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Abstract Physicists studying Quantum Materials are searching for useful novel quan-
tum magnets as well as materials with strong correlated electrons. However the current
methods to determine the describing parameters of these materials are lacking. They
require a lot of manual work from the scientist and they are susceptible to human error,
which is why more e�cient approaches are needed. Machine Learning approaches o�er
a promising solution for this problem. They can reduce the amount of manual work
needed significantly while also eliminating human error. In this bachelor thesis we
will optimize a Neural Network approach that predicts the describing parameters of a
magnetic material from simulated data.
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1 Introduction
In order to extract the describing properties of a magnetic material from simulated or
experimental data, we first need to understand how we can describe these properties in a
theoretical manner. The Spin, a type of angular momentum, is a physical property that
elementary particles such as electrons possess. A Spin can have di�erent orientations
and it can interact with with adjacent Spins. These two properties determine the
magnetic properties of a material. A Model to describe these two properties is called
the Hamiltonian. The goal of scientists is to obtain the parameters of the Hamiltonian,
however when performing experiments such as Inelastic Neutron Scattering experiments
on magnetic compounds they only obtain a magnetic excitation spectrum as shown in
Figure 1(a).

Figure 1: (a) INS data measured on a powder sample at T=5K using the Merlin
spectrometer with an incident energy of 35 meV. (b) Spin-wave simulations of
the powder excitation spectrum of BaNi2V2O8 performed for the Hamiltonian
Equation 5 with the parameters Jn = 12.3 meV, Jnn = 1.25 meV, Jnnn = 0.2
meV, Jout = -0.00045 meV, DEP = 0.0695 meV, DEA = -0.0009 meV. [19]

In order to obtain the parameters, scientists compare the experimental magnetic
excitation spectrum with theoretical spectra that can be obtained using Spin-Wave-
Theory. A common package used is the Matlab Library SpinW [41], which can be used
to perform spin-wave simulations on a given Hamiltonian. Before theoretical spectra
can be generated, the magnetic ground state of the spins has to be determined. "There
is an extended literature on the determination of the classical magnetic ground state
either using the Luttinger-Tisza method[27, 17] or Monte-Carlo simulations[23]"[41].
For BaNi2V2O8, which will be the magnetic compound we focus on, the magnetic
ground state is already solved.
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Theoretical simulations of di�erent Hamiltonians are then compared against the
experimental data until a good fit is found. This method is time consuming and suscep-
tible to human error, however other methods such as the ‰2 approach, which minimizes
the squared distance between the experimental and theoretical spectra, are not reliable
due to the artifacts found in experimental data. In addition "‰2 is both noisy and
e�ectively flat around its minimum, such that many distinct model Hamiltonians could
achieve similarly small values of the ‰2 error measure"[35]. As the main bottleneck for
understanding these materials better, is the extraction of the Hamiltonian in a reliable
way [10], scientists are currently searching for more e�ective approaches, which are
easier to use and require less manual work. Machine Learning methods are currently
emerging as a promising solution and have already been successfully applied to related
problems such as using Autoencoders to remove artifacts from experimental data [35].
For this reason the Helmholtz-Zentrum Berlin has created a Proof-of-Concept Neural
Network approach to show that the direct prediction of the Hamiltonian from simulated
Data using Neural Networks is potentially possible. The Proof-of-Concept approach is
unoptimized and is currently not able to predict all the parameters of the Hamiltonian
to an acceptable degree. This thesis will be written in cooperation with the Helmholtz-
Zentrum Berlin and its goal is to improve the Proof-of-Concept approach as much as
possible and answer the following research question: "Can Neural Networks be used
to perform a reverse transformation of Spin-Wave-Theory using distorted simulated
data." In order to achieve this goal we will optimize the Proof-of-Concept approach
by investigating each step of the Machine Learning Pipeline e.g. Pre-Processing, the
Neural Network Structure and Hyperparameters.

The Structure of this thesis is as follows: We will first provide the fundamentals
necessary to understand the techniques used in this thesis in section section 2.

In section 3 we will provide an overview of the current applications of Machine
Learning in related problems. As publications dealing with the predictions of the
Hamiltonian using simulated data are sparse, we will put an emphasis on the few
publications that deal with this subject, however we will also look at related problems.

Then in section 4 we will explain how the data set used for model training is created
and how the artifacts are added to the simulated data. As the starting point of the
data set is based on the findings of physicists, we will first summarize their findings in
this section.

section 5 includes all experiments conducted in order to improve the baseline ap-
proach. This includes the evaluation of di�erent Pre-Processing approaches as well as
di�erent Neural Network Architectures and finding the optimal set of Hyperparameters.
All experiments will be compared against the previous experiment in order to show
the direct improvement of each experiment.

In section 6 we will summarize our results and compare the findings of our experi-
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ments against the baseline approach to show the improvements we have achieved.

In section 7 we will give an overview of what was accomplished in this thesis and we
will provide an answer to the research question and look at possible problems regarding
this thesis.
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2 Fundamentals

Artificial Inteligence (AI), Machine Learning (ML) and Deep Learning (DL) are terms
that are often used synonymously. However in reality they form a hierarchy as shown
in Figure 2.

Figure 2: Hierarchy of Artificial Intelligence, Machine Learning and Deep Learning [9]

AI deals with using computers to solve tasks that normally require human intelligence.
Machine Learning, a subset of AI, deals with "methods that can automatically detect
patterns in data, and then use the uncovered patterns to predict future data, or to
perform other kinds of decision making under uncertainty"[28]. Machine Learning
methods allow us to solve tasks that are normally either very hard to solve or cannot
be solved at all using conventional computer programs. One class of ML algorithms is
called Neural Networks (NNs). Deep Learning, a subset of ML, specializes on deep
NNs that have three or more layers.

2.1 Neural Networks

The most basic unit of NNs is called a Neuron. It gets some input vector x comprised
of numerical values and outputs a value according to the following equation:

y = f(x · w + b) (1)

where:
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y = Output
x = Vector of inputs
w = Vector of weights
b = Bias term
f = Activation function

These Neurons can be combined together to form a Neural Network as shown in
Figure 3. Multiple Neurons can form a layer and these layers can be stacked forming
the hidden layers section of the Neural Network. If signals can only flow in one direction
as indicated by the arrows in Figure 3 we call the NN a feedforward NN. In this case
each layers input is the output of the previous layer.

Figure 3: Example of a Neural Network with four layers [29]

The goal of a feedforward network is to approximate some function f ú. For example,
for a regressor, y = f ú(x) maps an input x to a numerical value y . A feedforward
network defines a mapping y = f(x; ◊) and learns the value of the parameters ◊ that
result in the best function approximation.. If the Neural Network has multiple layers
as the one shown in Figure 3, f(x) is composed of multiple functions that are chained
together e.g. f(x) = f (4)(f (3)(f (2)(f (1)(x)))). We call f (1) the first layer, f (2) the second
layer and so on. The number of layers that a network has is called its depth.[12].

In order for the Neural Network to learn we need a measure that calculates the
deviations between the predicted value of the NN and the true value. This function
is called the loss or cost function. For a regression task the Mean Squared Error is a
common loss function, which is defined as:

MSE = 1
N

Nÿ

i=1
(f(xi; ◊) ≠ yi)2 (2)
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where:

N = Number of samples
yi = true value
f(xi; ◊) = predicted value of the NN based on the input vector xi and parameters ◊

As the name suggests the MSE calculates the mean of the squared deviations between
the NN prediction and the true value. Finding the set of parameters ◊ that minimize
the MSE is the goal of the learning process. Essentially NN training can be defined as
a minimization problem:

◊ú = argmin
◊

1
N

Nÿ

i=1
(f(xi; ◊) ≠ yi)2 (3)

However finding ◊ú is di�cult, because in most cases the surface of the loss function
in regards to ◊ is non-convex as shown in Figure 4. The loss function can have many
local minima, which makes finding the global minimum hard, however according to
Choromanska et al.[7] in deeper NNs many local minima are of high quality and the
search for the global minimum is irrelevant in practice, because the global minimum
often leads to overfitting.

