
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Die Klassifikation von
Laufzeitverifikationswerkzeugen für

Cyber-Physische und Adaptive Systeme
hinsichtlich Reaktion, Interferenz und

Anwendung - Eine Untersuchung

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Eugen Wagner
geboren am: 3.10.1997
geboren in: Minusinsk

Gutachter/innen: Prof. Dr. Lars Grunske
Dr. Thomas Vogel

eingereicht am: verteidigt am:





Contents
1 Motivation 4

1.1 Cyber-Physical Systems as a Domain . . . . . . . . . . . . . . . . . . . 4
1.2 Adaptive Systems as a domain . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Goal of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Work Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Definitions 8
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Taxonomy of Runtime Verification . . . . . . . . . . . . . . . . . . . . . 9
2.3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Mapping Study 16
3.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Searching Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Keyword Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Study Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Analysis and Classification . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Classification of tools 25
4.1 Mapping study process . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion 38

3



1 Motivation
The idea of runtime verification (RV) in its most general sense revolves around extracting
information from a running system with the goal of finding unexpected system behavior.
There are several types of information and amounts of run-cycles for the system to
consider when extracting information during runtime [32].

In this work, we focus on checking whether a running system satisfies a certain
specification that has been set beforehand or not. A run-cycle is the traversal of a set
initial system state all the way to a defined end state. Since RV tools are implemented
differently, depending on how many run-cycles are considered, we do not set a specific
limit or define a run-cycle in more detail. The goal is to analyze RV techniques using
relevant tools and systems. The reason for setting this goal in particular is that surveys
are scarce in the research field of RV and therefore only a few attempts at creating
an overview of the most used or most relevant tools and approaches have been made.
While attempts at taxonomizing and creating overviews have been made [32], to our
knowledge, there have been no recent surveys about RV tools with a focus on recently
developed RV tools and approaches.

1.1 Cyber-Physical Systems as a Domain
In this work, we attempt to create an overview of tools with applicability to real-world
systems in mind. A suitable first domain to pick for RV experiments is the domain
of cyber-physical systems (CPS), because a major challenge one has to tackle when
thinking about CPS is real-time execution. Schwenger et al. describe three challenges
one has to think about when developing RV approaches for CPS [70]. First, there is a
continuous and infinite stream of events. Second, the local CPS clock may desynchronize
from other clocks. Third, the physical components follow physical laws and therefore
need to be considered.

There are countless challenges that methods in software engineering have to tackle
in CPS. RV tools can be developed around a system’s architecture in order to address
some of these challenges. The first great challenge that comes to mind when thinking
about CPS is the fact that there are many parts involved and there is often a complex
architecture at hand. Each part of the system may have different specifications with
different requirements that each need to be accounted for when attempting to apply
runtime verification [77, 61]. Furthermore, timely synchronization in the regarded
system poses a grand challenge as the tool has to account for it. Different system
threads might be synchronized, or they might run asynchronously.

1.2 Adaptive Systems as a domain
Since RV promises to deliver important information about the observed system, there
is an opportunity to take that information into account in adaptive systems. In the
most simple form of an idea, information about errors within parts of the system could
be utilized to self-adapt the system with the goal of minimizing the discovered error.
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Furthermore, adaptive systems have become increasingly relevant as a domain for
high-assurance systems.

Goldsby et al. see adaptive systems as a collection of steady-state programs and
adaptations between them [38]. They clarify that steady-state programs are set up to
fulfill environmental conditions without having an adaptive component. An adaptation
is the transition between steady-state programs. There are a set of unique challenges
that need to be considered in order to properly implement a runtime verification
component into an adaptive system. Goldsby et al. utilize the special specification
language called adapt operator-extended linear temporal logic (A-LTL) that has been
specifically designed with adaptive systems in mind [38].

1.3 State of the Art
The research field of runtime verification has gained significant interest in 2010. While
the International Conference on Runtime Verification has been active since 2006,
research in runtime verification has only increased in the coming years. This makes
the entire research field young compared to many other research fields in software
engineering. Due to this fact, to our knowledge, runtime verification is still primarily
focused on the theoretical aspects and less so on a real-world, industrial use. Software
verification (SV) is a closely related topic to RV since specifications also play a
fundamental role. The key difference between RV and SV, however, revolves around
the runtime aspect. SV is often performed in theory to ensure the system’s correctness.
This work specifically focuses on RV tools.

In general, there are two major groups one can differentiate RV research into. The
first group of research revolves around formal theory. As of today, there is still no
standardized taxonomy for the field of RV. This means that there is increased ambiguity
in the terminology of the field. Falcone et al. attempt to take a step towards fixing
this issue by creating an overview of all the relevant RV areas, such as application,
specification, and more [32]. With the help of a general glossary of terms in RV,
researchers can more clearly describe complex formal structures and describe performed
experiments on them. Kushwaha et al. for example, experiment with a framework in
order to extend the trace of da monitor with the goal of reducing execution time and
memory overhead [56]. However, here lies the research gap. While the first group of
research attempts to improve a certain aspect of this taxonomized field of RV, there
are few papers that contextualize and create overviews about the progress of RV and
its applicability in real-world systems.

While the first group of approaches focuses on the theoretical foundation of RV,
the second group of foundations aims to implement their findings directly into a tool.
Furthermore, the second group also researches tools in an attempt to improve some
aspect of them (e.g. usability, deployment, overhead). While this culmination of
research is striving more towards the practical use of RV in a real-world scenario,
there are still not enough surveys to give an idea about which tool is practical in what
situation.

Bartocci et al. deployed the tool MoonLight in MatLab, together with datasets of
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increasingly-sized data structures containing nodes and paths [8]. MoonLight is a great
example of what is applicable for our survey, as it utilizes temporal logic equations
to verify the configuration of a CPS. The temporal logic formulas were then set up
in order to monitor the spatio-temporal properties of the data sets and simulate a
real-world system. The issue with such work is the fact that often a tool is developed
and compared against another tool or a data set. Such comparisons are helpful to test
and evaluate the regarded tool; however they leave a research gap for a generalized
overview about recent developments in RV tools.

1.4 Goal of this work
On the one hand, the goal of this work is to set up a general overview of recently
developed or improved RV tools with the CPS and Adaptive Systems domains in mind.
On the other hand, the goal is to compare the discovered RV tools under the aspects of
interference, reaction, and application area. We note that while the two listed domains
are taken as references for a real-world application of the tool, we are not evaluating
these domains qualitatively for the application of the classified tools.

