HuMBOLDT-UNIVERSITAT ZU BERLIN
MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

Improving Code Instrumentation to
Circumvent Roadblocks in Generator-based
Fuzzing

Bachelor Thesis

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Adrian Schiller
geboren am: 18.11.1997

geboren in: Berlin

Gutachter/innen: Prof. Dr. Lars Grunske
M.Sc. Yannic Noller

eingereicht am: 28.02.2023 verteidigt am:

Adrian Schiller
28.02.2023

Abstract

This bachelor thesis presents JQF-Smart, an extension of the Zest generator-based
fuzzer [23] that provides a solution for the "magic value problem”, specifically for
string comparisons. The magic value problem in coverage-guided fuzzing occurs
during the execution of the tested program when specific values of the input (so-
called "magic values”) are required to execute certain hard-to-reach code paths. It is
a persistent challenge in the field of fuzzing since it can be a roadblock preventing the
fuzzer from triggering behaviour leading to potentially vulnerable code. Previous
research provided several approaches to address this problem, including [14, 15, 6].

JQF-Smart employs code instrumentation to generate targeted feedback for
string comparison methods that cause the magic value problem. It introduces novel
adaptive input generators that allow the fuzzer to dynamically switch between
different string generation strategies at specific locations of the input. JQF-Smart
iteratively discovers the magic values based on the targeted feedback of previously
generated inputs by adjusting the string generation strategy accordingly.

To evaluate the fuzzing performance of JQF-Smart, we conducted an empirical
study using three open-source Java programs. Our results demonstrate consider-
able improvements in the effectiveness of the Zest fuzzer when using JQF-Smart,
specifically in covering hard-to-reach parts of the code. Overall, the study demon-
strates the positive impact that the modified instrumentation paired with the
employment of adaptive generators has on the performance of generator-based
fuzzing. Our approach has shown potential in addressing the magic value problem

in coverage-guided fuzzing, with a focus on Java’s string comparison methods.

Contents

Introduction

Background

2.1 ASM . .

2.2 Property Testing

2.3 Coverage-Guided Fuzzing
2.3.1 Overview
2.3.2 Semantic Fuzzing L

2.4 laf-intel

Related Work

3.1 Magic Values

3.2 Structure Aware Fuzzingo

Approach

4.1 Overview

4.2 Adaptive Generators Lo

4.3 Smart Guidanceo

4.4 String Compare Coverage

Evaluation

Conclusion

19
19
21

23
23
23
26
29

35

40

1 Introduction

In the software development process, testing the software is a crucial step in order
to ensure its functionality and security. It has become an increasingly difficult
task over the past few years with the increasing complexity of the tested systems.
A common approach to detect software vulnerabilities is coverage-guided fuzzing
(CGF) [7], which has gotten a lot of popularity with the introduction of several
testing tools, such as those listed in [28, 22, 24, 23, 16]. Coverage-guided fuzzers
provide the software under test (SUT) with randomly generated inputs and use
feedback in the form of code coverage to measure the behaviour of the SUT. Inputs
that trigger new behaviour, i.e. inputs that cover previously undetected program
paths, are saved and mutated to iteratively execute more functionalities and find
vulnerabilities. Generator-based fuzzers also known as semantic fuzzers, such as
the Java-based fuzzer Zest [23] use generators in the style of QuickCheck [10] to
generate inputs based on a predefined grammar.

However, a common limitation of traditional CGF tools can be of reaching
certain branches that are guarded by complex conditions (potentially leading to
unexpected behaviour), such as multiple-byte comparisons [25]. These conditions
can be satisfied by specific values of the input, which are known as "magic values”.
A simple example of the magic value problem is a string comparison, in which the
input must be equal to a specific value, which will be referred to as "magic string”.
Figure 1.1 illustrates this concept with a simple code example. It shows a string
comparison using the equals method from the Java class String to determine
whether the string input is equal to the value "BADSTRING". If the input happens
to match that value, the if-statement leads to unexpected behaviour in line 2.

Otherwise, the intended functionality is executed in line 5.

CHAPTER 1. INTRODUCTION

if (input.equals("BADSTRING")){
/* buggy code */

}
else {

/* good code */
}

Figure 1.1: Code Snippet to illustrate the magic value problem

Since generator-based fuzzers often rely on some sort of dictionary to generate
strings, it is impossible to reach the true branch if the magic string is not contained
in the dictionary. Randomly generating a required string is an arduous task due
to the large search space. The probability P of randomly generating the string
value "BADSTRING" can be calculated by the size A of the alphabet raised to the
negative power of the length L of the string.

Length of "BADSTRING": L=9
Size of the ASCII alphabet: A = 128 = 28
Probability: P=ATL=287=9T"

Furthermore, the coverage feedback does not provide information on how similar the
compared strings are. For example the input values "123abcxyz", "BADabcxyz"
and "BADSTRxyz" would all cover the same branch in our example (line 5). Only,
if the string exactly matches the value "BADSTRING" the true branch (5 would be
covered, thus changing the feedback that the fuzzer receives.

We introduce JQF-Smart, a modified version of the Zest fuzzer integrated into
the fuzzing framework JQF [22]. JQF-Smart addresses the magic value problem
for strings, by extending the instrumentation of the SUT to provide more accurate
coverage feedback related to certain string comparison methods. We further
introduce adaptive input generators that dynamically adapt the string generation
strategy, based on the feedback from the program execution. Specifically, our fuzzer
keeps track of all string comparisons and periodically targets a string comparison
that has never been evaluated to be true for any input. To evaluate the targeted
comparison, JQF-Smart uses a custom method that computes the return value

while also counting, how many characters of the compared values are equal. When

CHAPTER 1. INTRODUCTION

the fuzzer is targeting a comparison, the adaptive generator produces the string
character by character at a particular input position, rather than retrieving it from
a dictionary, which leads to the evolutionary discovery of the magic value. We refer
to this string generation strategy as search-based string generation.

In this thesis, we investigate the impact of our modified instrumentation and
the integration of adaptive generators on the performance of fuzzing. Our research

question is:

What is the impact of the modified instrumentation combined with the
integration of adaptive generators on the performance of

generator-based fuzzing?

Since we assume that JQF-Smart will have an overhead compared to Zest, due to the
more detailed feedback and the adaptive input generation, we suggest a combination
of Zest and JQF-Smart to enhance the performance of JQF-Smart. We evaluate
JQF-Smart’s performance by comparing it to Zest. To measure the performance of
both tools, we use the achieved coverage on three benchmark programs. We expect
that the employment of JQF-Smart increases the code coverage that was achieved
by Zest, through the exploration of branches that were impossible to reach by Zest.

The paper is structured as follows: Chapter 2 provides the required back-
ground information on the instrumentation software used by Zest, property testing,
generator-based fuzzing and another approach that addresses the magic value prob-
lem. Chapter 3 covers related work that inspired our approach to implementing
JQF-Smart. Chapter 4 discusses the implementation approach. Chapter 5 presents
the evaluation methodology and results. Chapter 6 concludes our thesis and answers

the research question.

2 Background

2.1 ASM

JQF uses the Java bytecode manipulation framework ASM [8] in order to instrument
the classes that are being tested. To understand the instrumentation process, we
have to take a look at the ASM library.

In order to manipulate classes ASM provides three building blocks. The abstract
class ClassVisitor provides methods to mirror the bytecode instructions, i.e. an
instruction xxx is represented by the method visitXxx. The MethodVisior and
the FieldVisitor classes are used to represent methods and fields, respectively
and provide the necessary methods. Any Java class can be represented by the
corresponding sequence of methods. The visitor classes delegate these method calls
to another instance of themselves and act as a kind of filter. To manipulate a
given class, the programmer provides extensions for the visitor classes that serve
as adapters by overriding certain methods. The ClassReader class parses the
byte code. It has an accept method, which takes a ClassVisitor instance as an
argument and calls the corresponding methods to represent the byte code. The
ClassWriter class is an extension of ClassVisitor that receives the delegated
method calls and generates a byte array that contains the compiled class. Figure 2.1
illustrates the process of byte-code manipulation, using the adapter ClassAdapter.