Figure 4: For a given example, each set of weights implies a certain mean squared error.
The surface of the loss function is non-convex. [22]

In practice NNs are often trained by randomly initializing ◊ and then optimizing
these parameters by using the Stochastic Gradient Descent (SGD) algorithm. The
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algorithm is shown in Figure 5. SGD first samples a minibatch (a subset of the training
set) and computes the loss for each sample of the minibatch. The loss between the
prediction of the NN and the true value for sample i is denoted by L(f(x(i); ◊),y(i)).
Then the gradient estimate is calculated using Back-propagation. The gradient contains
the partial derivatives for each parameter in ◊. ◊ is then updated by moving ◊ in the
inverse direction of the gradient estimate multiplied with a step size ‘ which is also
called the learning rate. The learning rate is necessary, because using minibatches
instead of the whole training set introduces noise into the gradient, meaning that even
when a local minimum is reached the gradient estimate does not have to be zero.

Figure 5: SGD algorithm written in pseudo-code. [12]

2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs), are a specialized kind of NN for processing
data that has a known, grid-like topology, such as images. As the name suggests they
make use of a mathematical operation called convolution. [12]

For a two-dimensional input I and kernel K, convolution is defined as:

S(i, j) = (I ú K)(i, j) =
ÿ

m

ÿ

n

I(m, n)K(i ≠ m, j ≠ n) (4)

As the optimal kernels di�er depending on the task the CNN has to solve, they have
to be learned during the training procedure. An illustration of how convolution works
is shown in Figure 6. As shown in the figure the convolution operation reduces the
size of layer q+1 in comparison to layer q. This behaviour is not desirable in general,
because it tends to lose some information along the borders of the image [3]. Using
Padding during the convolution operation can resolve this issue. Padding adds pixels
to the borders of the input to maintain the size of the input. The pixels added due
to padding are set to zero to ensure that they do not contribute to the dot product
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calculated during convolution. An illustration of padding is shown in Figure 7.

Figure 6: An example of 2-D convolution. We restrict the output to only positions
where the kernel lies entirely within the image. [12]

Figure 7: An example of padding [3]

The layer that performs the convolution operation is called the convolutional layer.
Another layer often found in CNNs is called the max-pooling layer, which performs
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the max-pooling operation. The max-pooling operation devides the input into grids of
fixed size and simply returns the max value of each grid. An illustration of max-pooling
is shown in Figure 8

Figure 8: An example of a max-pooling of one activation map of size 7◊7 with strides
of 1 and 2. A stride of 1 creates a 5◊5 activation map with heavily repeating
elements because of maximization in overlapping regions. A stride of 2
creates a 3◊3 activation map with less overlap. [3]

14



3 Related Work
At the time of writing this thesis the use of ML to predict the Hamiltonian of mag-
netic compounds with experimental or simulated data is rare however there are two
publications that have dealt with this problem:

1. Hey et al.[13] have investigated the use of CNNs for predicting the first- and
second-nearest neighbour coupling strengths Jn and Jnn in the near-ideal two-
dimensional, spin 5/2 Heisenberg antiferromagnet Rb2MnF4. The CNN was
trained on simulated data and achieved a mean absolute error of 0.0055 meV for
Jn and a mean absolute error of 0.0036 meV for Jnn on unseen simulated data.
The dataset however contains no artifacts except for masks that were added to
simulate the parts on experimental data that are not recorded due to the detector
geometry. Our dataset contains more artifacts like random noise or constant
background which will make it more di�cult for the NN to extract the necessary
features from the images to predict the parameters of the Hamiltonian.

2. Samarakoon et al.[35] combine the use of ML and a more robust ‰2 method
to extract optimal model Hamiltonians from the spin ice Dy2Ti2O7. First an
Autoencoder was trained on simulated data to extract the relevant characteristics
of the input, while discarding irrelevant information such as noise or experimental
artifacts. The output of the Autoencoder is then used as an input for a more
robust version of the ‰2 measure which extracts optimal model Hamiltonians
using a minimal squares approach. With this approach Smarakoon et al. are able
to perform robust inference of the optimal model Hamiltonian. The use of ML
algorithms is only used as an intermediate step to extract model Hamiltonians.
We want to optimize a ML approach that performs a direct regression of the
Hamiltonian from simulated data.

When generalizing the problem to the prediction of properties of materials using
neutron scattering data Doucet et al.[10] provide an overview of related publications
such as:

1. Liu et al.[26] trained a CNN to predict the most likely space groups of a structure
given a simulated or measured atomic pair distribution.

2. Garcia-Cardona et al.[11] have trained a CNN on simulated powder di�raction
data to predict crystallographic symmetry classes. A random forest regressor
was then trained for each crystallographic symmetry class to predict the unit cell
parameters based on the symmetry class.
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4 Data
Data of Inelastic Neutron Scattering (INS) experiments is scarcely available in physics,
due to the time and cost involved to create it. Machine learning algorithms on the
other hand need large amounts of data [34]. This means that in order to train machine
learning models we cannot solely rely on experimental data, but instead we need to
artificially create a dataset. In this section we will describe how the dataset used for
model training was created.

4.1 Experimental data
Since the dataset is based on the findings of Klyushina et al., 2017 [19], we will
summarize their findings in this subsection. First a powder sample of the spin-1
honeycomb antiferromagnet BaNi2V2O8 was grown at the "Core Lab for Quantum
Materials at the Helmholtz Zentrum Berlin für Materialien und Energie (HZB)" in
Germany. BaNi2V2O8 is called a honeycomb antiferromagnet, because its structure
looks like a honeycomb. The crystal and magnetic structure of BaNi2V2O8 is depicted
in Figure 9.

Figure 9: Crystal and magnetic structure (one twin) of BaNi2V2O8 within (a) a
honeycomb plane and (b) a single unit cell. Only the magnetic Ni2+ ions
are shown for clarity. The magnetic structure is based on the results of
powder neutron di�raction measurements [33]. The red arrows represent
spin directions and the gray ellipsoids illustrate the easy-plane single-ion
anisotropy.[19]

Then INS measurements were performed on the powder sample to explore the
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magnetic excitation spectrum of BaNi2V2O8. The INS data was collected using the
high count rate thermal time-of-flight spectrometer MERLIN [5] at ISIS, Rutherford
Appleton Laboratory, U.K.. The results are plotted in Figure 1(a). The magnetic
excitation spectrum was then analysed using the Matlab Library SpinW [41], which can
be used to perform spin-wave simulations on a given Hamiltonian. The Hamiltonian
assumed by Klyushina et al. is given by Equation 5. Jn, Jnn and Jnnn are the first-,
second- and third-nearest-neighbor isotropic magnetic exchange interactions within
the honeycomb-plane. Jn, Jnn and Jnnn describe how strong a spin interacts with its
first- second- and third nearest neighbors. Isotropic means that the magnetic exchange
interactions are independent of the spin direction. Jout describes the magnetic exchange
interactions between the honeycomb-planes as shown in Figure 9. DEP and DEA

describe the easy-plane and easy-axis anisotropies of the Ni2+ magnetic ions. The
easy-axis anisotropy describes the preferred spin direction along the ab-plane and the
easy-axis anisotropy describes the preferred spin direction along the c-plane. The three
planes are depicted in Figure 9. Spin-wave-simulations were then performed iteratively,
manually adjusting the six parameters Jn, Jnn, Jnnn, Jout, DEP and DEA until a set of
parameters was found, that has a magnetic excitation spectrum similar to the captured
INS data. Klyushina et al. have found the set of parameters in Table 1 to be in good
agreement between the INS data and the spin-wave-simulations:

Parameter Value in meV
Jn 12.3
Jnn 1.25
Jnnn 0.2
Jout -0.00045
DEP 0.0695
DEA -0.0009

Table 1: Set of parameters that is in good agreement with the magnetic excitation
spectrum of BaNi2V2O8

A comparison between the spin-wave-simulations of the magnetic excitation spectrum
of this parameter set and the INS Data is shown in Figure 1. Since this set of parameters
seems to be in good agreement with the INS data, it will be used as a starting point
for the artificially created dataset. Further details regarding the creation of the powder
sample and the determination of the parameter values, are found in the paper published
by Klyushina et al.[19].