While a systematic literature review (SLR) was initially planned to reach the goals,
the time constraint for this work does not allow for certain steps to be taken, like, e.g.,
the quality assessment. For a proper quality assessment, one is required to reach out
to the researchers of the relevant scientific papers directly with the goal of ensuring the
quality of their work. This is usually done in the form of an extensive questionnaire.
Kitchenham et al. cover the steps that need to be taken in order to conduct a proper
systematic literature review [52]. The clear disadvantage of a systematic literature
review is the time and effort required compared to other types of literature reviews.

Due to this fact, we have decided to conduct a mapping study instead. The key
difference in this type of study is the focus on structuring existing literature without
evaluating its quality. It offers a review of studies with the goal of showing what is
available about a certain topic, which fits our goals well. In order to conduct the
mapping study, we followed the guidelines set by Petersen et al. [62].

1.5 Research questions
The goal of this work is to create a mapping study overview with a collection of recent
and relevant RV tools. This will be done with the applicability of the tools on the CPS
and the adaptive system domain in mind. The overview, together with the classification,
will be the key contribution of this work. In the following, we propose the research
questions that will be answered with this work.

• RQ1 - What is the desired and achieved goal of the tools?

• RQ2 - Which specification formalism is most commonly used in the RV tools?

• RQ3 - How do the tools handle discovered errors?
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• RQ4 - How are the tools deployed?

• RQ5 - How are the tools evaluating the trace?

Further explanations about terms and definitions in the aforementioned research
questions will be provided in Section 2. Furthermore, the data points required in order
to answer the research questions will be discussed in future sections. With RQ1, we
want to see in which direction the applicability of the tools is heading. With RQ2, we
want to inquire about

1.6 Work Structure
The paper is structured as follows: In Section 2, we describe all terms and definitions
relevant in order to understand the mapping study. Furthermore, we explain the
different taxonomies for RV and why we decided to choose the three fields of applicability,
interference, and reaction. Section 3 describes the process of conducting our mapping
study, step by step. The data points will be explained in detail to function as a legend
for the resulting literature table. Section 4 discusses the discoveries from the mapping
study and how these discoveries relate to the proposed research questions. In Section 5
we conclude our work and discuss future work.
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2 Background and Definitions
In the following section, we discuss and explain the necessary definitions and taxonomies
of runtime verification.

2.1 Definitions
In order to reduce ambiguity among the terms of runtime verification, we explain our
understanding of the definitions for the required terminology. Since countless studies
utilize a slightly altered version of each definition that we use to discuss our topic, we
deem it necessary to clarify our understanding of it [11].

Let us start off by explaining what we mean by a system. A system, in the context of
runtime verification, is our domain. In our example, this can either be a combination
of software and hardware in the case of a CPS [70] or primarily software in the case of
an adaptive system [80]. A unit that we can regard and analyze within the system is
called an observation. An observation is a step within the system’s execution where
the scope needs to be defined beforehand. For example, this could entail a single line
of code as a breakpoint or the execution of a function within a program.

A system trace is a sequence of observations. There are multiple ways to set properties
for the system trace. The most significant design decision one has to make in regards
to the trace is whether it should be a continuous (infinite) trace or a finite trace under
a certain time constraint. Both choices have ups and downs and may influence future
design decisions. Further decisions revolve around what types of data are supposed to
be extracted, ranging from signals to events or states.

Before the system execution even begins, one has to set certain specifications before-
hand. Specifications are properties or goals that the running system has to achieve or
uphold during runtime. These properties can range from subsets of the system trace up
to a list of configured system properties. Every runtime verification method contains a
monitor. In the most popular use case, a monitor is a program that analyzes the system
trace of the monitored system and checks against the specification. One can imagine
a decision-making process that goes through a list of non-complex specifications and
gives information about the system’s behavior [61].

The overhead in regards to runtime verification is the hardware load that the runtime
verification method applies to the system during runtime. Examples of typical overhead
in a tool could be the utilization of memory capacity within the system or the halt of a
system thread during execution. This may lead to a decrease in performance regarding
time or space.

The term runtime verification framework unifies several of the aforementioned terms.
The RV framework consists of specifications set for the system and one or more monitors
from the RV components [32]. It is the theoretical foundation on which any RV tool
is built. Furthermore, a runtime verification tool is defined by an instance of a RV
framework. We can conclude that any RV tool needs specifications as input to function.
Optionally, there is also an interface or graphic generation to visualize the output of
the tool, next to the monitor.
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2.2 Taxonomy of Runtime Verification
The field of runtime verification is complex to explain as it contains numerous subcate-
gories. Compared to other topics and fields in software engineering, RV is fairly young
in relevance. Outside of the official International Conference on Runtime Verification
by Springer, RV has not been in the direct focus of conference proceedings since
around 2010. A substantially important first step for research in a certain kind of
field is a unified, common taxonomy of the relevant terms in the field. When different
researchers have a common understanding of the definition behind the name of a term,
the associated scientific papers become a lot more accessible to the reader.

As such, Falcone et al. [32] attempt to lay down such a taxonomy of relevant terms
in the field of runtime verification. In their research, seven major categories of RV can
be filtered out. The categories specification, trace, interference, reaction, application,
monitor, deployment represent the termonology in the field. Since attempting to
classify tools against each individual category would prove far too extensive for this
work, we have chosen the research questions with regards to interference, reaction, and
application only (Figure 1). The decision was made with the application of RV to our
domains, CPS, and adaptive systems in mind. First, application is universally relevant
across both domains. Second, reactivity is especially relevant in adaptive systems
since upholding the correct system state may require an enforcement of its processing.
Third, interference is especially interesting in the CPS domain, since depending on
how invasive the regarded RV approach is, it may enable new avenues to apply RV to
the system.

Despite our evaluation not containing all seven of the categories, we discuss what
each of them entails to help understand the extent of the field. This is necessary
since each RV taxonomy is closely entangled with one another, and solely explaining
application, reaction, and interference could lead to confusion in our experimentation.

2.3 Specification
The specification is the main input in a RV tool and, therefore, generally has to
represent the desired system behavior as accurately as possible. The most important
property of any specification is that it needs to be observable within the system (since it
would be unfulfillable without this property). Any specification has a scope. Therefore,
it can be applied to the entire system or subsystems within the entire system. Generally,
it can be said that, on one hand, decentralised specifications can be more commonly
used as input for RV tools since they are independent from the system’s architecture
[32]. On the other hand, centralised specifications need to be developed around the
system’s architecture. This leads to cases where RV tools have to be developed for
the specific system at the expense of flexibility. Another commonly used input for RV
tools is a stream of either events or signals, whose dimensions and scope within the
system are dependent on the aforementioned factors.

One formal method to describe an informal specification and make it applicable for
a tool’s usage is to depict a property in temporal logic (TL) [19]. Temporal logic has
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Runtime Verification

Specification

How does the
specification affect
the RV method?

Trace

How is the trace
framework
configured?

Interference

How is the RV 
method
implemented and
deployed on the
system?

