrategies exist, an script compilation error is
thrown if an unknown name is supplied here. The functionality
of search strategies will be discussed in more detail later.

startAt (Is only used, when the search strategy is “sorted”) This marks
the parameter value between the lower and upper bound, for
which the user assumes the highest chance, that it allows a
successful process execution. Since it can only be used with the
“sorted” search strategy, its default value is null.

categories (Is only used in adaptparam categorical) The array of values,
that shall be adaptively tried out.

Table 1: Settings, that can be specified during creation of an adaptive parameter
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proce s s myProcess {
input :

va l parameter1
va l parameter2

output :
s tdout

”””
. . .

”””
}

workflow {
adaptparam1 = adaptparam int (

f o rP ro c e s s=”myProcess ” ,
from=0,
to =5,
withSearchStrategy=”random ”)

r e s u l t = myProcess (” f i x e d s t r i n g parameter ” , adaptparam1 )
}

Listing 1: Exemplary creation of adaptive parameter

4.1.2 Parameter Values and Meta Data

To store an adaptive parameter in memory, an AdaptParam class has been added. In
Table 2 the class members representing the current state and the identification of
the adaptation process are explained. For each of the three methods discussed in the
previous chapter, a constructor for the AdaptParam class exists. These constructors
initialize the state members, by calculating the array of values(and their order), that
get tested during the adaptation process. Additionally, the settings of the adaptation
process, that were submitted by the user, get saved in further class members, that are
displayed in Table 3. These are used for logging and eventually for analysis.

The public method getNextValue() can be used, to access the parameter value,
that should be used for the immediate process execution. During the call of the method,
currentValueIndex and currentValue get incremented and updated accordingly.
Since the type of the elements from the values array can vary, the return value is of
the universal type Object.

4.1.3 Access During Execution

During the start of Nextflow, a Session object is created, that can be accessed by
all classes during runtime. The Session class follows the singleton pattern and holds
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Name Type Purpose
name String Is used for identification, when using multiple

AdaptParam.
process String Contains the name of the workflow process,

where the adaptive parameter is used.
values Array of Object After initialization, this array contains all

values, that shall be tried out adaptively for
a parameter of the process.

currentValueIndex Integer This index holds the state of the adaptation
process and indicates the present value that
is being tested.

currentValue Object The element of the values array, at the
currentValueIndex.

Table 2: AdaptParam members, describing the state of the adaptive parameter.

Name Type Purpose
minimum Object This contains the lower bound of a numerical pa-

rameter space. Since integers as well as doubles
can be used for the bounds, the abstract Object
type from Groovy is used.

maximum Object Like that, also a maximum for the upper bound
exists

searchStrategy Enum Name of the search strategy, that determines, in
which order the values of the given parameter space
are traversed.

startAt Object If the “sorted” search strategy is used, the startAt
value marks a position between the lower and upper
bound, where the user suspects the value, that is
most probable, to allow a successful process execu-
tion.

Table 3: AdaptParam members, describing the meta information of an adaptive param-
eter.

information of the current workflow execution state.
To give the tasks of a workflow an opportunity, to access information of adaptive
parameters at a central point, a further class AdaptParamList was added to Nextflow.
This eases the creation of AdaptParam instances and stores them in a HashMap, where
each entry is mapping from the process name, to the adaptive parameter object. The
Session class was extended by a public AdaptParamList member. Using this, all
processes of a workflow can retrieve their respective adaptive parameters during runtime,
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including the current value, that shall be used for the next execution.

4.2 Search Strategy

For each of the three methods, that can be used to create an adaptive parameter,
a constructor of the AdaptParam class exists. The general functioning of these are
similar: Metadata is saved in the class members, and the values array is filled with the
parameter values in a specific order. The simplest constructor is used by the categorical
adaptive parameter. It just sets the values array, exactly like the user supplied it in
the creation method adaptparam categorical.
In the two constructors for the numerical adaptive parameters, first the values array
gets filled with the numbers between the interval bounds. For adaptparam int these
numbers are all the integers between the bounds. adaptparam float uses the maxSteps
setting, to define a “step size” by the formula:

= |upper bound ≠ lower bound|
maxSteps

Now this step size is used, to discretizes the continues interval given by the floating
point bounds, into equidistant values. For the sake of simplicity, this is implemented
just by for loops, adding the step size to the lower bound for maxSteps times.
After the values array is now initialized with the appropriate numbers, these get
placed in a specific order according to the chosen searchStrategy:

4.3 Adaptability

The implementation of workflow execution done by the Nextflow engine is extensive
and complex. Many approaches for implementing adaptive parameters are possible. In
the realm of this thesis, a less intrusive implementation has been pursued.

4.3.1 Variable Injection

The main idea used by the thesis implementation is, that the methods, used to create
the adaptive parameters in BaseScript, return the name of the AdaptParam, which
is prefixed by a $ symbol and thus resembles a variable in Bash syntax. This allows
users who want to use adaptive parameters, to simply supply the value returned by the
method as process arguments. Nextflow, as it naturally operates, then takes these and
embeds them into the process script. During process execution, the values for the Bash
variables are submitted as environment variables. For that, the BashWrapperBuilder
has been modified, to set the current values for adaptive parameters as environment
variables, while preparing the launch of the next workflow task. As described in 4.1.3, the
AdaptParamList can be retrieved from the globally accessible Session object. For every
process, it is now possible to get the AdaptParam via the getAdaptParamForProcess
method.
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Fig. 2: A given numerical parameter space with bounds from 3 to 10 is visualized, with
the corresponding parameter value array in the upper left corner. The other
diagrams show the same array, after the algorithms of the search strategies
have been applied.
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Search
strategy