H =
ÿ

i>j

Jn ú Si ú Sj +
ÿ

i>j

Jnn ú Si ú Sj +
ÿ

i>j

Jnnn ú Si ú Sj

+
ÿ

i>j

Jout ú Si ú Sj +
ÿ

i>j

DEP ú Sc2
i +

ÿ

i>j

DEA ú Sa2
i (5)
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4.2 Creating a dataset

In this subsection we will explain how the dataset was created. When using the SpinW
library to perform spin-wave-simulations on the magnetic excitation spectrum, an
image like the one in Figure 1(b) is created. When comparing this image to INS data
like the one in Figure 1(a) we can see that (a) has a lot more disturbing artifacts like
the constant noise throughout the whole image or the white space at the sides. All
these artifacts don’t describe any magnetic property of the measured powder sample,
but are simply measurement errors that originate from the experimental setup of INS
experiments and thus cannot be prevented. The red beam at the bottom emanates
from the sample itself, however it does not describe any magnetic properties. For this
reason we will also consider it as an artifact. Spin-wave-simulations of the magnetic
excitation spectrum on the other hand don’t possess these disturbing artifacts, because
they are solely created with spin-wave-theory. Since the goal for physicists is to later
use neural networks to predict the Hamiltonian on real experimental data, we cannot
train our neural networks on a dataset of "clean" spin-wave-simulations, but we need
to add artifacts to the theory data in order to mimic real experimental data.

4.2.1 Create enough data

The starting point for this dataset was the set of parameters in Table 1. To create
more samples for the dataset, 111397 di�erent Hamiltonians were generated, where
each of the six parameters was randomly sampled from the corresponding distribution
in Table 2: Each Hamiltonian was generated as follows:

1. Randomly sample a value for each of the six parameters from the distributions in
Table 2.

2. Check the set of parameters for the constraints imposed by spin-wave-theory
(not every set of parameters is permitted by the model).

3. If the set of parameters is not allowed, discard the set and start again from step 1.
If the set of parameters is allowed, the magnetic excitation spectrum is calculated via
the SpinW library. The resulting image is saved as a (100x100) pixel image along with
the set of parameters in a NeXus file (NeXus files [20] are a filetype commonly used
for neutron and x-ray data).

This procedure was repeated until 111397 nexus files were generated. Each file has
a size of 179 KB. The complete dataset has a size of 18.9 GB. A comparison of the
image loaded from a nexus file and a spin-wave-simulation for the same parameters is
shown in Figure 10 and the distribution of the six parameters used in the dataset is
shown in Figure 11.
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Parameter Distribution
Jn N (12.3, 1.2)
Jnn N (1.25, 0.3)
Jnnn N (0.2, 0.3)
Jout N (≠0.00045, 0.002)
DEP N (0.0695, 0.02)
DEA N (≠0.0009, 0.0004)

Table 2: Distribution of each Parameter used for the generation of the Hamiltonians

Figure 10: Comparison of the magnetic excitation spectrum image for the parameter
set from Table 1 (a) loaded from a NeXus file. (b) spin-wave-simulation by
SpinW (image is from [19]).

4.3 Mimic Experimental Data
The dataset now contains 111397 NeXus files with a (100x100) pixel image of the
magnetic excitation spectrum and the corresponding interaction parameters in each of
the files. Since the images of the magnetic excitation spectrum where simulated with
spin-wave-theory, they are missing the typical artifacts observed in real experimental
data that originate from the experimental setup of INS experiments. We will now
explain how these artifacts where artificially added to each image. The following five
artifact-types are typical for INS measurements and where applied to the dataset in
the same order:

• Noise

• Constant background

• Scaling

• Peaks

• Masks
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Figure 11: Distribution of the six parameter labels from the dataset.

Each image can be seen as a Matrix D = (di,j) œ R100x100. We will use this property to
demonstrate how all artifacts were added to the images. For the parameter labels.

4.3.1 Noise

Let D = (di,j) be the matrix of an image and M = (mi,j) œ R100x100 be a Matrix
representing the noise in an image, whose elements are obtained by randomly sampling
values from the random variable X = 0.025 ú N (0, 0.4). Adding Noise to the image is
achieved by adding M to D, resulting in the matrix:

M + D =

S

WWU

m1,1 + d1,1 . . . m1,100 + d1,100
... . . . ...

m100,1 + d100,1 . . . m100,100 + d100,100

T

XXV

A di�erent noise Matrix was sampled for each image.
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4.3.2 Constant background

Let D = (di,j) be the matrix of an image. In order to add a constant background to
this image we simply add a constant value c to each element of D which results in the
following matrix:

c + D =

S

WWU

c + d1,1 . . . c + d1,100
... . . . ...

c + d100,1 . . . c + d100,100

T

XXV

For the dataset, the value c is randomly sampled from the continuous uniform
distribution U(0, 0.025) for each image resulting in a di�erent constant background for
each image.

4.3.3 Scaling

Let D = (di,j) be the matrix of an image. In order to add scaling to this image we
multiply D with a scalar – resulting in the matrix:

– · D =

S

WWU

– · d1,1 . . . – · d1,100
... . . . ...

– · d100,1 . . . – · d100,100

T

XXV

For the dataset – is randomly sampled from the random variable X = 0.8·U(0, 1)+0.2
for each image.

4.3.4 Peaks

Let D = (di,j) be the matrix of an image and M = (mi,j) œ R100x100 be a matrix
representing a peak. The peak is applied to the image by adding M to D resulting in
the following matrix:

M + D =

S

WWU

m1,1 + d1,1 . . . m1,1 + d1,100
... . . . ...

m1,1 + d100,1 . . . m1,1 + d100,100

T

XXV

For our dataset one peak is applied to each image. The peak is a random 2D Gaussian
that gets placed at a random position of the image. A comparison of a clean image
and one with a peak added is shown in Figure 12.

4.3.5 Masks

Let D = (di,j) be the matrix of an image and M = (mi,j) œ R100x100 be a matrix
representing the mask caused by the experimental setup of INS experiments. The
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Figure 12: Impact of adding a peak to an image: (Left) Simulation with the parameter
set Table 1, (Right) The same simulation with a peak.

mask can be added to the image by calculating the hadamard product resulting in the
matrix:

M ¶ D =

S

WWU

m1,1 · d1,1 . . . m1,1 · d1,100
... . . . ...

m1,1 · d100,1 . . . m1,1 · d100,100

T

XXV

Each element of M is either 0 or 1, resulting in information of D either being lost or
retained depending on the value of (mi,j) at each position. 100x100 pixel masks where
provided by the Helmholtz-Zentrum Berlin and randomly applied to each image. An
example of the impact of a mask in an image is shown in Figure 13

4.3.6 Final image

Let D = (di,j) be an image matrix, N = (ni,j) the random noise, c the constant
background, – the scaling, P = (pi,j) the peak and M = (mi,j) the mask. The final
image is obtained by combining all these artifacts in the following manner:

M ¶ (P + (– ·(c + N + D)))

An example image is shown in Figure 14. As we can see the artifacts drastically
alter the raw image which will pose big a challenge for predicting the Hamiltonian in
section 5 as these artifacts don’t possess any information regarding the parameters of
the Hamiltonian.
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Figure 13: Impact of adding a mask to an image: (Left) Simulation with the parameter
set Table 1, (Right) The same simulation with a mask. As shown in the
right image the mask deletes the information contained at the bottom right
of the image.