Non-Invase: The 
method does not 
interrupt the system‘s
execution.
Invasive: The method
designates a time frame
and either partly or
completely interrupts
the system‘s execution.

Reaction

How does the RV 
method respond to
encountering
undesired system
behavior?

Active: Jump to a 
designated error
handler.
Passive: e.g. write the
existance of the error to
system output.

Application

What purpose is the
RV method supposed
to fulfill within the
system?

Information collection: 
Gather facts about the
running system.
Debugging: Discover
bugs during the
system‘s runtime.
Analysis: Measure
privacy or security
metrics.
Failure prevention: 
Repair running system
and recover from
discovered errors.
Testing: Search for
errors and error
locations.

Monitor

What is the
theoretical
foundation of the RV 
method based on?

Deployment

How is the monitor
configured in regards
to the system‘s
specification?

Figure 1: The seven categories of runtime verification, taxonomized by Falcone et al.
[32]. The focus of this work, however, will be on application, reaction, and
interference. Note that this overview does not consider intersections between
different subcategories.

the upside of being able to create automata out of a TL formula and vice versa. The
most commonly used form of TL is linear temporal logic (LTL), which is derived from
first-order logic and finds countless uses in model checking. This is due to the fact that
LTL formulas can contain information about how a path is traversed in a graph model.

Tools such as Java PathFinder are built on the foundation of LTL, on one hand [47].
On the other hand, it allows a specification input from future and past time temporal
logic. This was achieved by implementing the use of future time operators on the
already existing propositional operators that have been derived from first-order logic.
Since we will not be analyzing the specification aspect of the regarded tools, we will
not be going into further detail about the different properties of temporal logic and
other forms of specification input.

2.4 Trace
The trace part of the taxonomy refers to a subset of the system trace, which entails a
subset of the sequence of observations within the system. This, of course, only refers
to the case in which the trace is finite, containing a start and an end point in the
sequence of observations. The abstracted form of a trace is a trace model [32]. The
trace model is a separate program that allows the configuration of properties regarding
time constraints and what types of data are to be compared against the specification.
This entails that the trace model generates our desired subsets of system trace.
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Once the desired observations in the trace are extracted, they can then be used as
input for the RV monitor. Falcone et al. refer to this case as sampling. Sampling can
occur based on time or on specifically set events [32]. The sample is then a subset
of the observations in the model. Further statements and information about a single
sample revolve around how many distinct system behaviors are covered by it. It is then
deemed precise, if it covers all types of system behavior, or imprecise in the other case.

Reger et al. explain that any specification ϕ has a set of possible traces assigned to
it [66]. Since traces are so closely tied to specifications, they naturally need to match
the specification language.

Example 1 (Propositional Traces) Given a specification from a finite-state automaton
in the form of a regular expression, it becomes clear which trace corresponds to the
specification and which doesn’t (see Figure 2).

Figure 2: A deterministic finite-state automaton to visualize how a specification may
be modelled in order to check trace samples against.

In this example of a deterministic finite-state automaton, there are three states: 1, 2,
and 3, with the two terminals a and b. The language model with the accepting words
of this automaton is one possible specification ϕ. The regular expression describing the
accepting language of ϕ is (b|aa) ∗ a(aa|ba) ∗ b(ab|b)∗. It’s clear to see that the trace
bbab corresponds to ϕ, where bbaba does not [66]. In real-world use cases for CPS or
adaptive systems, however, regular expressions do not find much use since they fail to
integrate time components into the specification language.

For this reason, the usage of temporal logic formulas is far more common in the
development of a tool for the extraction of trace or setting a specification. As mentioned
in Section2.2.1, the most common form of TL used for RV tools is LTL.

LTL is based on first-order logic and therefore contains the following.
• variables a, b, c...
• logical operators ¬, ∧, ∨, ...
• existential quantors ∃, ∀
• temporal operators □,♢, ...
The temporal operators correspond to an action that needs to be taken in order

to fulfill the formula. In LTL, however, this does not guarantee the desired time
component in the specification.

Example 2 (LTL for event ordering) The specification □((¬a ∨ ♢b) → c) is written in
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the LTL specification language and has been inspired by the example from Reger et
al [66]. The global operator □ guarantees that any trace has to hold at some point,
and at any followup state on the following path, this state stays the same. Possible
traces for this specification are the sets {}, {¬a}, {b}, {¬a, c}, {b, c}, {c}. The finally
operator ♢ guarantees that there is a certain state in the future where the trace finally
holds but may change states again after the hold. This example shows that LTL adds
an ordering component to logical formulas but not a time component directly. For
this reason, there are further detailed derivations of LTL, like, for example, Metric
Temporal Logic (MTL) [30]. In MTL, there is the added component of intervals to
ensure the timed availability of the subformula in the TL formula.

2.5 Interference
Falcone et al. come to the conclusion that there are two subcategories in the interference
category [32]. In the context of our work, runtime verification tools can then be either
invasive or non-invasive in regards to the regarded system domain.

Note that interference is measured in a more qualitative way, and therefore, a RV tool
can’t be classified as invasive or non-invasive with total confidence. The two categories
should be viewed as a spectrum instead. A more invasive tool could increase the system’s
overhead during runtime. For the CPS domain, the measuring of CPU temperatures
can be deemed invasive. Naturally, it is dependent on the system’s architecture to
measure the degree of invasiveness, since sharing the same memory space between the
RV tool and the system may also be deemed invasive. As with the other taxonomies,
interference is deeply entangled with other categories like specification, trace, and
monitoring.

For example, the way the monitor is implemented in the system can affect the amount
of system overhead [76]. The way trace samples are extracted from the system can also
interfere with the system’s runtime by being directly integrated into the code. In the
context of this work, interference will be understood as the manipulation or accessing
of physical components within the system, like the CPU or RAM. Consecutively, this
means that interference will be less relevant for the adaptive system domain as physical
components are less likely to play an integral role within the system.

Implementing runtime verification with a low amount of interference is a central
research topic for future research. The very concept of runtime verification is designed
around reading and accessing threads of the regarded system, and therefore, interference
is impossible to avoid entirely.

Berkovich et al. propose several concepts in the form of two algorithms with the
goal of reducing the runtime overhead of the regarded system [14]. They efficiently
separate monitoring assignments from the running program with parallelized hardware
processing units, which directly reduces interference. During the experimentation, they
let the system (which in their case was a program) run on a CPU and the RV monitor
run on a GPU. The monitor operated with worker threads that analyzed the program
trace and monitored multiple properties simultaneously.
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2.6 Reaction

Reaction, in the context of runtime verification, describes how the monitor handles
behavior in the trace that differs from the specification in the regarded system. Like
interference, the field of reaction is closely tied to other fields in RV. The reaction
taxonomy is directly tied to the monitor as it reflects the implemented behavior of the
monitor. Furthermore, interference plays a role in how the monitor is allowed to halt
system threads or components in order to react.