JQF provides a class adapter that uses a method adapter to rewrite certain
instructions. The essential instructions that are rewritten are method instructions
(i.e. invocations), jump instructions and table switch instructions (which correspond
to switch-statements in the source code). The adapter adds a static method call

at certain locations in the code in order to monitor every method invocation

2.1. ASM CHAPTER 2. BACKGROUND

ClassReader ClassAdapter ClassWriter

Figure 2.1: ASM byte code manipulation process. From [8].

and each branch of jump and table switch instructions. Each instruction gets
assigned an instruction ID to differentiate the various coverage points that are
being monitored. Figure 2.2 shows the overridden method visitMethodInsn from
the method adapter (simplified version to illustrate the concept). The arguments
for this method are the owner (i.e. the class), the name and the description (i.e. a
string containing information about input and output types) of the method that
is invoked by the bytecode instruction. The adapter uses an instance mv of the
MethodVisitor class to call the actual methods corresponding to the instructions.
Before the original method is called (line 6) we go through the following sequence
of steps. For every instruction, the adapter pushes a unique instruction ID and
the value 0 onto the stack (lines 3 and 4). Then, the static method LOGJUMP is
called which takes the two integer values on top of the stack as input arguments.
Additional instruction IDs get allocated when instrumenting jump instructions and
table switch instructions and the second argument of the LOGJUMP method refers
to the branch.

@0verride

public void visitMethodInsn(String owner, String name, String desc) {
addBipushInsn(mv, incAndGetInstructionId()); // push instruction ID
mv.visitInsn(ICONST_0); // push value O
mv.visitMethodInsn("FastCoverageSnoop", "LOGJUMP", "(II)V");
mv.visitMethodInsn(owner, name, desc);

Figure 2.2: JQF instrumentation method visitMethodInsn

Figure 2.3 illustrates the instrumentation. It shows, how the code snippet shown

in figure 1.1 would look after instrumenting the byte code. The instrumentation

7

2.2. PROPERTY TESTING CHAPTER 2. BACKGROUND

FastCoverageSnoop.LOGJUMP(1, 0);

if (input.equals("BADSTRING")){
FastCoverageSnoop.LOGJUMP(2, 0);
/* buggy code */

b

else {
FastCoverageSnoop.LOGJUMP(2, 1);
/* good code */

3

Figure 2.3: Example of instrumented code by JQF

adds invocations of the method FastCoverageSnoop.LOGJUMP to the code and
generates the instruction IDs. The equals method (line 2) is assigned instruction
ID 1 and is tracked in line 1. The jump instruction of the if-statement is assigned
instruction ID 2. The true-branch is logged in line 3 and the false-branch in line 7.
The FastCoverageSnoop.LOGJUMP method uses the instruction ID and an integer

representing the branch as input arguments.

2.2 Property Testing

The concept of property-based testing was proposed by Claessen and Hughes [10]
with QuickCheck, an automatic testing tool for Haskell programs. They introduced
a testing technique in which the programmer defines certain properties, that have
to hold true for all kinds of randomly generated inputs. It is also possible to define
conditional properties that have to hold true under certain circumstances. The idea
is to define pre- and postconditions, and thus the behaviour of the test program,
by the properties. Finding an unfulfilled property after the execution of an input
means that the test program performs exceptional behaviour, i.e. a malfunction is
discovered. To test the properties of programs with complex inputs, QuickCheck also
introduced input generators that produce syntactically valid inputs by construction.
Using pseudo-random choices these generators hierarchically assemble structured
inputs.

The Java library JUnit QuickCheck [13] provides a testing framework for Java

2.2. PROPERTY TESTING CHAPTER 2. BACKGROUND

Q@Property
public void squareRootTest(double x) {
assumeTrue(x >= 0); // Precondition x>0
double root = Math.sqrt(x);
assertEquals(root * root, x); // Postcondition x = root?
}

Figure 2.4: JUnit QuickCheck example: Properties of the square root function
from java.lang.Math

that integrates property-based testing into the well-known testing library JUnit [2].
With certain test drivers, the programmer defines the properties that the program
under test must satisfy. Pre- and Postconditions are specified with methods from
the Assume and Assert classes, respectively. Figure 2.4 shows an example of
a JUnit QuickCheck property test. The goal is to validate the functionality of
Math.sqrt which is supposed to calculate the square root of a given argument.
The test method executes Math.sqrt with randomly generated inputs of the type
double (line 4). The precondition is defined in line 3 and serves to only test the
functionality for positive inputs since Math.sqrt cannot return complex numbers.
After the execution, the functionality is checked by comparing the input to the
square of the calculated root (line 5).

To allow for the testing of more complex programs with longer inputs, JUnit
QuickCheck provides a generator-building interface that follows the same principles
as QuickCheck. Figure 2.5 shows a simple example of a generator, which generates
an XML document based on that interface. The generator relies on pseudo-random
choices (lines 16, 22, 28) for producing primitive types (e.g. int or boolean)
and constructs a syntactically correct XML document with nested nodes through
recursive function calls (line 18). Any input can also be presented as a sequence of
choices that determine the specific input values. For the parts of the inputs that will
be interpreted as Strings, the generator relies on a dictionary from which randomly
selected Strings are taken. This is referred to as dictionary-backed string generation
and can also take place in a separate generator used by the main generator. In
practice, the dictionary can be configured with a set of keywords to produce a
specific type of XML document, such as files of the POM format.

2.2. PROPERTY TESTING CHAPTER 2. BACKGROUND

public class XmlDocumentGenerator extends Generator<Document> {
private String[] dict = {"hello", "node_1", "node_2", "root"};

@0verride
public Document generate(SourceOfRandomness random) {
Element root = genElement(random)
return new Document (root);
}
private Element genElement(SourceOfRandomness random, int depth) {
// Generate an Element with a random name
String name = makeString(random);
Element node = new Element (name);
if (depth < MAX_DEPTH) {
// Randomly generate a random number of child nodes
int n = random.nextInt (MAX_CHILDREN) ;
for (dint i = 0; i < n; i++) {
node.appendChild(genElement (random, depth+1);
}
}

// Maybe insert text inside the element
if (random.nextBoolean()) {
node.addText (makeString (random)) ;

}

private String makeString(SourceOfRandomness random) {
// Randomly choose a String from the dictionary
int index = random.nextInt(dict.length);
return dict[index];

Figure 2.5: Simplified generator for XML documents. Adapted from [23]

10

2.3. COVERAGE-GUIDED FUZZING CHAPTER 2. BACKGROUND

2.3 Coverage-Guided Fuzzing

2.3.1 Overview

Coverage-Guided Fuzzing (CGF) is a widespread technique in the field of automatic
software testing that was popularized by the C testing framework AFL [28] and is
now used in various testing applications [15, 22, 23, 28, 21, 20, 14, 6].

CGF uses grey-box analysis in order to gain feedback on the behaviour of
the tested program during execution. The software under test (SUT) is fed with
randomly generated inputs in order to find bugs or execute program behaviour that
was not triggered by previously generated inputs. Interesting inputs that cover new
paths in the execution of the program are saved and mutated to iteratively uncover
more and more of the program’s behaviour. The goal is to explore the control flow
graph of the program to search for unexpected behaviour. In order to measure the
behaviour of a program code coverage is utilized. That usually considers which
program paths have been executed and how many times each branch has been
reached, i.e. the hit count of a branch. The total coverage of the program consists
of the set of branches reached by all the generated inputs and the highest hit count
of each branch.