Figure 14: Impact of all five artifact-types applied to an image: (Left) Simulation
with the parameter set Table 1, (Right) The same simulation with noise,
constant background, scaling, peaks and a mask.
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5 Experiments
5.1 Experimental Setup
5.1.1 Hyperparameter Optimization

Hyperparameters (HPs) are very important for the performance of a Neural Network
and since they are sensitive to the values of the other hyperparameters they cannot be
tuned individually. Finding the optimal set of HPs is the most basic task of automated
machine learning (AutoML) [15], a research field which aims at automating machine
learning tasks such as Hyperparameter Optimization (HPO) or Neural Architecture
Search (NAS). HPO can essentially be seen as a minimization problem trying to obtain
⁄ú from the following equation:

⁄ú = argmin
⁄œ�

L(A⁄, Dtrain, Dvalidation) (6)

Where L is the loss of Model A with hyperparameters ⁄ from the hyperparameter
space � trained with train data Dtrain and validated on the validation data Dvalidation.
Obtaining the optimal HPs ⁄ú can be di�cult, because we have almost no knowledge
about how di�erent sets of parameters will influence the loss function. This forces us
to use blackbox optimization methods such as grid search or random search which has
been shown to be more e�ective in most cases than grid search by Bergstra and Bengio
[4]. However there are also more novel approaches such as Hyperband [25] or Bayesian
Optimization (BO), which has been used successfully for various applications [36]. One
advantage of BO approaches is that they construct a probabilistic model and then
exploit this model to make decisions about which HPs to try next [38] For this thesis
we will use KerasTuner[30], a HPO Framework for Keras[6], and its implementation of
BO.

5.1.2 Evaluating model Performance

In Order to compare di�erent Pre-Processing schemes and di�erent model architectures
we have to use a standardized test setup which ensures comparability across the
di�erent approaches. This setup also has to align with the goals of physicists. One
example would be that each of the six parameters is equally important, meaning that
a model should aim at optimizing all parameters as much as possible. We propose the
following approach: All models will be evaluated on min-max scaled label data using
the minimum and maximum of each parameter individually as the scaling borders. This
ensures that every parameter is weighted equally when evaluating model performance.
Otherwise Jn would have the biggest impact on the MSE while DEA would have the
least impact. All models will be trained on a training dataset containing 80000 samples.
Hyperparameter Optimization will be done on a validation dataset containing 20000
samples. A test dataset, containing the remaining 111397 samples, will be used to
evaluate the final model performance. The test dataset is not used for model training
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and HPO, ensuring that model performance can be evaluated on unseen data. With
this approach we can compare the true generalization performance of a model. For
model Evaluation we will calculate the Mean Squared Error (MSE) for each model.
As the MSE alone is not able to detect problems such as the NN only predicting the
mean of a parameter we will also look at scatter plots for the tested models.

5.2 Baseline Approach
In this subsection we will explain how the complete ML pipeline of the baseline approach
was set up starting at Pre-Processing the input data and labels and ending at predicting
the six parameters of the Hamiltonian.

5.2.1 Pre-Processing

Both input images and labels where pre-processed prior to model training. The input
images where clipped to the interval [0, 1], meaning that every pixel value outside the
specified interval was instead replaced with 0 or 1 respectively. After clipping the input
images they where flattened from the original (100,100) shape into a one dimensional
vector of length 10000, which serves as the input for the neural network. The labels
where "pseudo"-standardized by replacing each parameter value x with (x ≠ µ)/‡. µ
and ‡ are di�erent for each of the six parameters and are listed in Table 3. After
transforming the labels they were also clipped to the interval [0, 1] like the input
images.

Parameter µ ‡
Jn 8.0 8.0
Jnn -1.0 4.0
Jnnn -2.0 4.0
Jout -0.2 0.3
DEP -0.1 0.7
DEA -0.07 0.07

Table 3: µ and ‡ for each parameter used to normalize the labels.

5.2.2 Neural Network Architecture

The architecture of the baseline Neural Network is shown in Figure 15. It is a fully-
connected Neural Network consisting of the input layer, 9 hidden layers and the output
layer. The number of neurons in the hidden layers halves with each consecutive layer
and starts at 4096. Each hidden layer uses the Rectified Linear Units (ReLU)[2]
activation function, which is very popular for training NNs, because it is easy to train
and it solves the vanishing gradient problem which other activation functions such as
sigmoid or tanh face[32]. The ReLU activation function is defined as f(x) = max(0, x)
and is depicted in Figure 16.
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Figure 15: Architecture of the Baseline FC-NN. The input is the flattened (100,100)
pixel image. The number of neurons in the hidden layers halves with each
consecutive layer and starts at 4096. Each hidden layer uses the ReLU
activation function. The output layer has 6 neuron in order to predict the
six parameters of the Hamiltonian and uses the sigmoid activation function.

The output layer has six neurons, one for each parameter of the Hamiltonian and
uses the sigmoid activation function, which is defined as: ‡(x) = 1

1+e≠x and depicted in
Figure 17. Since the sigmoid function can only output values in the interval (0,1), the
labels have to be scaled to this interval.
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Figure 16: ReLU activation function f(x) = max(0, x).

Figure 17: Sigmoid activation function ‡(x) = 1
1+e≠x .
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5.2.3 Training

The baseline NN (bNN) was trained with the Pre-Processing approach from subsub-
section 5.2.1 for 50 Epochs and a batch size of 64. Binary Crossentropy (BCE) was
the used loss function. The BCE loss function is normally used in binary classification
tasks, but has also seen success in other areas such as denoising autoencoders[8]. The
BCE loss is defined as:

BCE = ≠ 1
N

Nÿ

i=1
(yi log(pi) + (1 ≠ yi) log(1 ≠ pi)) (7)

where:

N = Number of samples
yi = true label
pi = predicted label

The popular Adam optimizer[18] was used as the optimization algorithm, which is
a method for e�cient stochastic optimization that only requires first-order gradients
with little memory requirement[18]. The standard parameters for Adam were used for
model training, which are as follows:

– = 0.001
—1 = 0.9
—2 = 0.999

– denotes the learning rate, whereas —1 and —2 denote the exponential decay rates
for the first- and second moment estimates. The BCE and MSE for each epoch during
training is depicted in Figure 18

5.2.4 Evaluation

The lowest validation MSE was found at epoch 28 which was then used to calculate the
general performance of the baseline approach on the test data. Since the predictions
of the baseline approach were scaled di�erently than the MinMax scaled test data,
we rescaled the predictions, by first reverting the Pre-Processing technique used in
subsubsection 5.2.1, which yields the true parameter prediction. These predictions
were than MinMax scaled using the same minimum and maximum for each parameter
as the ones used for MinMax scaling the test data. This ensures that the predictions
and the test data are comparable. The MSE on the MinMax scaled test data is shown
in Table 4.

The first thing we can observe is that the MSE di�ers drastically based on the
parameter. DEA, which describes the easy-axis anisotropy for example has a ≥2.5x
higher MSE than the best performing parameter Jnnn. Also when looking at the
scatter plots in Figure 19 we can observe that the bNN has a "good" prediction of the
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Figure 18: Training of the baseline model: BCE (top graph) and MSE (bottom graph)
per epoch on training data (blue line) and validation data (red line).