Implementation

random This search strategy reorders the elements of the values array
using the Fisher–Yates shu�e algorithm[43]. The user can employ
this strategy, if he knows that the values between the supplied
bounds are feasible, but not what regions inside the bounds o�er
the greatest probability of successful process execution.

sorted For this strategy, additionally to the parameter value interval,
the user can supply a value inside the bounds, that he thinks, is
the most probable to be a favourable value, for successful process
execution. For floating point numbers, the nearest discretized value
is used. The startAt value, marks this favourable value. For
example, if the user suspects correct values in the beginning of
the interval, he should choose a startAt value near to the lower
bound. Starting from this element of the array, all other elements
are sorted according to their numerical distance. As such, a value
with a small distance comes further to the front in the array and
an element with a large distance further to the back. If the user
wishes, to just sort the values ascending respective descending, he
can use the lower respective upper bound as the startAt value.

4.3.2 Workflow Task Retry

Processes in Nextflow have properties that are set by default values, but also can be
changed using directives in the workflow script [44]. The errorStrategy property
describes, how the Nextflow engine should react on errors during process execution. The
default mode “TERMINATE”, kills all pending and running tasks. As such, if during the
adaptation process a value for a parameter has been set, that causes an error, Nextflow
would terminate and end the workflow execution. Another errorStrategy is RETRY,
which restarts a process after an error has been caught. This is the most suitable of the
error strategies for adaptive parameters, but has an issue: Another configurable setting
is the maxRetries with default value 1 and the maxErrors config. These decide the
number of retries for a process with RETRY as error strategy, respectively the number
of summed errors of all process executions(a process can launch di�erent execution
instances) for maxErrors[45]. Thus, a new errorStrategy ADAPT has been added, that
acts like the RETRY mode, but ignores the limitations of maxRetries and maxErrors.
This new error strategy is selected automatically for a process, if it uses adaptive
parameters.

4.3.3 Successful adaptation

After a successful workflow task execution, i.e. when no error caused a premature
end of runtime, the value of the adaptive parameter shall not be altered further. The
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workflow should then continue normally and the successful value be logged. For that,
the checkTaskStatus method of the TaskPollingMonitor class was extended. This
procedure is called repeatedly by Nextflow, to probe the statuses of all running processes
and find execution completions(including abortions).
Additionally, to the usual task completion log message, now the value of the adaptive
parameter is printed to the log, if one was present in the process and the exit status was
positive(i.e., if the exit code is equal to zero, like defined in the POSIX specification[46]).
For an example log, please see listing 4 in the appendix section A.
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5 Validation

The aim of this chapter is to describe experiments, that are able to validate, whether
the implementation described in the preceding chapter can fulfil the requirements of the
thesis-goal. First it is explained, how the implementation can be executed. Afterwards,
experimental setups are outlined, that shall show the feasibility and usefulness of
adaptive parameters.

5.1 Reproducibility

The experiments conducted within the thesis, where done on university machines(Gruenau
2), with an environment outlined in Table 4. The commit hash of the o�cal Nextflow
Git repository, also stated in the table, is the initial code base that has been altered.
The applied code changes described in the implementation chapter can be compiled
with the command make compile inside the repository. After successful compilation,
the program then can be started with ./launch.sh run <script name>.nf .

System Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz
OS openSUSE Leap 15.3

(Linux version 5.3.18-150300.59.106-preemp)
JDK openjdk version ”11.0.17”
Master Commit Hash 6307f9b5
Nextflow version version 23.06.0-edge
Date 2023-10-24

Table 4: Execution environment of Nextflow for validation.

5.2 Feasibility

The first research question of the thesis addresses the feasibility of adaptive task
parameters for workflows. In order to proof the feasibility of an implementation of
these, we will execute the developed Nextflow extension with a simple exemplary
workflow. In the appendix section A is a listing with an appropriate Nextflow script
that we developed for that. This toy example should also illustrate the use and
functioning of adaptive parameters. In the upper part of the script, for every supported
data type, a simple process is defined, that accepts one parameter and executes only
without an error, if certain values are passed to it. The workflow can be set to execute
one of these processes via command line argument. This results in three possible
experimental setups, that should cover the key use cases of adaptive parameters.

5.2.1 Integer Adaptive Parameter

In this setup, the process only successfully executes, if the integer value 5 is passed to
its parameter. We created an integer adaptive parameter for an interval between 0 and
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10. The search strategy “random” will test all integers between the bounds in random
order. But since all are tested until the task executes successfully, the correct one(5)
should also be used. Thus, it is anticipated, that the process will be executed at least
one, but probably multiple times, and that the adaptation algorithm will eventually
find the correct value and end the workflow. Since bringing 10 values in a specific
order, resembles a permutation, there are 10! possible sequences to test the values.
And as the value order used by the adaptation algorithm is created by randomness, it
is not feasible to test until all sequences were used. We chose, to execute the workflow
30 times, to establish a high probability, that the implementation works as expected
and at the same time, don’t have an excessively long runtime. This experiment should
validate, if the implementation can handle the positive scenario, where a user picks
bounds, that include the correct parameter value.