The guidance determines based on the coverage feedback, which inputs are
going to be saved for further mutation. To illustrate this process, figure 2.6 shows
the general workflow of coverage guidance, i.e. the fuzzing loop. The fuzzing loop
is initiated with a set of seed inputs or with a randomly generated input. First,
an input is used to execute the SUT. If the execution caused a program crash or
hang, the respective input gets saved in a list of failures and the next input gets
executed. Otherwise, the guidance updates the total coverage with the coverage
of that execution, i.e. the run coverage. If new branches have been discovered or
the hit count of a branch was increased, that input will be saved to the fuzzing
queue. To produce new inputs, the guidance takes the next input of the queue
and performs low-level mutations on that input, such as bit flips or changing byte

values.

11

2.3. COVERAGE-GUIDED FUZZING CHAPTER 2. BACKGROUND

eue ;

Success Save Input

Figure 2.6: Workflow diagram for coverage-guided fuzzing.

2.3.2 Semantic Fuzzing

JQF is a coverage-guided fuzzing framework for Java [22]. The project makes use
of JUnit QuickCheck to perform property-based testing on the inspected program,
allowing an easy way for practitioners to write custom test drivers for their respective
programs. JQF also provides interfaces to allow researchers to implement new
CGF algorithms or specialize existing ones, e.g. by altering the guidance, making
changes to the fuzzing heuristics or applying new methods to track the coverage.
Notable fuzzers that have been implemented in JQF include AFL [28], PerfFuzz
[16] and Zest [23]. The JQF-Zest project combines CGF with specialized input
generators from JUnit QuickCheck in order to produce more complex syntactically

correct inputs and explore the semantic analysis stage of the SUT.

Parametric Generators Zest transforms a random input generator from the
JUnit QuickCheck interface into an equivalent parametric generator. These para-
metric generators utilize untyped byte streams (i.e. parameter sequences) which
are equivalent to the aforementioned choice sequences, to produce the inputs.
Each random choice gets turned into a deterministic choice that is controlled by
the parameters and each parameter sequence translates to a syntactically valid
input. Low-level mutations of bytes in the parameter sequence result in high-level
structural mutations of the actual input. To illustrate this concept we look at
the following sequence of calls from the SourceOfRandomness instance after the
invocation of the generate method from the previously discussed generator from
figure 2.5:

12

2.3. COVERAGE-GUIDED FUZZING CHAPTER 2. BACKGROUND

Call — result Context

nextInt(dict.length) — 3 String name = "root" (line 12)
nextInt (MAX_CHILDREN) — 1 int n = 1 (line 16)
nextInt(dict.length) —1 String name = "node_1" (line 12)
nextInt (MAX_CHILDREN) — 0 int n =0 (line 16)
nextBoolean() — true (line 22)
nextInt(dict.length) — 0 node.addText ("hello") (line 23)
nextBoolean() — false (line 22)

These choices represent a path in the generator that leads to the following XML

document:
d = <root><node_ 1>hello</node_1></root>

To produce the exact same output with the equivalent parametric generator, the
random choice generator reads its results from a byte stream which represents the
choice sequence x = [3, 1, 1, 0, true, 0, false].

The Zest guidance handles inputs in the form of byte arrays and performs mutations
to produce new inputs on that array, which preserves the required input structure.
For instance, could a mutation of the bytes corresponding to the third choice of x
lead to the choice sequence x> = [3, 1, 2, 0, true, 0, false] and produce

the mutated document:
d’ = <root><node 2>hello</node 2></root>

As mentioned, in practice the parameter sequence consists of untyped bytes so that
mutations that alter the actual structure of an input (e.g. the number of children

from a node) don’t lead to type conflicts.

Zest-Algorithm The purpose of Zest is to explore the field of semantically valid
inputs to find more and more paths and reveal bugs in the semantic analysis stage
of the test program. To achieve this goal Padhye et al. extended the basic CGF
process we discussed earlier in this section with two main ideas. The first one is the
incorporation of random input generators by turning them into parametric input

generators.

13

24. LAF-INTEL CHAPTER 2. BACKGROUND

The second idea involves the handling of the results after the execution of the
SUT with a specific input. The Zest algorithm not only tracks the total coverage
but also the coverage that was reached by semantically correct inputs, also known
as the valid coverage. To execute the inputs Zest uses a JUnit QuickCheck test
driver written by the practitioner. Malfunctions and bugs in the program can
either be detected by violations of properties defined in the assertion methods of
the framework or by exceptions produced by the program itself. In addition to the
assertions, the user can also define assumptions, which are properties related to the
semantic validity of the inputs. The Zest algorithm differentiates between three
types of results after executing an input. If an input finds a bug in the program
it is labelled FAILURE and saved separately. Inputs that don’t discover bugs are
either labelled INVALID - meaning that they are semantically incorrect, as they
caused an assumption violation - or SUCCESS when there was no violation. After
that, inputs that cause new code coverage are saved to the fuzzing queue for later
mutation. To further explore the space of semantically correct inputs, the coverage
of valid inputs is additionally tracked and inputs that cause new valid coverage are

also saved and mutated more often.

Coverage To track the code coverage, JQF maintains a map with keys referring
to coverage points in the code and their respective hit counts as values. To track
the coverage points, JQF uses ASM to add static snooping methods to the bytecode
as we showed in section 2.1. At runtime, these methods invoke logging methods
from the coverage instance and the instruction ID gets added to the branch value
to produce a unique key. Every time a logging method is called, it increases the hit
count of that key. If new keys get added to the map or the hit count of a key reaches

a new peak, it means that the related input executed new program behaviour.

2.4 laf-intel

An extension of the widely used fuzzing tool AFL is LAF-INTEL [3], which
addresses the magic value problem by code modifications in the SUT. The project
provides LLVM passes that change the tested software at compile time increasing

the number of coverage points that can be tracked. The essential point is that

14

24. LAF-INTEL CHAPTER 2. BACKGROUND

complex comparisons, such as the comparison between two strings, which affect
the control flow are split into several more simple ones that, when combined, form
the original comparison. The LAF-INTEL team implemented this concept with
three different LLVM passes.

Split-Compares The "split-compares-pass” targets comparison operators and
splits comparisons that compare multiple bytes into single-byte comparisons. To
illustrate this, consider the code snippets shown in figure 2.7. The left-hand side
shows a comparison between the variable input and a byte value, that would lead
to "buggy code” if the value of input was equal to the four-byte value Oxabadidea.
The right-hand side splits the comparison into four one-byte comparisons. The
"split-compares-pass” also transforms comparisons in the program so that it only
contains the following comparisons (==, !=, <, >) and all signed comparisons are

replaced with their unsigned equivalent.

if (input == Oxabadldea) { 1 if (input >> 24 == Oxab) {
/* buggy code */ 2 if ((input & 0xff0000) >> 16 == Oxad) {
} 3 if ((input & 0xff00) >> 8 == 0x1d) {
| if ((input & 0xff) == Oxea) {

5 /* buggy code */
o + 1}

Figure 2.7: LAF-INTEL Split-Compares-Pass. From [15]. On the left is the
original code and on the right is the modified code.

Split-Switches The next modification we are going to look at is the ”split-
switches-pass”. An easy approach for transforming switch-statements would be to
rewrite them into a series of if-statements and then apply the split-compares-pass.
laf-intel provides a more elegant solution that avoids redundant code in cases
where the deciding byte of two cases is not at the last position. To understand the
concept, we take a look at the code snippets in figure 2.8. The code on the left
shows a switch-statement with two cases. Values required to reach these cases differ
in the next-to-last byte and are equal in the last byte. The code on the right shows

how LAF-INTEL transforms the switch-statement. This is a similar concept as in

15

24. LAF-INTEL CHAPTER 2. BACKGROUND

the split-compares-pass, but the comparison of the last byte takes place before the
next-to-last bytes are compared (line 3). Only if input has the value 0xff as its

last byte, the two cases are evaluated (lines 4 and 7).

switch(input) { . if(input >> 24 == 0) {
case Ox11ff: 2 if ((input & 0xff0000) >> 16 == 0x00) {
/* case Ox11ff x/ 3 if ((input & O0xff) == Oxff) {
break; 1 if ((input & 0xf£f00) >> 8 == 0x11) {
case 0x22ff: 5 /* case Ox11ff =/
/* case 0x22ff *x/ ¢ goto after_switch;
break; 7 } else if((input & 0xff00) >> 8 == 0x22) {
default: 8 /* case 0x22ff =/
/* handle default */ goto after_switch;
} 10 } } } }

1 default_case:
12 /* handle default */
13 after_switch:

Figure 2.8: LAF-INTEL Split-Switches-Pass. From [15]. On the left is the original
code and on the right is the modified code.