Jn Jnn Jnnn Jout DEP DEA Overall
0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

MSE per Parameter

Table 4: MSE of baseline NN on MinMax scaled test data for each parameter and
overall

three magnetic exchange interaction parameters Jn, Jnnn and Jnnn, in contrast to the
remaining three parameters. For Jout for example the bNN has learned to predict the
mean, which means that the NN couldn’t learn how to correctly predict this parameter.
It is possible that the bNN doesn’t have the capability to correctly predict Jout or the
powder simulations with the added artifacts simply lack the necessary information to
correctly predict Jout.
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Figure 19: Scatter Plot of the baseline NN for each parameter. The Red line indicates
an optimal fit, X-axis = Label, Y-axis = Prediction

5.3 Improving Pre-Processing
Pre-Processing (PP) can have a big impact on model performance. For this reason
we will compare di�erent PP strategies against the baseline PP approach described in
subsubsection 5.2.1. The following PP strategies will be tested for the input images:

• Baseline Approach

• MinMax Scaling

• Standardization

The baseline approach for image Pre-Processing simply clips the pixel values of all
images to the interval [0, 1].

MinMax Scaling takes the global minimum and maximum of all images and applies the
following transformation to each pixel x of the input images: (x≠minimum)/(maximum≠
minimum).

The last Pre-Processing strategy we will test for the input images is Standardization
which takes the global mean µ and standard deviation ‡ of the input images and applies
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the following transformation to each pixel x of every image: (x ≠ µ)/‡.

The baseline approach and MinMax-Scaling ensure that the global minimum and
maximum of the input images are 0 and 1 respectively while Standardization ensures
that the mean µ is 0 and the standard deviation ‡ is 1 for the pixel values. According to
LeCun et al. [24] Standardization of the input images should lead to faster convergence
of the NN, however since the training budget won’t be a limiting factor in this thesis,
we will not prioritize faster convergence of the model over model performance. However
if the training budget would be more limited, one could prefer Standardization if the
faster convergence is more important and the test MSE is as good as or slightly worse
than the other PP methods.

For the labels we will test the following Pre-Processing methods:

• Baseline Approach

• MinMax Scaling

The baseline approach will transform the input labels as described in subsubsec-
tion 5.2.1.

For MinMax scaling each parameter will be scaled individually using the minimum
and maximum for each parameter, which is important to ensure that all parameters
are on the same scale.

All strategies will be tested on the bNN and a simple CNN. The archtitecture of the
CNN is depicted in Figure 30. The reason we also test all strategies on a CNN is to
avoid picking a strategy that performs well only on FC-NN’s which could deteriorate
the performance of all CNN models. We will test all image PP approaches with all label
PP approaches, which adds up to six di�erent PP strategies. Every strategy will be
trained on the bNN and the CNN for 50 epochs which is enough to reach convergence.
For each epoch the MSE on the validation set will be calculated and the epoch with
the lowest validation MSE will be used to calculate the test MSE.

5.3.1 Training

Every Model was trained for 50 Epochs and a batch size of 64 was used. The MSE per
epoch on the validation data for each PP approach trained on the bNN is shown in
Figure 20. For the CNN it is shown in Figure 21.

5.3.2 Evaluation

As shown in Table 5 we can observe that for the bNN, MinMaxing the labels performs
considerably better than the baseline method regardless of the image PP approach.
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Figure 20: Training of baseline NN with di�erent Pre-Processing approaches. The
MSE per epoch on the validation data is shown.

Figure 21: Training of a simple CNN with di�erent Pre-Processing approaches. The
MSE per epoch on the validation data is shown.

When looking at the results for the CNN in Table 6 we can observe the same, except for
one instance, where the MSE is slightly higher for the MinMaxed labels. As MinMax
scaling the labels performed better than the baseline approach except for one instance,
we will chosoe it as our label PP approach for the following experiments.

When comparing the di�erent image PP approaches we can observe that the baseline
method always performed the best on the bNN as well as the CNN. For this reason we
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Images Labels Jn Jnn Jnnn Jout DEP DEA Overall
Baseline Baseline 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877
MinMax Baseline 0.01118 0.00721 0.01025 0.01074 0.00685 0.01461 0.01014

Normalize Baseline 0.00891 0.00615 0.00498 0.00996 0.00643 0.01629 0.00879
Baseline MinMax 0.00911 0.00653 0.00593 0.00883 0.00652 0.01441 0.00855
MinMax MinMax 0.00999 0.00698 0.00837 0.01114 0.00695 0.01493 0.00972

Normalize MinMax 0.00889 0.00637 0.00527 0.00941 0.00631 0.01566 0.00865

Pre-Processing MSE per Parameter

Table 5: MSE of baseline NN for each Pre-Processing approach on MinMax scaled test
data for each parameter and overall

Images Labels Jn Jnn Jnnn Jout DEP DEA Overall
Baseline Baseline 0.00263 0.00189 0.00174 0.00377 0.00108 0.00656 0.00294
MinMax Baseline 0.00294 0.00227 0.00208 0.00434 0.00137 0.00755 0.00342

Normalize Baseline 0.00298 0.00229 0.00215 0.00389 0.00140 0.00721 0.00332
Baseline MinMax 0.00250 0.00186 0.00174 0.00337 0.00101 0.00660 0.00285
MinMax MinMax 0.00293 0.00223 0.00212 0.00422 0.00137 0.00780 0.00344

Normalize MinMax 0.00273 0.00200 0.00198 0.00351 0.00106 0.00691 0.00303

Pre-Processing MSE per Parameter

Table 6: MSE of CNN for each Pre-Processing approach on MinMax scaled test data
for each parameter and overall

will use the baseline image PP for the following experiments. For the remainder of this
thesis optimal Pre-Processing (OPP) will refer to MinMax scaled labels and baseline
scaled images.

When comparing the scatter plots of the bNN and the bNN with OPP in Figure 22,
we cannot observe any clear improvement over the bNN.

5.4 Applying Batch Normalization and Dropout
Since no HPO was performed on the bNN it should be fairly easy to improve its
performance. Two simple and e�ective ways to improve the performance of NNs are
Dropout [39] and Batch Normalization [16], thus we will first show how much these two
concepts alone can improve the performance on the bNN. Batch Normalization (BN) is
a technique that reduces the internal convariate shift, which is defined as "the change
in the distribution of network activations due to the change in network parameters
during training"[16]. It achieves this by normalizing the input of each layer[16]. For
computational reasons the normalization is computed for each mini-batch individually.
The algorithm is shown in Figure 23. ‘ is a constant added for numerical stability,
while “ and — are learnable parameters that are necessary to "restore the representation
power of the network" [16], which would otherwise get lost due to the normalization
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Figure 22: Scatter Plot of the baseline NN (blue) and baseline NN with OPP (pink)
for each parameter. The Red line indicates an optimal fit, X-axis = Label,
Y-axis = Prediction

of the inputs. Since BN is computed for each mini-batch, di�erent batch sizes should
yield di�erent results, which we will show later in this subsection.

The other method we want to apply in this subsection is called Dropout. Dropout
"prevents overfitting and provides a way of approximately combining exponentially many
di�erent neural network architectures e�ciently" [39]. It achieves this by temporarily
dropping out neurons along with their incoming and outgoing connections as shown in
Figure 24.

The probability p to retain a neuron can be set to a di�erent value for each layer and
is a hyperparameter, meaning that the optimal value for each layer can be determined
with HPO. It is important to note that dropping out neurons is only applied during
training. When testing the NN every neuron is always present and its weights are
multiplied by the probability p set for its layer as shown in Figure 25.