5.2.2 Float Adaptive Parameter

In the second setup, only the floating point number 20 passed as a value to the
parameter of the process will cause a successful execution. All other values let the
process exit with an error code.
To validate, if the implementation can also handle a negative scenario, we created
an adaptive parameter for floating point numbers with bounds, that not include the
wanted correct parameter value. We chose a range from 0 to 5 with the “maxSteps”
setting set to 10. This means, that the algorithm should test the process with the ten
values from inside the bounds, that are equidistantly distributed.
Further, we set the search strategy to sorted and the startAt value to 1. With that,
the ten values, that the adaptation algorithm can use, should be in an order, where the
startAt value 1 is used first, and all other values in descending order, according to
the numerical distance from it. The workflow should not finish successfully, but result
in a termination due to the fact, that no appropriate parameter could be found.

5.2.3 Categorical Adaptive Parameter

In the final experiment to validate feasibility, the process will only finish its execution
successfully, if the value passed to it is a string, with the content “false”. To cover
all implemented parameter space types, we use the categorical adaptive parameter
to test, if we can find a correct value for the process parameter. The three values
0(as an integer), null(as a groovy object literal) and the string “false” are used as the
categories to test. The adaptive algorithm should test the process with the values in
the same order, as they were passed to the adaptive parameter. Thereby, we anticipate
a successfully executed workflow, with the correct parameter value found.

5.3 Usefulness

The second thesis research question addresses, if an implementation of adaptive task
parameters, can be useful for researchers developing workflows, in the sense, that it
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saves time during the creation and use of scientific workflows. To validate, if the imple-
mentation reduces the time of selecting parameters for tasks, an exemplary popular
workflow, which could be used in real world scenarios, is executed. The workflow covers
the typical bioinformatics task of local sequence alignment with the BLAST program.
It is such a well-known use of workflows, that it is presented as one of the six main
examples on the landing page of the Nextflow website[47]. The workflow utilizes the
blastp program of the NCBI BLAST software suite1. Its purpose is to find similar
regions in protein sequences. The workflow uses it, to match the user provided protein
sequences against a chosen protein database. Both, exemplary sequences to query and
a database, are provided in the Github repository of the example, which is linked in
the cited Nextflow site. We will use these for our experiment as well.

The workflow proceeds as follows: For every provided protein sequence from the
input parameter, blastp queries the database and returns the top search hits as a
table in a file. This file is then processed, to only include specific rows and columns.
For every blastp invocation, the result file with the top hits is then also passed to the
extract process, that then prints the matching sequence.

In the context of this validation experiment, we want to assume the role of a bioinfor-
matics researcher that wants to extend this example for his own usage. The workflow
shall be enhanced, so that the blastp tool also uses the e-value parameter. This is
an alignment setting, that describes the “number of expected hits of similar quality
(score) that could be found just by chance” where a smaller e-value, resembles better
matches. Hereby, 1e ≠ 50 is considered of very good quality and 0.01 as still good[48].
In the assumed scenario, we limit the number of top hits to at least 5 and otherwise
exit the blast process with an error. We want to find the smallest possible e-value,
that still produces enough hits, so that the task still successfully completes.

5.3.1 Manual Parameter Selection

In the first experimental setup, the workflow gets executed repeatedly, with the e-value
as a task parameter being set manually each time. For the scenario, of course it would
of course be possible, to find a correct parameter value by luck. Thus, we will choose
the e-values in the same order, as the implemented adaptive algorithm will do it with
the settings described in the next section, to measure the di�erences in run times. To
capture the complete workflow execution time of Nextflow, we use the Linux time
command, when starting the script.

5.3.2 Adaptive Parameter Selection

In the second experiment, we execute an adjusted workflow, that uses an adaptive
parameter. The respective script can be found in the appendix section B. We created
an adaptive parameter for the blast process, that should approach the correct e-value

1https://blast.ncbi.nlm.nih.gov/blast/Blast.cgi
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starting at 1e ≠ 50 in a maximum of 100 steps. We use the “sorted” search strategy to
bring the e-values to check in ascending order. The upper bound is 1e ≠ 35.
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6 Evaluation

In this chapter, the results of the experiments are evaluated.

6.1 Toy Example

First, we will describe the outcome, of the experiments testing the functioning of the
implementation.

6.1.1 Integer Parameter

In the integer experiment, the workflow was executed multiple times because the result
is influenced by randomness. All 30 runs of the workflow resulted in a return value of 0.
This means, that in every workflow execution the correct parameter value(in this case,
the integer 5) could be found, since Nextflow otherwise returns an error code 1 if an
unhandled exception is thrown during runtime. If no parameter value for a successful
task execution can be found, such an exception is thrown.
If we look at the STDOUT output log(appended in Appendix section A), we can see,
that the implemented Nextflow extension, noticed the adaptive parameter creation
during the workflow script parsing(line 4). Due to the way, how Nextflow is printing
progress updates to STDOUT, log messages can sometimes be in confusing order. But it
is still visible, that after the creation of the adaptive parameter, the task is started and
its execution fails three times. The value of the adaptive parameter is automatically
adjusted four times(including the initial setup and the final one, with the correct value),
in the order: 1, 8, 4, 5. Finally, a log message(line 14) presents the found correct value,
that allowed complete and successful execution, which is 5. The process termination
message states the exit code 255(e.g. line 15), which is the unsigned 8-bit integer value,
of the exit -1 command, used in the bash script of the tasks process.