In the most common sense, a reaction from a RV monitor can either be passive or
active [32]. Should undesired behavior within a trace be identified by the monitor, in
the case of a passive reaction, the monitor just gives information about the discovered
inconsistencies through the output.

In the case of an active reaction, the monitor directly accesses the running system
during runtime [44]. This, of course, implies that the monitor has to be running in
accordance with the system and cannot be monitoring it offline. An active reaction
could be implemented in different ways. From jumping to a specific point in the code
to handle the error to altering the system’s output altogether.

2.7 Application

The application area describes what purpose the RV tool is supposed to fulfill within the
system. The first purpose that may come to mind is information collection. The main
purpose of a RV monitor is to analyze traces from the regarded system and compare
them against the specification to come to a conclusion. Based on the conclusions,
information about the system can then be communicated to the user. Furthermore,
this information can be visualized through a graphical output, which may help to make
statistical statements about bottlenecks or the correctness of the system. Shafiei et
al. have presented a RV approach in the MESA tool [73]. The tool is able to give
descriptive output with graphical visualizations, making it applicable for testing and
debugging tasks.

With the RV tool’s architecture being so closely tied to the system’s design, it is also
possible to make performance tests or debug parts of the system [32]. This, naturally,
also opens the possibility of analyzing system vulnerabilities in regards to security.
Depending on the implementation of reaction behavior in the tool, the main purpose
of the application can be to discover system failures in time and either notify the user
of them or directly influence the system’s processes.

We refer to Sánchez et al. for information about design choices developers have to
make before attempting to implement a RV tool for CPS domains [77]. Efficiency plays
a key role in RV as it can reduce time or space overhead. They discuss the problem of
monitoring efficiency, as having one central monitor for all the computation is not the
most efficient solution. Generating local monitors for specific sub-formula traces can
prove far more efficient, but it comes at the expense of synchronization and accessibility
challenges that need to be addressed.
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2.8 Monitor
The monitor is a key component of RV. It takes trace samples from the system as
input and compares the contained information within the trace against specifications
within the system. As mentioned before, the monitor is a program with the goal of
making decisions about the traces it analyzes.

Falcone et al. explain that a monitor can either be based on automata, graphs or
rewrite-based. Automata-based and graph-based approaches entail that an algorithm
checks the system trace based on finite-state automata or graphs and simulates the
execution in order to check for violations [32]. Rewrite-based means that the very
foundation of the monitor is based on grammar rules from the specification language
[45].

Further design decisions revolve around how the monitor extracts and analyzes
trace samples. For example, system specifications can be extracted, and from the
specification language, an automaton can be generated [1]. With this automaton, it is
clearly possible to check if a trace is running into errors or not by simply inputting the
trace as an input word to the automaton. Based on the results of the simulation, a
verdict on whether the execution was correct or faulty can then be made.

The opposing design choice would then revolve around storing tables of data that
each represent one observation. Utilizing relational algebra, operations like union can
then be used to check entries in these databases against a specification (default case
behavior) inside the system. Relational databases can easily be evaluated this way by
inputting observation entries into the specification.

Falcone et al. discuss the output design of a monitor through the terms sound or
complete [32]. On one hand, a monitor with the completeness property guarantees an
output. While this output does not guarantee correctness, it offers a justification for its
work. On the other hand, a monitor with the soundness property guarantees a correct
output.

There are more terms necessary to cover the monitor taxonomy part of RV. However,
in our work, we do not plan to discuss the monitor design taxonomies of the regarded
tools. Therefore, we do not go further into these definitions.

2.9 Deployment
The deployment part of the taxonomy directly correlates to how the RV monitor is
deployed onto the system. This, of course, heavily influences the feasibility of RV
approaches.

To summarize, deployment covers the terminology of how monitors are implemented
and how traces are extracted. Furthermore, it covers timely components within the
system, like, for example, synchronization between a system thread and a RV monitor.

In the case of a synchronized monitor, the RV approach is able to extract a trace
sample from the system, analyze it, give out verdicts, and extract the following sample
without "falling behind" during runtime [32]. Conversely, an asynchronous RV approach
would force parts of the system to halt in order to have time for the trace analysis.
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Once the analysis is complete, the system is notified by the monitor to resume the
halted processes.

2.10 Related work
The field of RV primarily revolves around researching formal methods. To our knowledge,
Falcone et al. have created the most extensive survey about RV tools, structuring
the developement progression in the field from 2016 to 2018 [31]. They furthermore
verify their findings with a questionnaire, regarding the classification, that most of the
authors of the analyzed tools have filled out [32].

Bures et al. have conducted a mapping study regarding interoperability and inte-
gration testing methods on the Internet of Things (IoT) domain with a set of 102
papers [16]. While this is related in regards to analyzing RV approaches on a domain,
their work differs from ours. First, we are assuming the application on CPS and
adaptive systems. While the IoT domain has similarities, the characteristics differ in
regards to the architecture between CPS and IoT [70, 16]. Second, we are extracting
documentations and information about RV tools, not theoretical approaches.

Sánchez et al. have created a survey to showcase and overview the most state of
the art in regards to monitoring techniques [77]. They analyzed areas of application
(domains) to be used and collected relevant information in order to formulate significant
research challenges for RV monitors. Our survey is focusing on an implementation
approach past the design stage, assuming that a theoretical idea has already been
implemented into a tool.

Mapping studies and surveys are generally few in the field of RV. In our research,
we were unable to find recent research papers, regarding mapping studies or literature
reviews of RV tools and their applicability in recent years. This leaves a structural
research gap, as it is difficult to understand the current state of the art and progress
on recent tool developments. This is especially true to researchers, that are newer to
the field of RV.
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3 Mapping Study
As previously mentioned in Section 1.4, in order to get results and make statements
about our proposed research questions, we conduct a mapping study. We follow the
guidelines proposed by Petersen et al. [62], since the goal of their work is to find best
practices in conducting a mapping study from existing literature on the topic. The
outcome of a mapping study is a map that displays the structure of the regarded
literature.

The goal of the mapping study is to give structure to newly developed or updated
RV tools and show their applicability in the CPS and adaptive system domains. We
primarily focus on RV tools directly, which means we only include research papers that
present a tool or extend an already existing one. We acknowledge that this kind of
approach may exclude frequently used tools for our regarded domains that have been
developed before our regarded publishing year timeframe (2018-2022).

The process followed in this section, bundled with the extracted artifacts, is visualized
in Figure 3.
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Define Research 
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Research
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Figure 3: The process of the mapping study conducted in this work. We follow the
steps of Petersen et al. in the definition of stages [62] and Bures et al. in the
visualization of the stages [16].