5.4.1 Training

All training in this subsection was performed on optimally Pre-Processed images and
labels. We will first show the e�ect of adding BN and Dropout to the bNN individually
and then both added at the same time. Whenever a model used BN it was added to
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Figure 23: Batch Normalizing Transform, applied to activation x over a mini-batch.
[16]

Figure 24: Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout
to the network on the left. Crossed units have been dropped [39].

every layer of the bNN and as Io�e and Szegedy [16] suggest we will place the BN right
before the activation function as opposed to in between each layer.
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Figure 25: Left: A unit at training time that is present with probability p and is
connected to units in the next layer with weights w. Right: At test time,
the unit is always present and the weights are multiplied by p. The output
at test time is same as the expected output at training time. [39].

The models mentioned in this section are labeled as follows:

1. bNN-x : bNN with baseline Pre-Processing for images and labels.

2. bNN+OPP-x : bNN with optimized Pre-Processing.

3. BN-x : bNN with OPP and BN applied to every layer.

4. Dropout-x : bNN with OPP and Dropout in every layer.

5. Dropout+BN-x : bNN with OPP and BN and Dropout in every layer.

The x behind "-" refers to the batch size used for model training.

To show the impact of the batch size when using BN we will train the BN-x model
with di�erent batch sizes starting at 16 and doubling until a batch size of 4096. Each
of these models was trained for 50 Epochs. The training process for the di�erent batch
sizes on the BN-x model is shown in Figure 26.

For the Dropout-x and BN+Dropout-x models we performed HPO using Keras-
Tuner to find the best HPs for Dropout. As HPO tends to take a large amount of
time we will set the batch size to 256 and make use of a concept called Early Stop-
ping [31] to save time on bad performing sets of HPs. As opposed to training each
model for a fixed amount of epochs, Early Stopping simply stops the training when
a stopping criterion is met. In our case we stopped training of the current model,
when no improvement of 0.00005 on the validation MSE is achieved for 10 consecu-
tive epochs. To denote the dropout values between each layer we will use the vector
X = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]T , where x1 denotes the dropout value between
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Figure 26: Training of the BN-x model with di�erent batch sizes. The MSE per epoch
on the validation data is shown. The worst performing batch sizes on the
validation data are 4096, 2048 and 1024 in descending order.

the input and the first layer, x2 denotes the dropout value between the first and second
layer and so on. It should be noted that the value xi denotes the percentage of a
neuron being dropped out instead of being retained. This is because Tensorflow[1], the
backend for Keras, implements the dropout layer in this way.

The best Dropout values for the Dropout-256 and Dropout+BN-256 models were
found to be:

1. Dropout-256 = [0, 0.3, 0, 0.4, 0, 0, 0, 0, 0, 0]T

2. Dropout+BN-256 = [0, 0.2, 0, 0.7, 0.7, 0.7, 0.5, 0.15, 0, 0.5]T

5.4.2 Evaluation

When looking at the impact of di�erent batch sizes to the BN-x Model as shown
in Table 7 we can observe that the validation MSE gets increasingly worse for the
larger batch sizes. This performance is probably caused by the "generalization gap",
which states that "when using large batch sizes there is a persistent degradation in
generalization performance"[14]. The batch sizes 32, 64 and 128 performed the best
and they all have very similar performance. The smaller batch size 16 performs com-
paratively poor, This performance cannot be explained with the generalization gap
and is probably caused, due to the small batch size inducing noise when calculat-
ing the mean and variance of the mini-batch during the Batch Normalization. As
Table 7 shows, the addition of BN to the baseline NN already increases its perfor-
mance significantly. The BN-32 Model which performed the best lowers the MSE to
0.00788 which corresponds to a ≥7.8% lower MSE compared to the bNN+OPP-64
model. In total the use of an optimized Pre-Processing approach and the addition
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Model Jn Jnn Jnnn Jout DEP DEA Overall
bNN-64 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

bNN+OPP-64 0.00911 0.00653 0.00593 0.00883 0.00652 0.01441 0.00855
BN-16 0.00868 0.00625 0.00508 0.01067 0.00523 0.01505 0.00849
BN-32 0.00794 0.00575 0.00453 0.00861 0.00509 0.01540 0.00789
BN-64 0.00815 0.00585 0.00469 0.00883 0.00523 0.01454 0.00788
BN-128 0.00825 0.00586 0.00484 0.00883 0.00494 0.0146 0.00789
BN-256 0.00834 0.00608 0.00509 0.00867 0.00540 0.01463 0.00803
BN-512 0.00889 0.00618 0.00527 0.00927 0.00570 0.01504 0.00839
BN-1024 0.00933 0.00655 0.00607 0.01073 0.00803 0.01595 0.00944
BN-2048 0.01060 0.00708 0.00892 0.01209 0.01141 0.02004 0.01169
BN-4096 0.01290 0.01016 0.01157 0.01274 0.02228 0.03188 0.01692

MSE per Parameter

Table 7: MSE of di�erent models on MinMax scaled test data for each parameter and
overall

Model Jn Jnn Jnnn Jout DEP DEA Overall
bNN-64 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

bNN+OPP-64 0.00911 0.00653 0.00593 0.00883 0.00652 0.01441 0.00855
BN-256 0.00834 0.00608 0.00509 0.00867 0.00540 0.01463 0.00803

Dropout-256 0.00865 0.00609 0.00534 0.00843 0.00584 0.01323 0.00793
Dropout+BN-256 0.00810 0.00560 0.00464 0.00820 0.00474 0.01378 0.00750

MSE per Parameter

Table 8: MSE of di�erent models on MinMax scaled test data for each parameter and
overall

of BN to the baseline NN lowers the MSE compared to the baseline approach by ≥10.1%

When looking at the MSE for the Dropout-256 and Dropout+BN-256 model shown
in Table 9 we can observe that the Dropout-256 model performs better than the BN-256
model. It is important to compare the models on the same batch size as otherwise we
wouldn’t isolate the e�ect of adding Dropout or BN to the model. Dropout alone is
able to reduce the MSE in comparison to the bNN+OPP-64 by ≥7.3%. The best result
however was achieved when combining the use of Dropout and BN. The Dropout+BN-
256 model achieves the lowest MSE so far with a MSE of 0.00750. This corresponds
to a ≥12.3% lower MSE compared to the bNN+OPP-64. Compared to the baseline
approach the Dropout+BN-256 model achieves a ≥14.5% lower MSE. When looking at
the per parameter MSE the biggest improvement over bNN+OPP-64 can be observed
for DEP , which is ≥27.3% lower than for bNN+OPP-64.

When looking at the scatter plots Figure 27 of the Dropout+BN-256 model, which
is currently the best performing model we can observe that the deviations from the

38



optimal line have gotten smaller for DEP and the NN has started has stopped to simply
predict values around the mean for Jout, however the predictions are still far from
optimal. DEA still is the worst performing parameter so far.

Figure 27: Scatter Plot of bNN+OPP-64 (blue) and Dropout+BN-256 (pink) for each
parameter. The Red line indicates an optimal fit, X-axis = Label, Y-axis =
Prediction

One insight we have gained from the experiments in this subsection is to use a batch
size of 128 instead of 256 in future experiments were HPO is performed as the faster
training time of the 256 batch size does not justify the significant deterioration of the
NN performance.