6.1.2 Float Parameter

The experiment to validate the use of adaptive floating point number parameters,
results in an uncompleted workflow execution. Again, at the beginning during the
workflow script parsing, the adaptive parameter is found and setup. Matching the
settings of the adaptive parameter, a maximum of 10 execution steps(and the inherent
discretization into 10 possible parameter values to try out) are logged. But all process
executions result in an error. The tried out values for the parameter and the erroneous
process runs are reported. Finally, a warning is written to the log, that states, that
the adaptive parameter was not able to find a correct value inside the user provided
bounds. Afterwards Nextflow shuts down gracefully.

6.1.3 Categorical Parameter

Analogous to the preceding two experiments, the workflow with the categorical param-
eter finds the adaptive parameter declaration and logs a successful setup of it. Again,
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the task gets executed repeatedly, since the parameter value gets adjusted adaptively
as long as the task execution result in errors. The values provided as categories are
tried out in the same order, as they were given in the adaptive parameter creation.
The last value, leads to a successful task execution, which ends the workflow.

6.2 Real World Workflow

For the real world experiment, the blast workflow is first executed with fixed e-values.

6.2.1 Manual Parameter Selection

The e-value parameter was hard coded in the workflow script, and Nextflow started.
According to the result of the workflow execution, the parameter was adjusted and the
workflow rerun. In table 5 the results and runtime of each configuration are listed. It
also displays the order, in which the parameter values were used. Summarized, the
first six chosen parameter values lead to an unsuccessful task and workflow execution
and the last to a positive completion. In section B of the appendix, the output of one

e-Value runtime task result
1e-50 0m5,528s error
1.0101010101011092E-37 0m5,271s error
2.020202020202118E-37 0m4,798s error
3.030303030303127E-37 0m6,235s error
4.040404040404137E-37 0m5,309s error
5.050505050505146E-37 0m5,234s error
6.060606060606155E-37 0m5,791s successq 0m38,166s

Table 5: List of manual started Nextflow runs including runtime, using an adjusted
e-Value parameter in the script for each run.

of the unsuccessful executions can be seen. It is also exemplary for the erroneous runs,
since their output did not di�er much.
After the process of the task is started(run hash “bc/32add5”), an execution failure
is recorded and also the cause: a negative exit code, logged. This corresponds to
the insu�cient number of alignment hits, that the blastp program returned with the
chosen e-value, as it is less than 5 hits.

In the appendix also a log of the successful run can be found. No anomaly hap-
pens during execution and both the blast and extract process complete without
error. Before the workflow ends, the matching sequences are printed.
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6.2.2 Adaptive Parameter Selection

After a viable e-value was found using the manual method, the workflow was run with
the adaptive parameter.
The experiment went as follows: The adaptive parameter creation and its settings is
logged after the workflow setup. The blast process is executed 7 times(6 retries), and
the chosen e-values from the adaptation mechanism can also be seen in the output. In
the moment, the blast completes without error, the number of hits during alignment
with the required e-value is reached. The workflow can continue and the extract
process receives the top hits from the blast task. This process also finishes successful
and the matching sequences are printed. The complete run of Nextflow, from launch
to exit was 10, 773s.
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7 Discussion

7.1 Interpretation of the Results

As the executed toy example workflow run without problems and as expected in the
experiments, we think that it is su�cient, that the developed extension of Nextflow
validates the pursued feasibility. The used experimental setups of the toy example
did not contain all possible settings of the developed implementation. As such, the
experiments did not fulfil a complete testing of all possible execution paths. But we
think, that the chosen settings represent all common use cases of adaptive parameters,
that were addressed by the thesis goal. In addition to that, the pre-existing functionality
of Nextflow was not a�ected, since for example, the extract process of the experiment
from chapter 5.3 executed normally and no other impairment during runtime was seen.
The implemented search strategies worked as expected, and it is in the responsibility
of the user, to choose a strategy, that is appropriate to his use case.
We were further able to insert an adaptive parameter into a real world BLAST workflow,
like a user would apply it in a realistic scenario. We executed this experiment on
university servers via SSH, which is also a fitting environment, since this kind of workflow
is often used by bioinformatics researchers that could use scientific workflow software
on similar hardware. Using the adaptive parameter, a correct value for the executed
tool of the task could successfully be found. Since someone without our implemented
feature would have to start the complete workflow repeatedly, we showed, that it is
faster to use adaptive parameters and thus the pursued thesis goal was reached. In
our case, the adaptive parameter setting was more than 3 times faster. We think
that on much larger workflows, e.g. rnaseq from the nf-core repository, the impact
and usefulness would be even higher! But of course, these di�erences in time are also
bound to luck and intuition of the workflow developer. As such, the advantage in using
adaptive parameters, depends on the selection of bounds, in contrast to the chosen
concrete values if done manually. Summarized, our implementation cannot make the
selection of parameters in workflows easier, since the user still has to conceive the
adaptation bounds. But it can make the parameter value selection significantly faster,
since with adaptive parameters the overhead of restarting the workflow is saved.

7.2 Future work

Adaptive Parameter Creation

We see it as a success, that the implementation makes it possible to make a parameter
adaptive with just one added instruction to a Nextflow script. We concentrated on
choosing intuitive names for the adaptation settings, like search strategy and bounds.
Although we were satisfied with the result of the implementation, the thesis did not
focus on a pleasant user experience in particular. We chose a simple input method, that
did not require a modification of the DSL parsing. More sophisticated definitions of
adaptive parameters and their parameter spaces should be possible. Our implementation
only supported intervals as a method to record the user knowledge about a parameter
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space, but maybe other kinds of sets could also be useful. We think, potential future
implementations could enhance on this. If the implementation of the thesis should be
made publica, it maybe would be beneficial to realize it as a Nextflow Plugin, to o�er
an easy installation. In addition to that, it has to be discussed, which default values
would support users of adaptive parameters the most.