3.1 Threats to Validity
Since this work is conducted by a single researcher, we note a potential threat to the
theoretical validity of the mapping study. There is a potential for researcher bias as
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there is no second person reviewing the mapping study process. Furthermore, there is
a chance that relevant information may be overlooked, incorrectly understood, or not
extracted to an adequate extent. Due to the nature of this work, it is not possible for
us to utilize control actions in order to combat these threats.

Descriptive validity describes whether information from research has been observed
objectively or not. Petersen et al. see qualitative studies as having a higher threat to
descriptive validity than quantitative studies [62]. Quantitative studies make statements
based on statistics and mathematical proof, whereas qualitative studies may make
statements based on observations. To combat this threat, we structure our findings and
observations in the form of an Excel sheet and a workspace in the markdown document
management tool Obsidian.

Finally, we acknowledge the fact that we do not have access to the conference
proceedings from the Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). While potentially relevant papers discussing RV tools
may be contained, we do not have the means to regard them in this work.

3.2 Searching Process
In the first step of the mapping study, we describe how search strings are formed in
order to select and find research papers. In the next step, the inclusion and exclusion
criteria will be defined and later applied to filter out papers that may not be relevant
to our study. And finally, the remaining set of papers will be used for the classification.

We continue the work of Falcone et al. [32] by adopting their findings as a baseline.
They classified around 60 tools against one another in a similar way to the steps of a
mapping study. The problem, however, is that the tools were only regarded in the time
span of 2016-2018 (publishing years), leaving a research gap up to the current year.
Their work is from 2021 because a questionnaire was additionally conducted on top of
the classification results from an earlier work [31]. Survey research about RV tools is
few and far between in the field, and to our knowledge, no further survey has been
conducted in regards to runtime verification tools in recent years. Therefore, we apply
customized exclusion and inclusion criteria to the 60 tools and include the remaining
set of tools into our set of regarded tools and papers.

In order to limit and structure the search, we only consider the proceedings of three
different international conferences. First, we search for papers in the yearly proceedings
of Springer’s International Conference on Runtime Verification from 2018 up to 2022.
The conference proceedings contain a quantity of scientific papers ranging from 10 to
40. We deem this search domain to be the most important one for our research goals,
as formal methods and the concepts of runtime verification are the most prevalent in
the proceedings of this conference.

Another search domain is the International Conference on Software Engineering
and Formal Methods from 2018 to 2022. This conference by Springer will also contain
several relevant research papers, as the proceedings often contain an entire section
about runtime verification or model checking.

The last search domain will be the Symposium on Software Engineering for Adaptive
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and Self-Managing Systems (SEAMS) from 2018 to 2022. We estimate a far lower
amount of RV tool papers that we could use for our research from this conference, but
we still want to cover this search domain since we are interested in the perspective of
adaptive systems. The SEAMS conference offers the challenge of accessibility. Since
this work is conducted with the help of Humboldt-University partnerships, we do not
have access to the majority of SEAMS proceedings as they are not partners of this
university. Naturally, these papers will not be considered in our work.

The main challenge of searching through each conference’s proceedings will be the
proper selection of exclusion and inclusion criteria. On one hand, we want to avoid
filtering out potentially relevant research papers. On the other hand, we want to
accurately represent all the relevant RV tools in the regarded time span.

3.3 Keyword Identification
Since we will be going through the entirety of the proceedings in the three conferences,
a search, as explained by Petersen et al. will not be conducted [62]. In their work,
they propose defining a population, an intervention, a comparison, and the outcomes
beforehand. Then they overview the different search strings in order to find relevant
papers. This sort of approach makes sense when the search domain is a large database
or search domain containing a high quantity of data entries or papers.

The selection of scientific papers in our work, however, will be solely based on the
filtering of the following inclusion and exclusion criteria. The reason for this decision
is that, with the resources available to us, it is possible to apply the inclusion and
exclusion criteria to each paper in the conference proceedings within the time frame of
this work. Therefore, a search is not required.

The inclusion and exclusion criteria are chosen so that only papers with a heavy
focus on RV tools will be in the resulting set of papers.

3.4 Study Selection
The data filtering in regards to this work is applied at two different points. The first
is the classification from Falcone et al. on the 60 RV tools presented in their work
[32]. The second being the conference proceedings from the SEAMS, the SEFM, and
the RV venue. Since the data on a classification survey and unfiltered conference
proceedings are different by nature, we cannot simply apply the same inclusion and
exclusion criteria to each of them.

In the following, we describe what each inclusion or exclusion criteria entails for
the conference proceedings. The items in the following list start with a criteria code,
containing an I (inclusion) or an E (exclusion) combined with a number. Following the
criteria code is the title of the criterion, which is then followed by a description.

• I1 - The research paper is written in German or English.

This inclusion criterion guarantees that the resulting set of research papers

18



only contains papers that we can understand without a language barrier. Since
our search domains exclusively contain international conferences, however, all
the initially regarded research is written in the English language.

• I2 - The main topic of the research paper revolves around a tool.

The goal of I2 is to include initial relevant research for the classification. Papers
that merely mention a tool do not fulfill the criterion, as we want to evaluate the
current field of RV in regards to what tools are applicable to CPS or adaptive sys-
tems. Therefore, only research where tools are explicitly discussed, implemented,
or extended is included under this criterion.

• I3 - The focus of the research paper is set on a concept of RV.

In combination with I1 and I2, this criterion filters in the cases where we have a
research paper about a tool with a concept of RV in mind. The venues for confer-
ence proceedings may have a tool paper with a topic in software engineering that
does not directly correlate to RV. The focus of our work has been to determine
the relevant RV tools from recent years. I3 guarantees that we collect the papers
we need in order to properly conduct a survey about RV tools.

• E1 - The research paper is not written in German or English.

We exclude any research paper written in a language other than German or
English. Naturally, this is due to the language barrier in understanding research
in other languages. While this exclusion criterion is not applicable to any of
the research we’ve reviewed, we find it necessary to include it. In the case of
conducting future work similar to ours, these criteria can be used as motivation
to adjust the filtering of different venues.

• E2 - The main topic of the research paper does not revolve around a
tool.

This criterion excludes research that we cannot find use for in the classifica-
tion of RV tools. By tool, we mean an RV approach that has been experimented
on before and has been implemented into an accessible tool. This implies that it is
beyond the design phase and already has a version that is applicable to a system
or program. Furthermore, we are excluding research that improves on some
concept of RV in a certain domain with experimentation, tailored specifically for
the problem evaluation in the paper [18].

• E3 - The focus of the research paper is not set on a concept of RV.