5.5 Improving the Baseline Neural Network further

As we have seen the use of optimized Pre-Processing, Dropout and BN already increase
the NN performance significantly, however there are still other HPs we haven’t altered
such as the Learning Rate, the number of neurons in each layer or the number of layers.
In this subsection we want to achieve the best possible performance using a FC-NN
approach.
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5.5.1 Training

To find the best FC-NN Model we performed HPO using KerasTuner. The batch size
was set to 128. To save training time on bad performing sets of HPs we used Early
Stopping with the same stopping criterion as in 5.4. The HP search space included:

1. Number of Layers

2. Number of Neurons in each Layer

3. Loss function (either MSE or BCE)

4. Dropout Value for each Layer

5. Learning Rate for the Adam optimizer

The best model found by KerasTuner is depicted in Figure 28. The best Learning
Rate was found at 0.0001 for the Adam optimizer and BCE seemed to outperform MSE
as the loss function. In comparison to the baseline NN the number of layers was more
than halved, however each layer contains much more neurons than the baseline NN.
The optimal Learning Rate is also 10 times lower than the one used for the baseline
approach. The optimized NN will be denoted as ONN-128.

Figure 28: Architecture of the optimized NN: The model consists of 4 hidden Layers
which all have 4096 Neurons. The output layer has six neurons. The
Dropout value between each layer is indicated by the percentage between
each layer. BN is applied to each Layer before the activation function, which
was ReLU in all layers except the output Layer which used Sigmoid.
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Model Jn Jnn Jnnn Jout DEP DEA Overall
bNN-64 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

bNN+OPP-64 0.00911 0.00653 0.00593 0.00883 0.00652 0.01441 0.00855
Dropout+BN-256 0.00810 0.00560 0.00464 0.00820 0.00474 0.01378 0.00750

ONN-128 0.00761 0.00539 0.00457 0.00756 0.00477 0.01322 0.00719

MSE per Parameter

Table 9: MSE of di�erent models on MinMax scaled test data for each parameter and
overall

5.5.2 Evaluation

When looking at Table 9 we can see that the ONN-128 model was able to decrease the
MSE even further than the Dropout+BN-256 model. The MSE of ONN-128 is ≥4.1%
lower than the Dropout+BN-256 Model. The per parameter MSE was also decreased
for every parameter except for DEP which is 0.00003 higher than the Dropout+BN-256
model. Compared to bNN+OPP-64 the optimized NN has a ≥15.9% lower MSE.

When comparing the scatter plots of ONN-128 and the Dropout+BN-256 Model
shown in Figure 29 we cannot observe any significant improvement in prediction
confidence, except for smaller deviations from the optimal line.

5.6 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have been shown to perform really well on
image related Tasks such as image classification ([21, 37, 40]), thus we want to test if
CNNs are also able to achieve good results on our simulated data. In theory CNNs
can take advantage of the grid-like topology of 2D images [12] and since our dataset
fundamentally consists of 2D images, CNNs should also perform well on our dataset.
We propose a simple CNN, for which no HPO was performed. The architecture of the
CNN is depicted in Figure 30.

5.6.1 Training

The proposed CNN was trained for 50 Epochs with the Adam optimizer and a batch
size of 64. It will be denoted as UCNN-64. –, —1 and —2 needed for Adam were set to
the same values used for training the baseline NN. We used MSE as the loss function.
The CNN was trained on optimally Pre-Processed data. The MSE on the train and
validation data during the training procedure is shown in Figure 31

5.6.2 Evaluation

The first thing we can observe when looking at Figure 31 is that the CNN already has
a good performance on the validation data at the sixth epoch. There is only about a
5% di�erence in MSE between the sixth Epoch and the best epoch which was found at
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Figure 29: Scatter Plot of Dropout+BN-256 (blue) and ONN-128 (pink) for each
parameter. The Red line indicates an optimal fit, X-axis = Label, Y-axis =
Prediction

Epoch 36. When comparing this with the bNN-64 model, the same 5% di�erence in
MSE from the best epoch would have been achieved at the 16th epoch meaning that
the baseline NN needs more epochs to converge than the CNN.

When looking at the MSE on the Test Data in Table 12 we can observe that the
unoptimized CNN already outperforms the ONN-128 model significantly. The MSE
of UCNN-64 is ≥60.4% lower than the MSE of ONN-128. When looking at the per
parameter MSE the biggest improvement can be observed for DEP which is ≥78.8%
lower than for ONN-128

The same big performance increase can be observed when looking at the scatter plots
in Figure 32. All six parameters of UCNN-64 have smaller deviations from the optimal
line in comparison to ONN-128. For Jn, Jnn and Jnnn the predictions of ONN-128
were already following the optimal line, these deviations have simply gotten smaller.
The biggest improvements however can be observed for Jout and DEP . The FC-NN
approach had issues with correctly learning to predict Jout. This has changed for the
unoptimized CNN, the predictions now follow the optimal line comparable to the first
three interaction parameters, which is a huge improvement. The biggest improvement
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Figure 30: Architecture of the unoptimized CNN: The model consists of the input layer,
four convolutional layers, one fully-connected layer and the output layer.
A (2x2) Maxpooling Layer with a (1,1) stride was inserted after every two
convolutional layers. The first two convolutional layers have 32 Filters, while
the last two convolutional layers have 64 Filters. All convolutional layers
have a (3x3) kernel with a (1,1) stride. The FC layer has 512 neurons and
the output layer has 6 neurons, one for each parameter of the Hamiltonian.
All convolutional layers and the FC layer use the ReLU activation function,
while the output layer uses the Sigmoid activation function.

Figure 31: Training of the unoptimized CNN. The MSE per epoch on training data
(red) and validation data (blue) is shown.

however was made for DEP . ONN-128 had large deviations from the optimal line.
This has completely changed for the unoptimized CNN, which confidently predicts
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Model Jn Jnn Jnnn Jout DEP DEA Overall
bNN-64 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

ONN-128 0.00761 0.00539 0.00457 0.00756 0.00477 0.01322 0.00719
UCNN-64 0.00250 0.00186 0.00174 0.00337 0.00101 0.00660 0.00285

MSE per Parameter

Table 10: MSE of di�erent models on MinMax scaled test data for each parameter and
overall

DEP with the smallest deviations from the optimal line in comparison with the other
parameters. DEA is still the worst parameter, but the predictions of the unoptimized
CNN follow the optimal line better in comparison to ONN-128.

Looking at these results we can confidently say that the low performance of Jout as
well as DEP on the FC-NN models were created by the NN architecture and not the
input images. In contrast to the FC-NN models the unoptimized CNN has learned to
predict these parameters well. For DEA however the performance is still far behind the
other parameters. It is possible that a more optimized CNN, is able to resolve this
problem or the input images simply don’t allow for a better prediction. For this reason
we will try to optimize the CNN approach further in the next subsection.
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Figure 32: Scatter Plot of ONN-128 (blue) and UCNN-64 (pink) for each parameter.
The Red line indicates an optimal fit, X-axis = Label, Y-axis = Prediction
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5.7 Optimizing the CNN Approach
Considering that no HPO was performed on the unoptimized CNN the performance
increase is already substantial and will likely increase even more when optimizing the
CNN approach. For this reason we will perform HPO on the unoptimized CNN in this
subsection using KerasTuner. We will search for the best CNN using all tools we have
used so far such as BN, Dropout, ...

5.7.1 Training

Figure 33: Architecture of the optimized CNN: The hidden layers of the model consists
of four Conv-Conv-Max-Pooling Blocks followed by a dense layer with
2048 neurons. All hidden layers use the ReLU activation function. The
output layer has six neurons and uses the sigmoid activation function. All
convolutional layers have a (3x3) kernel with stride (1,1). All max-pooling
layers are (2x2) with stride (1x1). BN is placed before each activation
function including the output layer. The number of filters used by the
convolutional layers is printed below each block.

The batch size was set to 128. The best model found by KerasTuner is depicted in
Figure 33. The Learning Rate for the Adam optimizer is 0.014464. In contrast to the
unoptimized CNN, the optimized CNN uses BCE as its loss function as it performed
better. BN was placed before each activation function, however no Dropout was used.
We will refer to the optimized CNN as OCNN-128.