Compare-Transform Lastly, we look at the "compare-transform-pass”. This
pass rewrites the code for the C-methods strcmp and memcmp, which return 0 if the
arguments contain the same values. To visualize this pass, consider the code snippet
from figure 1.1, again. The equivalent C code with the strcmp method is shown in
figure 2.9. Figure 2.10 shows this if-condition after the transformation. Like before,
the concept is to split complex comparisons into several simple comparisons, so the
two strings are compared character by character in a number of nested if-statements.
The compare-transform-pass only works when one of the strings is a literal, since
the characters and the number of comparisons have to be known at compile time.
For memcmp the size parameter (how many bytes are compared) has to be known
at compile time.

Applying these transformations will increase the computational cost of running
the code due to the additional conditional jumps. However, the benefit is that of
getting much more detailed feedback on the similarity of the two values because the

coverage gets tracked for every if-condition. For example the input of "BADSTRxyz"

16

24. LAF-INTEL CHAPTER 2. BACKGROUND

1 if (!strcmp(input, "BADSTRING")) {
2 /* buggy code */

}
Figure 2.9: String Comparison in C code. Adapted from [15]

I if (input[0] == ’B’) {
2 if (input[1] == ’A’) {
; if (input[2] == 'D’) {
1 if (input[3] == ’S’) {
5 if (input[4] == ’T’) {
6 if (input[5] == ’R’) {
7 if (input[6] == ’I’) {
8 if (input([7] == ’N’) {
9 if (input[8] == °G’) {

10 if (dnput[9] == 0) {
11 /* buggy code */
12 L A

Figure 2.10: LAF-INTEL Compare-Transform-Pass. Adapted from [15]

17

24. LAF-INTEL CHAPTER 2. BACKGROUND

would have higher coverage (lines 1 to 7) than the input of "BADabcxyz" (lines 1
to 4).

Our approach is inspired by the compare-transform-pass used to transform the
strcmp method. In contrast to laf-intel, JQF-Smart replaces several Java string
comparison methods in the compiled software in order to execute a character-wise

comparison and count the matching characters.

18

3 Related Work

3.1 Magic Values

The research community has developed multiple fuzzers that are capable of finding
magic values that satisfy certain conditions and hence lead to coverage of particular
hard-to-reach branches guarded by those conditions. A very common approach
to address this problem is a white-box analysis of the system under test (e.g.
taint tracking or symbolic execution) [14, 11, 25, 24, 9]. However, these fuzzers
tend to have relatively high overhead and, thus slow down the fuzzing speed.
Other, more lightweight techniques targeting the same problem are for example
the aforementioned LAF-INTEL or REDQUEEN [6]. We will take a closer look
at REDQUEEN and CONFETTI because they introduce interesting techniques

that we adopted in our approach.

CONFETTI In their 2022 publication of CONFETTTI [14] Kukucka et al. pro-
posed a technique to boost the efficiency of concolic fuzzing guidances. The core
idea of CONFETTI is the combination of grey-box fuzzing with white-box analysis
and the novel mechanism of global hinting. It is implemented as an extension for
the semantic fuzzer Zest.

To maintain the fuzzing efficiency, CONFETTI divides the fuzzing campaign
into three processes and executes them in parallel. The first process is the grey-
box fuzzer, which is responsible for producing new inputs (i.e. parameters for
the generator), running the test program and tracking the coverage. Inputs that
covered new branches are not only saved to the fuzzing queue but also delegated

to the second process - the coordinator. The coordinator delegates the collected

19

3.1. MAGIC VALUES CHAPTER 3. RELATED WORK

inputs to a white-box analyzer (KNARR), where the inputs are executed on a
separate instrumented version of the SUT. The purpose of the analyzer is taint
tracking and collecting of constraints. Taint tracking is a technique to analyse a
program, by “tainting” certain parts of the input (e.g. adding labels to bytes of
the parameter stream). KNARR uses taint tracking to analyze how the data flow
of the program works. Since they are propagated through data flow, the taints of a
specific variable at a specific state reveal which parts of the input are responsible
for its value. KNARR also collects constraints from the input and returns them
together with the collected taint flows back to the coordinator. To help cover
new branches, an SMT solver is used to compute the magic values by solving the
negated constraints. The established procedure, local hinting, involves inserting the
values at their respective location within the original input. The newly produced
inputs are then passed to the fuzzer and added to the queue. The fuzzer also has
access to all the magic values collected so far and during input mutation, inserts
magic values at random positions within any input, a technique referred to as global
hinting.

As a part of their evaluation, Kuckuka et al. compared their program with and
without global hinting and came to the conclusion that the new strategy can help
to find inputs with new coverage and thus improve the effectiveness of the fuzzer.
We apply the simple concept of global hinting in our approach in order to make

use of discovered string values as much as possible.

Redqueen While many other fuzzers rely on complex white-box analyses to find
magic values, Aschermann et al. [6] proposed a fairly simple technique that suffi-
ciently manages to mimic taint analysis and symbolic execution. Their publication
of REDQUEEN is built on the concept of input-to-state correspondence, implying
that the states of a program strongly depend on the input. In other words, the
values of parts of the input (or mutations of those values) can be found in certain
variables during the program execution.

The core idea is to look at comparison instructions and track the compared
values back to the responsible part of the input. If one side of the comparison could
be mapped to a part of the input, that part gets mutated to the value of the other

side of the comparison. In practice values from the input often arrive at a state in

20

3.2. STRUCTURE AWARE FUZZING CHAPTER 3. RELATED WORK

a modified form, hence the program also tries typical byte encodings schemes when
replacing the value(s), and for certain comparisons such as ”greater than” a bit
can be added or subtracted to the replaced value.

In some cases, the inputs can be very large and the comparison can’t be nailed
down to a specific position of the input, e.g. inputs that largely consist of bytes
with the same value. To prevent too many unnecessary mutations that cause a
big overhead, REDQUEEN applies a simple technique in which it tries to replace
as many bytes as possible with randomly generated values, without changing the
execution path compared to the original input. The authors of REDQUEEN refer
to those inputs as "colourized inputs”, which can be viewed as a very low-budget
version of taint tracking. During the execution of a colourized input, the comparison
instructions are observed again and the responsible positions of the input can be
narrowed down to certain parts through input-to-state correspondence.

In our implementation, we also make use of input-to-state correspondence, by
applying it to strings and employing an adjusted way of colourized inputs to track

down which parts need to be mutated.

3.2 Structure Aware Fuzzing

One of the challenges, we faced was the input representation, since our fuzzer
needed to support dictionary-backed and search-based string generation. The latter
consumes more bytes from the parameter stream than the former (i.e. one integer
choice per character and one to determine the length of the string instead of only
one choice for the index in the dictionary). A major concern when exercising the
search-based string generation was to maintain the structure of the input, hence
we decided to split these parameters from the main parameter stream.

With BED1VFUZz [20] Nguyen et al. introduced a technique to separate the
choice sequences (i.e. parameter streams) consumed by the generators used in Zest
into structure-choices and value-choices. As the names suggest, they differentiate
between choices of which mutations on, lead to changes in the structure and in the
values of inputs, respectively. The concept behind BED1VvFUZZ is a strategy
that performs mutations that change the input structure to explore new branches

and mutations that preserve the structure in order to explore specific branches with

21

3.2. STRUCTURE AWARE FUZZING CHAPTER 3. RELATED WORK

different input values. For example, in the generator from figure 2.5 the choices
that determine how many children a node has (line 16) and whether a node has
text inside (line 22) are structural. In line 28 is a value choice, since it determines
the value of a string by choosing the index for the dictionary.