With E3, we are excluding papers that cover a topic in software engineering
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without directly going into detail about RV. The reason for this is that there are
tool papers about software verification that do not directly revolve around RV.
While there are similarities between the former and the latter, the concepts are
fundamentally different. Combined with E2, we are guaranteeing that we filter
out papers without enough of a connection to a concept of RV and a practical
approach in the form of a tool.

The aforementioned exclusion/inclusion criteria are applied to the conference pro-
ceedings of different venues.

In the following, we describe the specialized inclusion criteria for the taxonomy of
Falcone et al. [32]. Any tool, not covered by the inclusion criteria, is automatically
excluded. The aforementioned criteria do not apply to this filtering.

• FI1 - The author’s input has been given in the questionnaire of the tool.

Falcone et al. have created a questionnaire with around 30 questions, attempting
to cover the taxonomized field of RV [32]. This inclusion criterion includes all
tools where at least one tool’s author has filled out the questionnaire. The goal
is to include tools where the tool’s authors have expressed their side of how the
classification process is being conducted. This will improve the accuracy of the
classification.

• FI2 - The tool’s fitness is above or equal to 80%.

Falcone et al. have conducted a questionnaire with 28 questions that has been
sent to the creators of the tools they have classified [32]. This was done in order
to make a quality assessment and get an opinion on the classification conducted
in the paper. Each question had the option of being deemed "not applicable"
(unfit). A tool’s fitness percentage was then based on how many questions weren’t
unfit for the tool’s authors. We attempt to set a threshold to find tool entries
in the work of Falcone et al. where the tool’s authors mostly agree with the
classification. A low fitness score indicates that the author disagrees with parts
of the questionnaire, which may affect the accuracy of the classification.

• FI3 - The tool is publicly accessible in 2023.

Since the work from Falcone et al. has been conducted up to the year 2018, several
URLs listed in the work no longer work [32]. Reasons for this vary, from content
being moved to a different platform to tools not being maintained over recent
years. We expect to filter in tools with working URLs, leading to either a git
repository containing the source code of the tool or a download page containing
relevant documentation. This is necessary, as we want to find as much information
as possible for each tool. In the case of a privately contained documentation or
website of the RV tool, we can only analyze the referenced research papers [72].
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Any paper that meets all the inclusion criteria is accepted into the classification as a
tool. If one or more exclusion criteria are met, the research is automatically rejected
from further consideration.

3.5 Data Extraction
In the following section, we define what data items we are planning to extract from
the papers. As a prerequisite from the previous sections, we already have a filtered
set of RV tool papers to classify. In this step, we define what aspects and data the
papers are classified by. Next to the papers classified by us, we are reviewing the set of
filtered tools from Falcone et al. [33] again to check for changes in development.

The resulting table from the data extraction will yield the classification of the
aforementioned tools. The table will allow us to evaluate the recently developed or
extended tools based on application, interference, and reaction. Furthermore, the
resulting evaluation will yield answers to our proposed research questions from Section
1.4.2.

In a similar way to Section 3.2.3 we list the distinct data points that we are aiming
to extract from the research papers.

• DP1 - Area of improvement within the system

With DP1, we want to see what application area the tool is fit for within the
system, covering the application part of the taxonomy. This could range from
primarily information collection to failure prevention. Further possibilities include
the debugging or testing process within the system, where the tool takes on a
supporting role [10]. Another possibility is property verification. To summarize,
we’re extracting data regarding the use case of the implementation. DP1 con-
tributes answers to RQ1.

• DP2 - Proposed objective of the tool

In DP2, we are checking for the proposed objective in the research work it-
self. Unlike DP1, we focus on the proposed research questions to compare the
actual tool’s behavior and applicability against the proposed goal of the tool’s
research. DP2, combined with DP1, answers RQ1 by providing a direct com-
parison between the actual implementation and functionality of the tool against
the prior research question of the author or researcher. Possible values include
scalability, accessibility, reactivity, overhead efficiency & performance, and lastly,
correctness.
Scalability entails the feasibility of extending the tool alongside the growing
system architecture of the regarded system. With accessibility, we extract how
simple the tool is to deploy, run, or utilize for less experienced users or engineers.
This could, for example, include a GUI for direct interaction with the tool. The
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value of reactivity describes the goal of making the tool efficient at detecting
errors in a timely manner. The of value overhead efficiency or performance
describes the goal of minimizing the overhead or reducing execution time during
trace analysis (for example). The goal of correctness revolves around performing
a formal mathematical proof of the algorithm the tool is based on in order to
ensure correct functionality.

• DP3 - Specification functionality

Under specification functionality, we look at the theoretical foundation the tool
is built on. We are looking at what the specification formalism is by checking
the specification language that is understood by the tool. Examples for this data
point include finite-state automata with a model-checking-based approach to
verify a specification. Further examples include TL formulas to verify a trace.
Further variations of TL and automata-based approaches exist and will also be
considered. There is no predetermined set of values fit for this data point, as
countless tools use a custom specification language. DP3 will provide data in
order to answer RQ2.

• DP4 - Output

The data point DP4 will extract how a tool communicates its discoveries to
either the user or the system. Possible examples of distinct output formats
include terminal output, generated logfiles, and graphical output. Next to DP3,
this data point will offer answers to RQ5. The specification formalism directly
correlates to the feasibility of how output can be generated. In order to extract
DP4, we use the same structure as Falcone et al. but include the classification of
graphical output [32]. There are three different possibilites that the value in DP4
can take on. The first possibility includes a single verdict, witness, or robustness.
The second is a sequence of verdicts, witnesses, or robustnesses. And lastly, a
graphical output, including a plot or another visualization of the output data.
A verdict in this context means a boolean constant that decides whether the
observed trace matches the specification or not. A witness contains increased
descriptiveness compared to the verdict as it directly offers the variables that
violated the specification. Robustness output attempts to assess how much a
specification has been violated or satisfied within the read trace.

• DP5 - Interference

Under DP5, we are looking to extract information regarding the intrusiveness
of the tool within the system. Examples for this data point include sharing the
same memory space as a thread within the system or directly accessing a part
within the system. In this context, DP5 includes accessing physical and software
components. Naturally, this indicates an invasive tool. A non-invasive tool
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could, for example, access the system’s trace through an API designed to access
logged data without interfering in its processes. With DP5, we are extracting
information in order to answer RQ4.

• DP6 - Active reaction

The data points DP6 and DP7 directly handle the reaction part of the tool.
When undesired or unspecified behavior is discovered by the tool, how is the
situation handled? Examples of an active reaction include an exception, where
the tool jumps to an exception handling point in the program and intervenes in
the system in some way. Further possibilities include backtracking (rollback),
which involves reverting the running system to a previous state before the error
occurred. Further possibilities include enforcement by the tool. Examples could
include writing back and altering information streams within the system in order
to prevent a failure. With DP6, we are looking to extract information in order to
answer RQ3.