Adaptation Algorithm

As mentioned in the thesis scope, only single parameter values of tasks were a goal.
We think, that supporting multiple parameter values could be an useful extension in
the future, that would require more research and planing. The complexity of search
strategies would grow, as the number of combinations of parameter values would rise
quickly. But often tool parameters can influence each other and as such, a support of
the user with adaptive parameter could be useful.

Also, the ADAPT errorStrategy that we developed, allows our implementation to
work, but also endless retries. In combination with an inappropriate process script,
this can result in an infinite loop and resources hogging.

Meta analysis

Something this thesis does not research is, if there are performance di�erences between
the di�erent search strategies. Also, a lot of possible future research could be focused on
the analysing, if adaptive parameters can compete with the other parameter selection
methods referenced in chapter 3.
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8 Summary

In this thesis, we were able to show, that it is feasible to implement adaptive task
parameters for scientific workflows. We extended the code base of the Nextflow workflow
engine and showed on various examples, that the new version was capable of executing
workflows as usual, but also that it selected values for task parameters automatically.
The created algorithm hereby harnessed a user supplied value range and found correct
values within it, that allowed successful task execution. If the correct value is not
within these bounds, the algorithm notified the user accordingly. The implementation
is compatible to be used with value parameters passed in channels. Only a single
parameter of a task can be adaptive, but multiple processes can have an adaptive
parameter in a workflow script.
We evaluated, that on a common bioinformatics workflow, the implementation could
adapt a task parameter to a correct value faster than a human could, in our case up
to 3 times. Thus, we conclude, that adaptive parameters can be an improvement to
the conventional workflow development process. In the day-to-day research process,
the typical manual parameter selection is a tedious time-consuming task. Researchers
that have an idea of a feasible value range, can evaluate this faster now using the
implementation.
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Appendix

All listings and log outputs can also be found on GitLab: https://gitlab.informatik.hu-
berlin.de/freudeto/bachelor-thesis.git

Appendix Section A

Toy Example Listing

p r o c e s s i n t P r o c e s s {
input :
v a l x
output :
s t d ou t
”””
i f [ ${x} ≠ne 5 ] ; then
e x i t ≠1
f i
”””

}

p r o c e s s f l o a t P r o c e s s {
input :
v a l x
output :
s t d ou t
”””
bcResult =‘ echo ” $x != 2 0 . 0 ” | bc ‘
i f [ \ $bcResult ≠eq 1 ] ; then
e x i t ≠1
f i
”””

}

p r o c e s s s t r i n g P r o c e s s {
input :
v a l x
output :
s t d ou t

”””
CORRECT VALUE=” f a l s e ”

i f [ [ ”${x}” != \$CORRECT VALUE ] ] ; then
e x i t ≠1
f i
”””

}

workflow {
i f ( params . experiment == 1) {

adaptparam = adaptparam int ( f o r P r o c e s s =” i n t P r o c e s s ” , from =0, to =10 ,
w i t h S e a r c h S t r a t e g y=”random ” , mean=0)

r e s = i n t P r o c e s s ( adaptparam )
r e s | view { i t }

}
e l s e i f ( params . experiment == 2) {

adaptParam = a d a p t p a r a m f l o a t ( f o r P r o c e s s =” f l o a t P r o c e s s ” , from =0, to =5, maxSteps =10 ,
w i t h S e a r c h S t r a t e g y=” s o r t e d ” , mean=1)

r e s = f l o a t P r o c e s s ( adaptParam )
r e s | view { i t }

}
e l s e i f ( params . experiment == 3) {

adaptParam = a d a p t p a r a m c a t e g o r i c a l ( f o r P r o c e s s =” s t r i n g P r o c e s s ” , c a t e g o r i e s =[0 , n u l l
, ” f a l s e ” ] )

r e s = s t r i n g P r o c e s s ( adaptParam )
r e s | view { i t }

}
e l s e {

p r i n t ” P l e a s e choose experiment ”
}

}

Listing 2: Nextflow script of the toy example

Start Script for Toy Example Experiment 1 (Integer Parameter)

vi



#!/ bin / bash
f o r I i n { 1 . . 3 0 }
do

. / launch . sh run workf lows / toyexample . nf ≠≠experiment 1
echo ” Experiment run # $ I with r e s u l t $ ?”

done

Listing 3: Start script for toy example experiment 1 (integer parameter)

Toy Example Output Experiment 1 (Integer Parameter)

1 $ time . / launch . sh workf lows / toyexample . nf ≠≠experiment 1
2 N E X T F L O W ˜ v e r s i o n 23.06.0 ≠ edge
3 Launching ‘ workf lows / toyexample . nf ‘ [ g o l d e n s a n g e r ] DSL2 ≠ r e v i s i o n : b9fb0ee22e
4 Created a d a p t i v e parameter ( i n t ) f o r p r o c e s s i n t P r o c e s s t e s t i n g from 0 to 10 s t a r t i n g at 0
5 e x e c u t o r > l o c a l ( 4 )
6 [ ea /8909 de ] p r o c e s s > i n t P r o c e s s [ 75%] 3 o f 4 , f a i l e d : 3 , r e t r i e s : 3
7 Try a d a p t i v e parameter adaptParam0 with va lu e 1
8 e x e c u t o r > l o c a l ( 4 )
9 [ ea /8909 de ] p r o c e s s > i n t P r o c e s s [100%] 4 o f 4 , f a i l e d : 3 , r e t r i e s : 3