BEDi1vFUZzz introduces the interface SplitInput on which the input repre-
sentation of our approach, as well as some of the input handling functionality, is
based. Further, BEDI1VF UZzZ implemented an extension of the parameter stream
reader and pseudo-random choice generator used by Zest, that utilizes two choice

sequences, which also inspired our approach.

22

4 Approach

This project presents JQF-Smart, an automatic testing tool combining the power
of semantic fuzzing with the refinement of string comparisons proposed as a part
of LAF-INTEL [15] to address the magic value problem. In this section, we take
a look at our approach to building JQF-Smart.

4.1 Overview

Our fuzzer is capable of solving certain string comparisons by finding the nec-
essary “magic” string values. We implemented a specialized class adapter to
instrument the SUT and an extension of the coverage used by JQF in order to keep
track of the progress made in a string comparison, i.e. the number of matching
characters or the string-coverage. We further propose a novel mechanism to dy-
namically adapt the string generation strategy and applied this mechanism to the
XmlDocumentGenerator shipped with JQF. Finally, we built an extension of the
Zest guidance that periodically targets unsolved string comparisons and applies

search-based string generation at the responsible position of the input.

4.2 Adaptive Generators

To utilize search-based string generation at input locations, we provide a convenient
way to change an existing input generator that uses a dictionary-backed string
generator to produce strings. It can be used by any input generator that relies
on dictionary-backed string generation to produce strings. To achieve this, we

implemented an adaptive string generator that can dynamically switch between

23

4.2. ADAPTIVE GENERATORS CHAPTER 4. APPROACH

different kinds of generation.

The adaptive generator keeps track of how many strings have been produced
while generating an input, in order to target certain locations of the input. We will
refer to those locations as string IDs. When generating a string, it can either apply
dictionary-backed generation, search-based generation or insert a specific string
at a given string ID. The adaptive generator produces inputs from two different
parameter streams. The first parameter stream provides the bytes to determine an
integer value, that is used to choose a string from the dictionary (line 14). The
second parameter stream is responsible for search-based string generation, which
means that the bytes are used to determine the length of the string and then each
character. Consider the makeString method of the XML document generator from
figure 2.5. The method in figure 4.1 shows, how the adaptive generator switches
the string generation on the fly. If the string ID of the currently generated string
matches the targeted string ID, the method makeRandomString is invoked (line 4).
This method uses the secondary random source, which is part of the random
instance and contains the parameters for the search-based string generation.

Besides the parameter streams the adaptive generator also has access to a hash
map that maps string IDs to actual strings. This is used to insert certain strings
at certain locations in an input. If the current string ID is contained in the map,
the string that is mapped to that key will be returned (line 9): This functionality
is utilized for local and global hinting as well as for colourizing inputs. Each time
a string is generated with another strategy than dictionary-backed generation, an
integer choice from the primary parameter stream is consumed to maintain the
structure of the input.

To represent the two parameter sequences the implemented guidance uses
the class SmartInput, which is based on the SplitInput interface provided by
BEDi1vFUzz. These inputs consist of a primary and a secondary input. The
primary input contains the parameters, that are used to control the choices of the
input generator. The secondary input contains the parameter sequence that is used
for the search-based string generation. Instances of SmartInput can also contain
a string ID at which the search-based string generation should be applied and a
hash map that maps string IDs to string values in order to insert specific strings

at specific input locations. Considering the example from before (section 2.3.2)

24

4.2. ADAPTIVE GENERATORS

private String makeString(SmartSourceOfRandomness random) {

String string;

// search-based generation:

if (STRING_ID == TARGET STRING_ID) {
random.nextInt();
string = makeRandomString(random.secondary) ;

}

// insert a specific string:

else if (HINT_MAP.containsID(STRING_ID)) {
random.nextInt () ;
string = HINT_MAP.getString(STRING_ID);

}

// dictionary-backed generation:

else {
int index = random.nextInt(dict.length);
string = dict[index];

}

STRING_ID++;

return string;

Figure 4.1: Adaptive string generation.

25

CHAPTER 4. APPROACH

4.3. SMART GUIDANCE CHAPTER 4. APPROACH

with the choice sequence: x = [3, 1, 1, 0, true, 0, falsel], producing the

document:
d = <root><node_1>hello</node_1></root>

In comparison, consider a SmartInput instance, containing the primary sequence
x, the secondary sequence: x.secondary = [56, ’w’, ’o’, ’r’, ’1’, ’d’] and
the target string ID: 2. The adaptive generator would produce the following

document:

d = <root><node_1>world</mnode_ 1></root>

4.3 Smart Guidance

JQF-Smart instruments string comparison methods, such as String.equals or
String.contains to keep track of all the solved and unsolved string comparisons
(i.e. comparisons that returned true for any input and comparisons that have been
false for all inputs respectively) throughout the fuzzing campaign. The algorithm
periodically aims to solve a specific comparison by changing the mutation strategy
at a related location of the input and applying search-based string generation
at this location. The fuzzing algorithm of our implementation is built into the
established Zest algorithm and consists of a few steps that lead to the string-solving
process. The workflow diagram in figure 4.2 presents an extended version of the
CGF workflow diagram previously discussed (figure 2.6). It helps to understand
how the fuzzing process of JQF-Smart works and how it is integrated into the
fuzzing process of Zest. When our process is triggered the following steps are

executed.

Get Candidates From the set of unsolved keys (i.e. coverage points that represent
unsolved string comparisons), a random key is chosen which we refer to as our
target key. By looking at their coverage, we choose a number of inputs from the set
of saved inputs that reached the target key and select them as a set of candidate
inputs. To prevent the algorithm from trying to solve the same comparison for
the same input over and over again, the target key is also saved in each of the

candidate inputs.

26

4.3. SMART GUIDANCE CHAPTER 4. APPROACH

Setup Target Queue After acquiring the candidate inputs, the next step is
to track, which string ID from the generator is responsible for the comparison
of the target key. To trace a comparison back to a string ID we applied a brute
force algorithm, that relies on the concept of input-to-state correspondence and an
adapted version of colourizing inputs. For every string ID of a candidate input, the
fuzzer produces a colourized input by inserting a specific colourizing string at that
location, respectively. After the SUT was executed with the colourized, the fuzzer
receives feedback on whether the colourizing string reached the targeted comparison.
If the comparison was reached, a copy of the candidate input containing information
on the currently colourized string ID is saved into a queue of target inputs, which

will be the starting point to solve the targeted string comparison.

String Solving The string-solving process begins after the target queue has been
set up and it is essentially a nested fuzzing loop that tries to solve the specific
target comparison.

The fuzzer mutates the string parameters of the next input from the target
queue. To increase the efficiency of the string mutation, we adapted the heuristics
to mutate parameter sequences. Our string mutation method includes the following
features. When the original input provided string coverage, it means that the length
of the generated string is correct, so the first four bytes (providing the length of the
string) will not be mutated. We made sure that every mutation changes exactly
one character. The probability of mutating the wrong characters increases, the
more characters are discovered, hence the number of mutations decreases with the
amount of discovered characters.