• DP7 - Passive reaction

Similar to DP6, DP7 extracts information about what the tool does in the
case of discovering unspecified behavior. A passive reaction makes sure that the
system’s execution isn’t halted. This implies that the tool is restricted in its
ability to contain errors. Examples of a passive reaction include an explanation,
where the tool generates terminal output or a log file listing the discoveries for the
user. In the most common case, a tool reacts passively by outputting a log file or
writing to the terminal with the results of the specification analysis. This could
be extended with additional information about the number of satisfied or violated
specifications (statistics). With DP7, we are looking to extract information in
order to answer RQ3.

• DP8 - Stage

In DP8, we are looking to extract information about when the RV tool op-
erates. There are two possible values for this data point: online and offline. In
the most common case, when talking about a stage, a RV monitor is meant. An
online monitor runs during the system’s runtime. The opposite monitor, running
offline, reads log files from the system and analyzes the trace while the system is
not running. This data point is supposed to deliver answers for RQ4.

• DP9 - Synchronisation

Similarly to DP8, DP9 directly correlates to RV monitors. A monitor can
either run synchronously or asynchronously with regards to the system. A syn-
chronous monitor can operate next to the system and does not desynchronize
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in its execution time to avoid data races. Asynchronous includes monitors that
are implemented with system halting in mind. For example, the tool extracts
some fixed-length trace from the system and enforces a system pause in order to
analyze the trace. Once the tool is finished with the analysis, the system gets
notified to resume its execution. With the data from DP9, we can answer RQ4.

3.6 Analysis and Classification
In the final step, we attempt to visualize every value in each data point and structure
our findings from the classification. The visualization yields answers to our proposed
research questions (RQ1, RQ2, RQ3, RQ4, RQ5). Furthermore, we discuss our findings
in two ways. On one hand, we discuss the results in regards to the basis of the tools
we are re-evaluating [32]. On the other hand, we attempt to give an overview of tools
that have been developed from 2018 up to 2022 in our search domains.
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4 Classification of tools
This section contains the main contribution of this work, as it captures our experiments
described in Section 3.

Since we have not defined any search strings, we instead commit to reviewing all
proceedings from the SEFM and the RV in the time span from 2018 up to 2022.

4.1 Mapping study process
In total, we have taken 236 papers into consideration. From the RV conference, 123
papers were included. From the SEFM conference, 113 papers were included. While
initially it was planned to include the SEAMS conference as well, we have seen only
a handful of publicly accessible papers in their conference proceedings. Since we do
not have direct access to the proceedings, we decided to exclude this venue as a search
domain.

After applying the inclusion criteria (I1,I2,I3) and exclusion criteria (E1,E2,E3),
a total of 67 papers were taken into consideration. Out of that set of papers, 46
papers were chosen from the RV conference and 21 papers were chosen from the SEFM
conference (see Figure 4). Additionally to the data filtering criteria, we’ve extracted the
paper title, publishing year, authors, venue, page numbers, and doi URLs. Furthermore,
we extracted the name of the RV tool (only if one was presented). Some of the listed
tools, like e.g., UPPAAL [57, 60, 53] or TeSSLa [50] are part of a larger framework or
are frameworks directly. In such cases, we’ve only included them in the case of a RV
tool being part of the framework’s toolkit.

Additionally, we included information about the paper’s "type". This is done for the
sake of overviewing whether a RV tool is presented or extended within the work. The
third possible value for type is "theoretical". Any paper that does not directly include a
RV tool is automatically deemed theoretical since it is not relevant to our classification
and therefore only potentially offers theoretical information about RV. Lastly, type
can take on the value "tutorial", where the paper showcases a tool’s usage extensively
through a practical example. The data filtering and the data mapping artifacts are
accessible through our git repository 1.

In the following step, we performed the data extraction. First, we regarded all 60
tools from Falcone et al. [32] and applied the customized filtering criteria (FI1, FI2,
FI3). We designed the criteria with recent information in mind or existing information
that has changed over the years. Tools that no longer have development support and
are no longer available were supposed to be filtered out. Furthermore, tools that did
not get their author’s input in the quality assessment of the classification were also
filtered out. In total, 23 tools remained for the classification. We were inspired by the
work of Falcone et al. in setting up the classification table with the possible values for
each data point [32]. The Excel sheet artifact, containing the extracted tools from the
taxonomy paper, is also available in our git repository.

1https://gitlab.informatik.hu-berlin.de/se/BA-Wagner-Eugen/-/tree/
wagnereu-main-patch-65330/Data
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In the next step, we carefully reviewed and read the available resources about
the tools in our set of 67 research papers. Out of those 67 papers, we were able to
extract 47 RV tools, based on experiments, demonstrations, or general evaluations.
In summary, with our 47 tool entries combined with the 23 tools from Falcone et
al. [32], we took a set of 70 tools into the final consideration for the classification.
Based on the classification table, we then extracted the following defined data points.
We explain the possible values and abbreviations for each entry in the classification table.
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List of possible values and abbreviations used for Table 1.

DP1 (Area of improvement):
• property verification (pv)
• failure prevention or reaction (fp)
• testing or debugging (td)
• information collection (ic)

DP2 (Proposed objective):
• scalability (sc)
• accessibility (acc)
• reactivity (r)
• overhead efficiency and performance (oe)
• correctness and accuracy (cs)

DP3 (Specification language/ formalism):
• <custom input>

DP4 Output:
• a single (sng) + verdict OR witness OR robustness
• a sequence of (seq) + verdict OR witness OR robustness
• graphical (g)

DP5 (Interference):
• invasive
• non-invasive

DP6 (Active Reaction):
• exception (ex)
• recovery (rc)
• rollback (ro)
• enforcement (en)

DP7 (Passive Reaction):
• specification output (so)
• explanation generation (exp)
• statistics (st)

DP8 (Stage):
• online (on)
• offline (off)

DP9 (Synchronisation):
• synchronous (sync)
• asynchronous (async)