10 Try a d a p t i v e parameter adaptParam0 with va lu e 8
11 Try a d a p t i v e parameter adaptParam0 with va lu e 4
12 Try a d a p t i v e parameter adaptParam0 with va lu e 5
13
14 Adaptive parameter found c o r r e c t val u e : adaptParam0 with val u e 5
15 [ 6 e /44 e299 ] NOTE: P r o c e s s ‘ i n t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 1 )
16 [ 4 2 / f 4 9 1 3 f ] NOTE: P r o c e s s ‘ i n t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 2 )
17 [ 9 5 / 7 a2ead ] NOTE: P r o c e s s ‘ i n t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 3 )
18
19
20 r e a l 0m4, 6 3 3 s
21 u s e r 0m8, 0 9 9 s
22 s y s 0m1, 6 6 1 s

Listing 4: STDOUT of toy example experiment 1 (integer parameter)

Toy Example Output Experiment 2 (Float Parameter)

$ time . / launch . sh workf lows / toyexample . nf ≠≠experiment 2
N E X T F L O W ˜ v e r s i o n 23.06.0 ≠ edge
Launching ‘ workf lows / toyexample . nf ‘ [ maniac meucci ] DSL2 ≠ r e v i s i o n : 345429651 e
Created a d a p t i v e parameter ( f l o a t ) f o r p r o c e s s f l o a t P r o c e s s t e s t i n g from 0 . 0 to 5 . 0 i n 10 s t e p s

s t a r t i n g at 1 . 0
[ a4 / ab2286 ] p r o c e s s > f l o a t P r o c e s s [100%] 11 o f 11 , f a i l e d : 11 , r e t r i e s : 10
Try a d a p t i v e parameter adaptParam0 with va l ue 1.1111111111111112
Try a d a p t i v e parameter adaptParam0 with va l ue 0.5555555555555556
Try a d a p t i v e parameter adaptParam0 with va l ue 1.6666666666666667
Try a d a p t i v e parameter adaptParam0 with va l ue 0 . 0
Try a d a p t i v e parameter adaptParam0 with va l ue 2.2222222222222223
Try a d a p t i v e parameter adaptParam0 with va l ue 2.7777777777777777
Try a d a p t i v e parameter adaptParam0 with va l ue 3.3333333333333335
Try a d a p t i v e parameter adaptParam0 with va l ue 3.8888888888888893
Try a d a p t i v e parameter adaptParam0 with va l ue 4.444444444444445
Try a d a p t i v e parameter adaptParam0 with va l ue 5 . 0
[ a0 / d047c2 ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 1 )
[ 6 a /4 ee7a6 ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 2 )
[ 3 4 / ccc9d9 ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 3 )
[ 0 7 / 9 bc64c ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 4 )
[ 0 c / cf4ab2 ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 5 )
[ 8 9 / 1 7 d737 ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 6 )
[ 0 7 / 6 0 c45c ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 7 )
[ e0 /1 dc7ed ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 8 )
[ e8 /30 b48b ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 9 )
[ 6 b/1 ba36b ] NOTE: P r o c e s s ‘ f l o a t P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s

r e t r i e d ( 1 0 )
WARN: No va l u e f o r a d a p t i v e parameter found , that can e x e c u t e p r o c e s s s u c c e s s f u l . Throwing e r r o r . . .
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ERROR ˜ Error e x e c u t i n g p r o c e s s > ’ f l o a t P r o c e s s ’

Caused by :
Index 10 out o f bounds f o r l e n g t h 10

≠≠ Check ’ . n e x t f l o w . log ’ f i l e f o r d e t a i l s

r e a l 0m4, 8 7 9 s
u s e r 0m7, 5 7 3 s
s y s 0m1, 5 9 7 s

Listing 5: STDOUT of toy example experiment 2 (float parameter)

Toy Example Output Experiment 3(Categorical Parameter)

$ time . / launch . sh workf lows / toyexample . nf ≠≠experiment 3
N E X T F L O W ˜ v e r s i o n 23.06.0 ≠ edge
Launching ‘ workf lows / toyexample . nf ‘ [ d r e a m y s i n o u s s i ] DSL2 ≠ r e v i s i o n : 345429651 e
Created c a t e g o r i c a l a d a p t i v e parameter f o r p r o c e s s s t r i n g P r o c e s s t e s t i n g [ 0 , n u l l , f a l s e ]
e x e c u t o r > l o c a l ( 2 )
e x e c u t o r > l o c a l ( 3 )
e x e c u t o r > l o c a l ( 3 )
[ 9 9 / c c 7 f 8 d ] p r o c e s s > s t r i n g P r o c e s s [100%] 3 o f 3 , f a i l e d : 2 , r e t r i e s : 2
Try a d a p t i v e parameter adaptParam0 with va l ue 0
Try a d a p t i v e parameter adaptParam0 with va l ue n u l l
Try a d a p t i v e parameter adaptParam0 with va l ue f a l s e

Adaptive parameter found c o r r e c t val u e : adaptParam0 with val u e f a l s e
[ 5 8 / c00d9c ] NOTE: P r o c e s s ‘ s t r i n g P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution

i s r e t r i e d ( 1 )
[ 9 8 / c d f 8 f 5 ] NOTE: P r o c e s s ‘ s t r i n g P r o c e s s ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution

i s r e t r i e d ( 2 )

r e a l 0m4, 6 0 9 s
u s e r 0m7, 3 9 9 s
s y s 0m1, 1 3 5 s

Listing 6: STDOUT of toy example experiment 3 (categorical parameter)
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Appendix Section B