After mutating an input the adaptive generator applies the search-based string
generation at the targeted string ID of that input to produce the arguments and the
SUT gets executed. Detected malfunctions and bugs are saved and the algorithm
selects the next input from the target queue. Assuming there was no unexpected
behaviour during the execution, the string coverage of that run contains the amount
of matched characters and updates the set of solved keys. When we look at the
"String Coverage” node of the workflow diagram (4.2) there are three options.
If the string coverage did not track any new progress, we go back to the target

queue and continue mutating. If the string coverage recognizes that new characters

27

4.3. SMART GUIDANCE CHAPTER 4. APPROACH

Mutate / No Yes Get
m global hinting Candidates

/ Candidates /

Success

E
Failure o

Coverage

:

Execute Save Input

Setup
Target Queue

Local hinting ‘ Save Target }—»/ Target Queue /;

Chars

Solved

String
Coverage

Mutate String

Success T

Execute

Frror / Target Input

Figure 4.2: Workflow diagram for fuzzing with JQF-Smart.

were discovered, the mutated input gets saved to the target queue. Lastly, if the
target key occurs in the set of solved keys after a run, it means that the targeted
string comparison has been solved. In that case, our fuzzer applies local hinting
by inserting the newly discovered magic string into the respective positions of the
original candidate inputs that were saved to the target queue. To prevent it from
getting stuck in an endless loop, e.g. when the targeted comparison is not solvable,
the string-solving loop also terminates after a certain amount of trials without
finding a new matching character and the process continues with the main fuzzing
loop by mutating inputs from the queue of saved inputs. During the main fuzzing
loop, the guidance uses a coin flip to apply global hinting by inserting magic strings

at random positions of random inputs.

28

4.4. STRING COMPARE COVERAGE CHAPTER 4. APPROACH

4.4 String Compare Coverage

JQF-Smart instruments the SUT to provide more detailed feedback regarding
string comparisons. We extended the existing instrumentation from JQF to replace
all instructions that invoke certain string comparison methods, with instructions
to invoke respective static methods. The static methods delegate the string, the
comparison argument(s) and the instruction ID to a special coverage instance that
produces feedback and evaluates the comparison. Namely, the replaced methods

are:

String.equals(Object)
String.equalsIgnoreCase(String)
String.contains(CharSequence)
String.contentEquals(CharSequence)
String.contentEquals (StringBuffer)
String.endsWith(String)
String.startsWith(String)
String.startsWith(String, int)

We particularly extended the JQF method adapter to override the method from
figure 2.2. A simplified version of our implementation is shown in figure 4.3. After
the usual snooping method is executed, we check if the instrumented method
belongs to the set of comparison methods. In that case, the instruction to invoke
the corresponding static method from the class SmartCoverageSnoop is inserted.
The input arguments are the string, then the argument(s) for the original method
and then the instruction ID, so the method descriptor gets adapted, e.g. the
descriptor for the equals method gets changed from "(LJava/lang/String;)Z"
to "(LJava/lang/String;LJava/lang/String;I)Z".

To illustrate the instrumentation, consider the code snippet from figure 1.1 once
again. Figure 4.4 shows, how the decompiled byte code looks like, after instru-
menting it with our implementation. The equals method, comparing the input
string to the value "BADSTRING", is replaced by an invocation of the static method
SmartCoverageSnoop . LOGEQUALS which returns the same boolean value. Since the

string input and "BADSTRING" are already on the stack, the instrumentation just

29

4.4. STRING COMPARE COVERAGE CHAPTER 4. APPROACH

Q@0verride
public void visitMethodInsn(String owner, String name, String desc) {

int iid = incAndGetInstructionId()
addBipushInsn(mv, iid);
mv.visitInsn(ICONST_O);
mv.visitMethodInsn("FastCoverageSnoop", "LOGJUMP", "(II)V");
if (owner.equals("java/lang/String") {
switch (name) {
case "equals":
addBipushInsn(mv, iid);
mv.visitMethodInsn("SmartCoverageSnoop", "LOGEQUALS",
"(LJava/lang/String;LJava/lang/String;I)Z");
break;
case '"contains";
addBipushInsn(mv, iid);
mv.visitMethodInsn("SmartCoverageSnoop", "LOGCONTAINS",
"(LJava/lang/String;LJava/lang/CharSequence;I)Z") ;
break;
// Handle the remaining string comparison methods
// that should be replaced
default:
mv.visitMethodInsn(owner, name, desc);

}
}
else {

mv.visitMethodInsn(owner, name, desc);
}

Figure 4.3: JQF-Smart instrumentation method visitMethodInsn

30

4.4. STRING COMPARE COVERAGE CHAPTER 4. APPROACH

FastCoverageSnoop.LOGJUMP(1, 0);

if (SmartCoverageSnoop.LOGEQUALS(input, "BADSTRING", 1){
FastCoverageSnoop.LOGJUMP(2, 0);
/* buggy code */

b

else {
FastCoverageSnoop.LOGJUMP(2, 1);
/* good code */

3

Figure 4.4: Example for instrumented code by JQF-Smart.

pushes the last instruction ID (which belongs to the comparison method) onto
the stack and inserts the instruction to invoke the new method, which takes the
elements from the stack as input arguments.

At runtime, these arguments get passed to the respective method of our custom
coverage instance, where the return value gets computed and the feedback is
obtained. Figure 4.5 illustrates, how these methods work on the example of the
equals method. If the string comparison already has been solved (or in the
particular case of the equals method if the provided argument anObject is not
an instance of the String class) the method just returns the original method that
was replaced. To keep track of the solved and unsolved comparison, every time
a comparison evaluates to false, the associated key is saved to a set of unsolved
keys (lines 16 and 27) and when it is solved the key gets removed from the set
of unsolved keys (lines 12 and 23) and put into a set of solved keys (lines 11 and
22). In case the guidance is currently providing colourized inputs to the SUT, the
string coverage checks if the colourizing string reached the target comparison 7.
The feedback, delegated to the guidance instance, contains information on whether
the colourizing string reached the target comparison and what the hit count of the
target key was at that moment. That way, the string coverage feedback can be
limited to a particular invocation of a particular string comparison for the currently
colourized input location.

During the search-based string generation, our coverage uses a custom com-

parison method to execute the targeted comparison which is the core idea of the

31

4.4. STRING COMPARE COVERAGE CHAPTER 4. APPROACH

implementation. Our custom method counts the matching characters and computes
the return value of two strings. We implemented the method logStringCmp which
is used for all string comparisons, so certain adaptations of the input arguments are
applied. For instance, type transformations from CharSequence into String or if
we want to know if a string starts with a prefix, only the first characters (depending
on the prefix length) of the string are passed to LogStringCmp.

Figure 4.6 shows, how our comparison method is constructed. The private field
MATCHES is used to track the number of characters with the same value. If the
compared values are not of the same length, the method evaluates to false and
MATCHES stays at its default value 0. Otherwise, we go through all the elements
side by side and count, how many of them contain the same value (line 6). If the
amount of matched characters is less than the length of the string, the counted
value (increased by 1) is passed to the field MATCHES and the method also evaluates
to false. Increasing the value by one serves the purpose of differentiating between
comparisons where the strings have the length and comparisons where they do
not have the same length. If the counted matches are equal to the length of the
strings it means that both strings are completely equal, thus the method returns
the value true. In this case, it is not necessary to track the counted matches, since
the comparison is solved and the coverage key is put into the set of solved keys.

Considering the if-statement from figure 4.4. The input value of "BADabcxyz"
would result in a string coverage feedback with the MATCHES field containing the
value 4, while the input of "BADSTRxyz" would result in the MATCHES field containing
the value 7. When a string comparison was solved with the search-based string
generation, the coverage instance provides the fuzzer with the magic value to use

for the hinting strategies.

32

4.4. STRING COMPARE COVERAGE CHAPTER 4. APPROACH

public boolean logEquals(String str, Object anObject, int iid) {
if (SOLVED_KEYS.contains(iid) || !(anObject isinstanceof String)) {

}

return str.equals(anObject);

else if (TARGET KEY == iid) {

}

if (COLORIZED_INPUT) { //
CHECK_COLOR(str, (String) anObject);
}
else if (STRING_SOLVING) {
if (logStringCmp(str, (String) anObject)) {
SOLVED_KEYS.add(iid); // add to solved keys
UNSOLVED_KEYS.remove(iid); // remove from unsolved keys
return true;

}

else {
UNSOLVED_KEYS.add(iid); // add to unsolved keys
return false;

}

if (str.equals(anObject)) {

SOLVED_KEYS.add(iid); // add to solved keys
UNSOLVED_KEYS.remove(iid); // remove from unsolved keys
return true;

}

else {
UNSOLVED_KEYS.add(iid); // add key to unsolved keys
return false;

}

Figure 4.5: Custom method to control the string coverage feedback for the equals

method.