5.7.2 Evaluation

When looking at Table 11 we can see that the optimized CNN OCNN-128 was able
to lower the overall MSE by ≥42.8% in comparison to the UCNN-64 model. When
looking at the MSE per Parameter all MSE’s were reduced considerably while the
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biggest improvement can be observed for DEP which is ≥70.3% lower than for the
UCNN-64 model.

Model Jn Jnn Jnnn Jout DEP DEA Overall
bNN-64 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

UCNN-64 0.00250 0.00186 0.00174 0.00337 0.00101 0.00660 0.00285
OCNN-128 0.00137 0.00097 0.00102 0.00196 0.00030 0.00417 0.00163

MSE per Parameter

Table 11: MSE of di�erent models on MinMax scaled test data for each parameter and
overall

When comparing the scatter plots in Figure 34 the biggest improvement can also be
seen for DEP , which follows the optimal line really well, with very small deviations.

Figure 34: Scatter Plot of UCNN-64 (blue) and OCNN-128 (pink) for each parameter.
The Red line indicates an optimal fit, X-axis = Label, Y-axis = Prediction
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6 Results

Model Jn Jnn Jnnn Jout DEP DEA Overall
bNN-64 0.00876 0.00634 0.00579 0.01023 0.00689 0.01459 0.00877

bNN+OPP-64 0.00911 0.00653 0.00593 0.00883 0.00652 0.01441 0.00855
BN-64 0.00815 0.00585 0.00469 0.00883 0.00523 0.01454 0.00788
BN-256 0.00834 0.00608 0.00509 0.00867 0.00540 0.01463 0.00803

Dropout-256 0.00865 0.00609 0.00534 0.00843 0.00584 0.01323 0.00793
Dropout+BN-256 0.00810 0.00560 0.00464 0.00820 0.00474 0.01378 0.00750

ONN-128 0.00761 0.00539 0.00457 0.00756 0.00477 0.01322 0.00719
UCNN-64 0.00250 0.00186 0.00174 0.00337 0.00101 0.00660 0.00285
OCNN-128 0.00137 0.00097 0.00102 0.00196 0.00030 0.00417 0.00163

MSE per Parameter

Table 12: MSE of di�erent models on MinMax scaled test data for each parameter and
overall

In this section we want to summarize the results of all conducted experiments. In
subsection 5.3 we wanted to show how much the Pre-Processing approach alone can
improve the performance of the baseline NN. With the optimized Pre-Processing
strategy, we were able to reduce the overall MSE by ≥2.5%, however the MSE for
the parameters Jn, Jnn, Jnnn actually increased. The reason that the overall MSE is
still lower is because the MSE for Jout could be reduced by ≥13.7% which is a big
improvement considering that the NN architecture didn’t change.

subsection 5.4 and subsection 5.5 can be grouped together as the goal of these two
subsections was to optimize the FC-NN approach that the baseline NN used. By
combining the use of BN, Dropout and HPO in the ONN-128 model we were able to
reduce the overall MSE by ≥18% in comparison to the baseline approach. In contrast
to the bNN+OPP-64 model, which increased the MSE for some parameters, we were
able to reduce the MSE of every parameter by at least 9% in comparison to the baseline
approach. In addition we were able to solve a big problem that the baseline approach
had regarding the prediction of Jout. When looking at Figure 35 we can see that the
ONN-128 model has started to learn the prediction of Jout. The baseline approach
originally only predicted values around the mean for Jout, which has now changed for
the ONN-128 model, however the predictions are still far from optimal. The predictions
for DEP have also gotten better, however using a FC-NN approach we were not able
to solve the bad predictions of DEA.

The following two subsections subsection 5.6 and subsection 5.7 have dealt with the
use of CNNs instead of a pure FC-NN. The result of these two subsections was the
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Figure 35: Scatter Plot of bNN-64 (blue) and ONN-128 (pink) for each parameter. The
Red line indicates an optimal fit, X-axis = Label, Y-axis = Prediction

OCNN-128 model which achieved the best performance out of all conducted experiments
in this bachelor thesis. When comparing the baseline approach to the optimized CNN,
we were able to reduce the overall MSE by ≥81.4% which corresponds to a ≥5.4 times
better performance. When looking at the MSE per Parameter the smallest improvement
was achieved for DEA, which was lowered by ≥71.4%. Although this was the smallest
improvement, it still corresponds to a ≥3.5 times better performance. The biggest
improvement however was made for DEP . We were able to reduce the MSE by ≥95.6%
which corresponds to a ≥23 times better performance. This performance increase is
massive and turned DEP into the best predicted parameter by far in comparison to the
other parameters. When looking at the scatter plots in Figure 36 we can observe that
the OCNN-128 model has learned good predictions for all parameters. The biggest
improvements are made for Jout, DEP and DEA. The CNN has learned to predict
Jout, which was a problem for the baseline approach. DEP has made the biggest
improvement, as it was one of the worst parameters for the baseline approach when
looking at the scatter plot, however this completely changed for the optimized CNN.
DEP is now by far the best predicted parameter. The predition of DEA has also made
big improvements in comparison to the baseline approach, but it is still the worst
performing parameter.
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Figure 36: Scatter Plot of bNN-64 (blue) and OCNN-128 (pink) for each parameter.
The Red line indicates an optimal fit, X-axis = Label, Y-axis = Prediction
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7 Conclusion
In this bachelor thesis we have optimized a Neural Network approach that predicts the
parameters of the Hamiltonian from simulated and distorted data of the magnetical
compound BaNi2V2O8. In order to achieve this goal we have conducted di�erent
experiments such as trying di�erent Pre-Processing approaches or the use of Batch
Normalization and Dropout. The first part of this bachelor thesis focused on optimizing
the FC-NN approach that the baseline Neural Network used. With the use of an opti-
mized Pre-Processing approach, Batch Normalization, Dropout and Hyperparameter
Optimization we were able to improve the baseline approach significantly and we were
able to resolve problems such as the Neural Network predicting values around the
mean for Jout. However using a FC-NN approach we were not fully able to improve the
unconfident prediction of DEP and especially DEA. This motivated the use of CNNs
as they have achieved state-of-the-art performances on image related tasks. Using
a simple unoptimized CNN we were able to greatly outperform even our optimized
FC-NN and this in turn motivated the further investigation of CNNs. Following the
CNN approach we proposed an optimized CNN that has a ≥5.4 times lower MSE on
the test data than the baseline approach. The biggest improvements we have seen
however are for the parameter DEP which had unconfident predictions for the baseline
approach. Using our optimized CNN we were able to achieve a ≥23 times lower MSE
on the test data compared to the baseline approach making the prediction of DEP by
far the the best out of all parameters for our optimized CNN.

When considering these result we can answer our Research Question and say that
Neural Networks are indeed able to perform a reverse transformation of Spin-Wave-
Theory using distorted simulated data. We justify this statement with the performance
of our optimized CNN which has small MSE values for each parameter. In addition,
when looking at the predictions, the optimized CNN has learned to confidently predict
each parameter from the input images, although the performance of DEA could be
improved even further. We suspect however that the comparatively bad performance
of DEA is caused by the input data. It is possible that the simulations simply do
not contain enough information regarding DEA and the prediction is made even more
di�cult by the added artifacts. Further research regarding this problem could lead to
a better understanding.

To show the generalization performance of each Neural Network and to compare them,
we used a test set which was not used during training or Hyperparameter Optimization.
This ensured that the di�erent models are tested on unseen data. It is however possible
that the test data is not representative of the true generalization of our models. One
potential problem could be that the test set was to small as it only contained about
10% of the whole data set. We wanted to train the models on as much data as possible
which was the reason for the comparatively small test set. When conducting further
research regarding the problem adressed in this thesis more data could be simulated to
obtain a bigger test set.
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