BLAST Workflow script

params . query = ” $baseDir / data / sample . f a ”
params . db = ” $baseDir / b l a s t ≠db/pdb/ t i n y ”
params . out = ” r e s u l t . t x t ”
params . chunkSize = 100

db name = f i l e ( params . db ) . name
d b d i r = f i l e ( params . db ) . parent

workflow {
/�
� Create a channel e m i t t i n g the g i ve n query f a s t a f i l e ( s ) .
� S p l i t the f i l e i n t o chunks c o n t a i n i n g as many s e q u e n c e s as d e f i n e d by the parameter ’

chunkSize ’ .
� F i n a l l y , a s s i g n the r e s u l t i n g channel to the v a r i a b l e ’ c h f a s t a ’
�/
Channel
. fromPath ( params . query )
. s p l i t F a s t a ( by : params . chunkSize , f i l e : t r u e )
. s e t { c h f a s t a }

adaptparam1 = a d a p t p a r a m f l o a t ( f o r P r o c e s s =” b l a s t ” , from=1e ≠50 , to=1e ≠35 , maxSteps =100 ,
w i t h S e a r c h S t r a t e g y=” s o r t e d ” , s t a r t A t=1e ≠50)

/�
� Execute a BLAST job f o r each chunk emitted by the ’ c h f a s t a ’ channel
� and emit the r e s u l t i n g BLAST matches .
�/
c h h i t s = b l a s t ( c h f a s t a , db dir , adaptparam1 )

/�
� Each time a f i l e emitted by the ’ b l a s t ’ p r o c e s s , an e x t r a c t job i s executed ,
� producing a f i l e c o n t a i n i n g the matching s e q u e n c e s .
�/
c h s e q u e n c e s = e x t r a c t ( c h h i t s , d b d i r )

/�
� C o l l e c t a l l the s e q u e n c e s f i l e s i n t o a s i n g l e f i l e
� and p r i n t the r e s u l t i n g f i l e c o n t e n t s when complete .
�/
c h s e q u e n c e s
. c o l l e c t F i l e ( name : params . out )
. view { f i l e ≠> ” matching s e q u e n c e s : \ n ${ f i l e . t e x t }” }

}

p r o c e s s b l a s t {
input :
path ’ query . fa ’
path db
v a l eValue

output :
path ’ t o p h i t s ’

”””
. . / . . / . . / ncbi≠b l a s t ≠2.14.1+/ b l a s t ≠bin / b l a s t p ≠db $db/$db name ≠query query . f a ≠outfmt 6 ≠

e v a l u e $eValue > b l a s t r e s u l t

c a t b l a s t r e s u l t | head ≠n 10 | cut ≠f 2 > t o p h i t s
HIT COUNT=\$ ( wc ≠ l < t o p h i t s )

i f [ \$HIT COUNT ≠ l t 5 ] ; then
e x i t ≠1
f i
”””

}

p r o c e s s e x t r a c t {
input :
path ’ t o p h i t s ’
path db

output :
path ’ sequences ’

”””
. . / . . / . . / ncbi≠b l a s t ≠2.14.1+/ b l a s t ≠bin / blastdbcmd ≠db $db/$db name ≠e n t r y b a t c h t o p h i t s |

head ≠n 10 > s e q u e n c e s
”””

}
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Listing 7: Log output of toy example experiment 1

Log Output of BLAST Workflow with Manually Set E-Value, Unsuccessful Run

$ time . / launch . sh run workf lows / b l a s t . nf
N E X T F L O W ˜ v e r s i o n 23.06.0 ≠ edge
Launching ‘ workf lows / b l a s t . nf ‘ [ f r i e n d l y v a r a h a m i h i r a ] DSL2 ≠ r e v i s i o n : f c 3 e c b 5 e e 9
e x e c u t o r > l o c a l ( 1 )
[ bc /32 add5 ] p r o c e s s > b l a s t ( 1 ) [100%] 1 o f 1 , f a i l e d : 1
[≠ ] p r o c e s s > e x t r a c t ≠
ERROR ˜ Error e x e c u t i n g p r o c e s s > ’ b l a s t ( 1 ) ’

Caused by :
P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 )

Command executed :

. . / . . / . . / ncbi≠b l a s t ≠2.14.1+/ b l a s t ≠bin / b l a s t p ≠db pdb/ t i n y ≠query query . f a ≠outfmt 6 ≠e v a l u e 1E≠50 >
b l a s t r e s u l t

c a t b l a s t r e s u l t | head ≠n 10 | cut ≠f 2 > t o p h i t s
HIT COUNT=$ ( wc ≠ l < t o p h i t s )

i f [ $HIT COUNT ≠ l t 5 ] ; then
e x i t ≠1
f i

Command e x i t s t a t u s :
255

Command output :
( empty )

Work d i r :
/ v o l / fob≠v o l 1 /mi15/ f r e u d e t o /BA/ bachelor ≠t h e s i s /work/ bc /32 add51a5861db6bef0f5c8f866bbc

Tip : view the complete command output by changing to the p r o c e s s work d i r and e n t e r i n g the command
‘ c at . command . out ‘

≠≠ Check ’ . n e x t f l o w . log ’ f i l e f o r d e t a i l s

r e a l 0m5, 5 2 8 s
u s e r 0m8, 0 2 2 s
s y s 0m0, 8 9 4 s

Listing 8: STDOUT of unsucessful BLAST Workflow execution with manually set
e-Value to 1E-50