33

4.4. STRING COMPARE COVERAGE CHAPTER 4. APPROACH

private int MATCHES = O;
private boolean logStringCmp(String strl, String str2) {
int len = str2.length();
if (len == stril.length()) { // compare lengths
int matches = 0;
for (int 1 = 0; i < len; i++) {
if (strl.charAt(i) == str2.charAt(i)) {
matches += 1; // count matching characters

}

if (matches < len) {
MATCHES = matches+l; // log the string coverage
return false;

}
else {

return true;
}

}

return false;

Figure 4.6: Custom string comparison method evaluating the comparison and
counting the matching characters.

34

5 Evaluation

For our evaluation, we compared the performance of the fuzzers JQF-Smart and
JQF-Zest. A common metric used to measure the performance of coverage-guided
fuzzing is the code coverage achieved over time. To apply our adaptive XML
document generator, we conducted our experiments on three XML processing Java

programs that are shipped with the JQF project:
Apache Ant [4]

Ant automates software build processes, including compiling and testing applica-

tions.

Apache Maven [18]
Maven is a dependency manager that uses an XML file of the POM format to

define project configurations, dependencies, and build settings.

Apache Tomcat [26]
Tomcat uses XML documents to configure a web server and deployed web applica-
tions can be configured with web.xml files. Our evaluation tests the functionality

to configure web applications.

We ran our experiments on the computing server "gruenau7” of the Humboldt-

Universitdt zu Berlin [1]. The technical details are:

Model: Asus ESC4000

CPU: Xeon 6354

CPUs / Cores / Threads: 2 / 36 / 72
Clock Frequency: 3,6GHz

RAM: 1TB

35

CHAPTER 5. EVALUATION

Following the suggestions of the Zest research paper [23] we ran the two fuzzers
over a total of three hours, as Zest does not find a significant amount of new paths
during the last hour (i.e. generally less than 1%). To gain statistically valid results,
we ran each campaign with 20 repetitions, as also suggested in the Zest paper. We
used the terminal multiplexer tmux [17] to run 20 fuzzing campaigns simultaneously.

To evaluate the performance of our fuzzer, we first fuzzed the benchmarks for
two hours with Zest and employed JQF-Smart only for the last hour in order to
further explore the collected input space. We figured that this would be an efficient
way to use our tool since we expected diminishing fuzzing performance after Zest
reached a coverage plateau so a potential overhead of JQF-Smart would not have a
great impact on the fuzzing efficiency.

During the evaluation process, we observed discrepancies in the number of
covered branches between the two tools, when running them on the same set of
seed inputs, with Zest covering up to 10% more branches. To overcome this issue
for our evaluation, we implemented another extension of the guidance used by Zest
which saves the input arguments produced by the generator and the respective
time stamps. We argue that this alteration does significantly affect the efficiency
of Zest since it saves a small number of files over a three-hour fuzzing campaign
and does not impose a significant runtime overhead.

A third extension reproduces the fuzzing campaigns by running all the collected
input arguments of both tools independently and logs the achieved coverage. We
used the coverage data from the reproduced campaigns and the collected timestamp
information from the original fuzzing campaigns to map the achieved coverage over
time for both tools.

We plotted our results in a Jupyter Notebook [3] using the python libraries
Pandas [19], Seaborn [27], Matplotlib [5] and Numpy [12]. Our tool, the results
of the experiments and the scripts to run the experiments are available at https:

//gitlab.informatik.hu-berlin.de/sillerad/jqf-smart.

Results The figures 5.1, 5.2 and 5.3 show the average coverage achieved (in
coverage points) across 20 repetitions as a function of fuzzing time, for Ant, Maven
and Tomcat, respectively. The blue and orange plots represent the average coverage

of our JQF-Smart and Zest, respectively and the shaded areas refer to the 95%

36

https://gitlab.informatik.hu-berlin.de/sillerad/jqf-smart
https://gitlab.informatik.hu-berlin.de/sillerad/jqf-smart

CHAPTER 5. EVALUATION

confidence intervals. For all three benchmarks, the rate at which new branches
are covered by Zest is very high in the beginning and slows down over time to a
point where new branches a discovered very slowly. This observation implies that
the alteration we made to Zest in order to log the generated arguments, does not
compromise the validity of our results. The coverage plots of Ant and Tomcat are
relatively stable, whereas Maven’s coverage plot exhibits more fluctuations and
displays a less prominent coverage plateau. This could mean that our alteration
has more impact on the fuzzing efficiency when fuzzing Maven or that the server
we used to conduct the experiments was occupied during the fuzzing campaigns
for that benchmark. To find out more about that, we would have to run the
experiments in a closed environment.

Since we used Zest to collect inputs for JQF-Smart, both coverage plots of all
three benchmarks display high similarity during the first two hours. At that time the
coverage rate of Zest has slowed down significantly and our fuzzer is activated. The
plots show that the coverage rate increases sharply after JQF-Smart is employed and
surpasses the overall coverage of Zest by a large margin. Specifically, JQF-Smart
reached at least 10% more coverage points on average for all three benchmarks.
The confidence intervals of the coverage plots indicate that JQF-Smart is not as
robust as Zest in achieving new code coverage but this does not affect the validity
of our results, since the discrepancies of the coverage plots are considerably high on
all three benchmarks. Our tool discovered an average of 3.7 strings for Ant with a
maximum of 5, an average of 2.75 strings for Maven with a maximum of 3, and an
average of 4.05 strings for Tomcat with a maximum of 8 during the search-based
string generation. This indicates that the application of local and targeted hinting
in our tool was able to reach branches that were impossible to reach by Zest.

It should be noted that we did not analyze the bugs found during the fuzzing
campaigns. We assume that the code coverage serves as a valid metric to measure
the performance of fuzzers since it represents how many program paths have been
executed. Obviously, the purpose of software testing is to find bugs but the idea of
coverage-guided fuzzing is to explore the behaviour of the tested software.

Overall, our experiments show that JQF-Smart outperforms Zest in the last
hour of the fuzzing campaigns in terms of effectiveness and efficiency in covering

new program paths. On all three benchmark programs, JQF-Zest reached at least

37

CHAPTER 5. EVALUATION

10% more coverage points on average at the experiments. We assume that the
additional coverage points of JQF-Smart represent hard-to-reach branches that
could not be covered by Zest. However, the validity of our results depends solely
on code coverage as a metric and we did not analyze the bugs found during the

fuzzing campaigns.

38

CHAPTER 5. EVALUATION

12000 1
11000 - f—
10000 - r/
9000 1
GJ
o
I
< 8000 |
S
7000
6000
5000 —— Smart
—— Zest
0 25 50 75 100 125 150 175
minutes
Figure 5.1: Ant
5500
5000
4500 -
» 4000
o
°
2 3500
8
3000
2500
—— Smart
2000 1 —— Zest
0 25 50 75 100 125 150 175
minutes
Figure 5.2: Maven
9000
8500
& 8000
°
[
>
S
7500
7000
6500 —— Smart
—— Zest
0 25 50 75 100 125 150 175

minutes

Figure 5.3: Tomcat

39

6 Conclusion

Concluding this bachelor thesis, we presented JQF-Smart, an extension of the
generator-based fuzzer Zest that addresses the magic value problem for strings
specifically, which has been a persistent challenge of coverage-guided fuzzing. The
problem occurs when the executed software reaches a string comparison that
requires a specific value to be provided by the input.

JQF-Smart modifies the software instrumentation and introduces adaptive input
generation to circumvent the magic value problem. The modified instrumentation
provides additional feedback regarding string comparisons to locate and find magic
values. The adaptive generators enable the fuzzer to dynamically utilize different
string generation strategies based on the fuzzing state and the provided coverage
feedback.

The evaluation of the conducted experiments demonstrated significant improve-
ments in the effectiveness of Zest after the employment of JQF-Smart. The results
suggest that JQF-Smart covered hard-to-reach code paths by generating input val-
ues that could not be generated by Zest. However, it should be acknowledged that
JQF-Smart has not undergone a comparative evaluation against other Java-based
fuzzers, such as CONFETTI [14], that specifically tackle the magic value problem.

Therefore, we see a need for further research to evaluate, how the performance
of JQF-Smart fares in comparison to other solutions to address the magic value
problem in Java fuzzing. It is important to note that while the evaluation of
JQF-Smart was comprehensive, it did not consider the number of bugs found during
the fuzzing campaigns, which could be another subject of further research. Future
work could also aim to find out why the code coverage of Zest and JQF-Smart had

discrepancies when running them both on the same seed inputs and potentially

40

CHAPTER 6. CONCLUSION

fix that problem. Another problem that should be addressed is that in certain
cases of string comparisons, such as startsWith, it is important, which side of
the comparison was generated to retrieve the magic value that should be saved for
global and local hinting. Additionally, the impact of global hinting on the fuzzing
performance JQF-Smart could also be evaluated in order to determine, whether
that feature is useful in our context.

Finally, this thesis aimed to answer the research question of how the combination
of our modified instrumentation and adaptive generators impacts the performance
of generator-based fuzzing. The evaluation results presented in this thesis demon-
strate that the integration of the modified instrumentation and adaptive
generators has led to considerable improvements in the performance of
generator-based fuzzing. This suggests that our approach provides a promising
solution for the magic value problem in coverage-guided fuzzing, specifically for
string comparisons in Java programs.

In summary, JQF-Smart has the potential to improve the effectiveness and
efficiency of generator-based fuzzing, particularly in executing hard-to-reach code
paths, which could be critical in ensuring the security and reliability of software

systems.

41

Bibliography

[1] 2022. URL: https://www.informatik.hu-berlin.de/de/org/rechnerbetriebsgruppe/
dienste/hpc/computeserver (visited on 02/25/2023).

[2] URL: https://junit.org.

[3] URL: https://jupyter.org.

[4] Apache Ant. 2018. URL: https://ant.apache.org (visited on 02/25/2023).
[5] Niyazi Ari and Makhamadsulton Ustazhanov. “Matplotlib in python”. In:

2014 11th International Conference on Electronics, Computer and Computa-
tion (ICECCO). IEEE. 2014, pp. 1-6.

[6] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-State
Correspondence.” In: NDSS. Vol. 19. 2019, pp. 1-15.

[7] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-
based greybox fuzzing as markov chain”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 2016,
pp. 1032-1043.

[8] Eric Bruneton. “ASM 4.0 A Java bytecode engineering library”. In: (2011).
URL: https://asm.ow2.io/asmé4-guide.pdf.

9] Peng Chen and Hao Chen. “Angora: Efficient fuzzing by principled search”.
In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018,
pp. 711-725.

[10] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for random
testing of Haskell programs”. In: Proceedings of the fifth ACM SIGPLAN

international conference on Functional programming. 2000, pp. 268-279.

42

https://www.informatik.hu-berlin.de/de/org/rechnerbetriebsgruppe/dienste/hpc/computeserver
https://www.informatik.hu-berlin.de/de/org/rechnerbetriebsgruppe/dienste/hpc/computeserver
https://junit.org
https://jupyter.org
https://ant.apache.org
https://asm.ow2.io/asm4-guide.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Vijay Ganesh, Tim Leek, and Martin Rinard. “Taint-based directed white-
box fuzzing”. In: 2009 IEEE 31st International Conference on Software
Engineering. 2009, pp. 474-484. DO1: 10.1109/ICSE.2009.5070546.

Charles R Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (2020), pp. 357-362.

Paul Holser. junit-quickcheck: Property-based testing, JUnit-style. 2014. URL:
https://pholser.github.io/junit-quickcheck (visited on 10/14/2022).

James Kukucka et al. “Confetti: Amplifying concolic guidance for fuzzers”.
In: Proceedings of the 44th International Conference on Software Engineering.
2022, pp. 438-450.

laf-intel. Circumventing fuzzing roadblocks with compiler transformations.
2016. URL: https://lafintel.wordpress.com (visited on 01/24/2023).

Caroline Lemieux et al. “Perffuzz: Automatically generating pathological
inputs”. In: Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 2018, pp. 254-265.

Nicholas Marriott. tmuz 3.3a. 2022. URL: https://github.com/tmux/
tmux/wiki (visited on 01/24/2023).

Apache Maven. 2018. URL: https://maven . apache . org (visited on
02/25/2023).

Wes McKinney et al. “pandas: a foundational Python library for data analysis
and statistics”. In: Python for high performance and scientific computing
14.9 (2011), pp. 1-9.

Hoang Lam Nguyen and Lars Grunske. “BeDivFuzz: integrating behav-
ioral diversity into generator-based fuzzing”. In: Proceedings of the 44th

International Conference on Software Engineering. 2022, pp. 249-261.

Augustus Odena et al. “Tensorfuzz: Debugging neural networks with coverage-
guided fuzzing”. In: International Conference on Machine Learning. PMLR.

2019, pp. 4901-4911.

43

https://doi.org/10.1109/ICSE.2009.5070546
https://pholser.github.io/junit-quickcheck
https://lafintel.wordpress.com
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://maven.apache.org

BIBLIOGRAPHY BIBLIOGRAPHY

[22]

[23]

[24]

Rohan Padhye, Caroline Lemieux, and Koushik Sen. “JQF: Coverage-guided
property-based testing in Java”. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 2019, pp. 398
401.

Rohan Padhye et al. “Semantic fuzzing with zest”. In: Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis.
2019, pp. 329-340.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. “T-Fuzz: Fuzzing by
Program Transformation”. In: 2018 IEEE Symposium on Security and
Privacy (SP). 2018, pp. 697-710. bo1: 10.1109/SP.2018.00056.

Nick Stephens et al. “Driller: Augmenting fuzzing through selective symbolic
execution.” In: NDSS. Vol. 16. 2016. 2016, pp. 1-16.

Apache Tomcat. 2018. URL: https://tomcat .apache.org (visited on
02/25/2023).

Michael L Waskom. “Seaborn: statistical data visualization”. In: Journal of
Open Source Software 6.60 (2021), p. 3021.

Michal Zalewski. 2017. URL: http://lcamtuf.coredump.cx/afl/ (visited
on 01/24/2023).

44

https://doi.org/10.1109/SP.2018.00056
https://tomcat.apache.org
http://lcamtuf.coredump.cx/afl/

BIBLIOGRAPHY BIBLIOGRAPHY

Selbstandigkeitserklarung

Ich erklare hiermit, dass ich die vorliegende Arbeit selbstédndig verfasst und noch
nicht fiir andere Priifungen eingereicht habe. Samtliche Quellen einschliefllich Inter-
netquellen, die unverandert oder abgewandelt wiedergegeben werden, insbesondere
Quellen fiir Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht.
Mir ist bekannt, dass bei Verstoflen gegen diese Grundséatze ein Verfahren wegen

Tauschungsversuchs bzw. Tauschung eingeleitet wird.

Berlin, den February 27, 2023 /4 ” SOAL%/

45

	Introduction
	Background
	ASM
	Property Testing
	Coverage-Guided Fuzzing
	Overview
	Semantic Fuzzing

	laf-intel

	Related Work
	Magic Values
	Structure Aware Fuzzing

	Approach
	Overview
	Adaptive Generators
	Smart Guidance
	String Compare Coverage

	Evaluation
	Conclusion