Log Output of BLAST Workflow with Manually Set E-Value, Successful Run

$ time . / launch . sh run workf lows / b l a s t . nf
N E X T F L O W ˜ v e r s i o n 23.06.0 ≠ edge
Launching ‘ workf lows / b l a s t . nf ‘ [ i n t e r g a l a c t i c m o r i o n d o ] DSL2 ≠ r e v i s i o n : db6c77fa12
e x e c u t o r > l o c a l ( 2 )
[58/16878 d ] p r o c e s s > b l a s t ( 1 ) [100%] 1 o f 1
[ aa /a8dd3d ] p r o c e s s > e x t r a c t ( 1 ) [100%] 1 o f 1
matching s e q u e n c e s :
>1ABO:B
MNDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNS
>1ABO:A
MNDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNS
>1YCS:B
PEITGQVSLPPGKRTNLRKTGSERIAHGMRVKFNPLPLALLLDSSLEGEFDLVQRIIYEVDDPSLPNDEGITALHNAVCA
GHTEIVKFLVQFGVNVNAADSDGWTPLHCAASCNNVQVCKFLVESGAAVFAMTYSDMQTAADKCEEMEEGYTQCSQFLYG
VQEKMGIMNKGVIYALWDYEPQNDDELPMKEGDCMTIIHREDEDEIEWWWARLNDKEGYVPRNLLGLYPRIKPRQRSLA
>1PHT:A
MSAEGYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQEARPEEIGWLNGYNETTGERGDFPGTYVEYIGRK

r e a l 0m5, 7 9 1 s
u s e r 0m7, 4 7 0 s
s y s 0m1, 2 3 2 s
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Listing 9: STDOUT of succesfully executed BLAST Workflow with manually set e-
Value to 6.060606060606155E-37

Log Output of BLAST Workflow with Adaptive Parameter Execution

$ time . / launch . sh run workf lows / b l a s t a d a p t . nf
N E X T F L O W ˜ v e r s i o n 23.06.0 ≠ edge
Launching ‘ workf lows / b l a s t a d a p t . nf ‘ [ compass ionate marconi ] DSL2 ≠ r e v i s i o n : 3 eb11db2a8
Created a d a p t i v e parameter ( f l o a t ) f o r p r o c e s s b l a s t t e s t i n g from 1 . 0E≠50 to 1 . 0E≠35 i n 100 s t e p s

s t a r t i n g at 1 . 0E≠50
e x e c u t o r > l o c a l ( 8 )
[ 0 6 / 8 9 4 3 2 7 ] p r o c e s s > b l a s t ( 1 ) [100%] 7 o f 7 , f a i l e d : 6 , r e t r i e s : 6
[ f 2 / c59b42 ] p r o c e s s > e x t r a c t ( 1 ) [100%] 1 o f 1
Try a d a p t i v e parameter adaptParam0 with va l ue 1 . 0E≠50
Try a d a p t i v e parameter adaptParam0 with va l ue 1.0101010101011092E≠37
Try a d a p t i v e parameter adaptParam0 with va l ue 2.020202020202118E≠37
Try a d a p t i v e parameter adaptParam0 with va l ue 3.030303030303127E≠37
Try a d a p t i v e parameter adaptParam0 with va l ue 4.040404040404137E≠37
Try a d a p t i v e parameter adaptParam0 with va l ue 5.050505050505146E≠37
Try a d a p t i v e parameter adaptParam0 with va l ue 6.060606060606155E≠37
Adaptive parameter found c o r r e c t val u e : adaptParam0 with val u e 6.060606060606155E≠37
matching s e q u e n c e s :
>1ABO:B
MNDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNS
>1ABO:A
MNDPNLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNS
>1YCS:B
PEITGQVSLPPGKRTNLRKTGSERIAHGMRVKFNPLPLALLLDSSLEGEFDLVQRIIYEVDDPSLPNDEGITALHNAVCA
GHTEIVKFLVQFGVNVNAADSDGWTPLHCAASCNNVQVCKFLVESGAAVFAMTYSDMQTAADKCEEMEEGYTQCSQFLYG
VQEKMGIMNKGVIYALWDYEPQNDDELPMKEGDCMTIIHREDEDEIEWWWARLNDKEGYVPRNLLGLYPRIKPRQRSLA
>1PHT:A
MSAEGYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQEARPEEIGWLNGYNETTGERGDFPGTYVEYIGRK

[ db/ f e f 5 e 0 ] NOTE: P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s
r e t r i e d ( 1 )

[ b4/ a76868 ] NOTE: P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s
r e t r i e d ( 2 )

[ b7 /82 d27d ] NOTE: P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s
r e t r i e d ( 3 )

[ 0 b/1 b6864 ] NOTE: P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s
r e t r i e d ( 4 )

[ 2 c / c 8 e 6 f 5 ] NOTE: P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s
r e t r i e d ( 5 )

[ 6 a /8 ea910 ] NOTE: P r o c e s s ‘ b l a s t ( 1 ) ‘ terminated with an e r r o r e x i t s t a t u s ( 2 5 5 ) ≠≠ Execution i s
r e t r i e d ( 6 )

r e a l 0m10 , 7 7 3 s
u s e r 0m8, 1 6 0 s
s y s 0m1, 8 5 5 s

Listing 10: STDOUT of blast workflow experiment, with adaptive paramter
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