General values:
• all values applicable (all)
• no values applicable (none)
• data point is not applicable (na)
• insufficient information (?)
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Tool name DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 Reference
Aerial pv,fp cs MTL, MDL seq(v) non-invasive none so all sync [12, 32]
AllenRV pv,td,ic sc,r LTL seq(v,w) non-invasive none so all sync [83]
Alloy pv,td sc,oe Alloy sng(w) non-invasive none exp off sync [81]
AntidoteRT pv, fp oe AntidoteRT specific seq(v,w,r) invasive rc,en exp all all [80]
ARTiMon pv,fp,td cs,r ARTiMon seq(v) invasive ? so all sync [64, 32]
AspectSol pv,fp r Graph-based sng(v) non-invasive en none on sync [3]
BeepBeep 3 pv,td,ic sc,acc,oe Lola, QEA, LTL-FO+ seq(v) non-invasive none so,st all async [41, 32]
BISM ic oe BISM seq(w) invasive en so,st all async [76]
Contract Larva pv,fp cs DEA sng(v) invasive na na on sync [29, 32]
Coq pv,ic cs MTL seq(w) non-invasive na so,st all async [26, 17]
CPSDebug td acc STL seq(w) invasive na exp off na [10, 32]
DecentMon pv,td,ic acc LTL sng(v) non-invasive na so,st off na [32]
DejaVu pv,td sc QTL seq(v,w) all none so all all [46, 32, 78]
detectEr pv r,cs µHML sng(v) all none so on async [32]
Diamont pv cs,oe Diamont-IR seq(v,r) non-invasive none so off async [34]
DR-BIP pv,ic acc DR-BIP, LTL seq(v,w,r) non-invasive none so,st all sync [28]
E-ACSL pv,fp,td sc,acc E-ACSL sng(v) invasive ex,rc none on sync [55, 32]
FalCAuN pv,td r,oe LTL,STL seq(w) non-invasive none so,exp on sync [74]
FRed, CPAChecker pv,ic sc,oe Automata (CFA) sng(w),g non-invasive none so,st all sync [15, 42]
GIFC pv,fp,td r,cs GIFC specific na invasive ex,en so,exp all all [71]
GREP pv,fp acc Automata sng(v),g invasive en so all async [32]
iCFTL (VyPR) pv,ic acc,cs,oe CFTL sng(v,w,r) non-invasive none so,exp all sync [25, 24]
Into the Unknown fp cs Trained model seq(v,r) invasive ro,en exp on sync [58]
Isabelle/HOL pv,ic cs,oe IMP+pseq seq(w) non-invasive none so off sync [49]
Larva pv,ic cs DATEs sng(v) invasive ex,rc so on sync [2, 32]
LogFire pv,td,ic sc,acc LogFire DSL sng(v,w) invasive none so,exp all all [32]
RDE pv,td,ic acc,oe,cs Lola, RTLola seq(v,w) invasive none so,exp on sync [54]
dLola pv oe dLola, LTL sng(v) non-invasive none so on sync [23]
MarQ pv,td cs QEA sng(v) invasive none so all sync [32]
MESA pv,td,ic sc,oe TraceContract DSL seq(w),g non-invasive none all on sync [73]
METIS pv,fp sc,oe Automata sng(v) non-invasive none so,exp on sync [1]
ModBat td acc,cs Scala assertions sng(v,w),g non-invasive none all on sync [32]
MonAmi pv oe MFOTL seq(v,w) non-invasive none so all sync [45]
MonPoly pv,td,ic acc,oe,cs MFOTL, MTL seq(v,w) non-invasive none so,exp all all [11, 68, 67]
Montre ic cs TRE seq(v,w) non-invasive none so,exp all sync [32]
MoonLight pv,td sc,oe STREL, STL sng(v,w) non-invasive none so off async [8]
nfer pv,td,ic acc Automata seq(v,w) non-invasive none so all async [32, 51]
NuRV pv acc, oe LTL seq(w) non-invasive none so all sync [19]
Orchids pv,fp r Orchids specific sng(v,w) non-invasive ex so all async [32]
Ortac td acc Ocaml seq(v,w) non-invasive none so on sync [35, 36]
OSIP pv sc,oe Classifier (NN) seq(v,w) invasive en,ro none on sync [44]
ParTraP pv,td acc,oe ParTraP specific sng(w) non-invasive none exp,st off na [13, 32]
PatrIoT fp cs,oe QF-MTL na invasive all none on sync [84]
PerceMon pv,td cs SQTL, TQTL seq(w,r),g non-invasive none so,exp on sync [6]
POMC pv oe,cs POTL, MiniProc DSL seq(w),sng(v,r) non-invasive none so,exp off sync [63]
Prevent pv oe,cs DTMC, HMM seq(w) non-invasive none so on sync [4, 5]
PropaFP pv cs SPARK, Ada seq(v,w) non-invasive none so,exp on sync [65]
PyContract pv acc,oe,cs PyContract specific sng(v) non-invasive none so ? sync [22]
Reelay pv,td acc,oe,cs MTL, RegEx seq(v) non-invasive none so on sync [59, 32]
RML pv,td acc RML seq(v) non-invasive none so all all [32]
RSMCheck pv,ic sc,oe CTL seq(v,w) non-invasive none so,exp,st off async [27]
rtamt td,ic sc STL, CARLA seq(r) non-invasive none so,st on all [85]
RVHyper pv sc,acc HyperLTL seq(v,w) all none so off sync [40]
ShapeIt ic acc,cs ShapeIt specific seq(w) non-invasive na na off sync [9]
SharpDetect ic acc Assembly (C#) seq(w) invasive none so off sync [20]
SOLOIST-ZOT pv cs SOLOIST sng(v) non-invasive na so off na [32]
SOTER all acc,r,cs SOTER specific (P) all invasive en so,st on all [75]
S-TaLiRo pv,td acc,cs MTL seq(v,w,r) non-invasive none so,exp,st all sync [30]
STLGym pv cs STL na non-invasive en,rc none on sync [43]
Striver, HStriver pv,td,ic sc,acc,oe Striver seq(v),g non-invasive none so on async [39]
TACoS pv,td acc,oe MTL, ATA seq(v,w),g non-invasive none so,st all sync [48]
TeSSLa pv acc,r TeSSLa specific all all none so,exp,st all async [50]
THEMIS pv,td,ic sc,acc LTL, Automata seq(v) non-invasive ex so,st all all [32]
TiPEX fp cs Automata seq(v) invasive en so on async [33, 32]
TLTk pv,ic acc,oe MTL,STL seq(v,w,r) invasive en so,st on sync [21]
TraceContract all acc,cs TraceContract DSL sng(w) invasive ex,rc all all all [32]
UPPAAL pv,td,ic acc,oe UPPAAL specific all non-invasive none all on sync [57, 60, 53]

VerifAI td,ic acc,cs,oe MTL, Lola, Scenic seq(v,r) non-invasive none all on na [79, 82]
VeriMon pv,td,ic cs MFOTL seq(v,w) non-invasive none so,exp all ? [69]
Viper pv cs Lola, RTLola seq(v,w) non-invasive none so,st on all [37]

Table 1: Classification of regarded RV tools

28

https://bitbucket.org/traytel/aerial/src/master/
https://github.com/NicVolanschi/
https://github.com/cvick32/CounterexampleClassificiation
https://github.com/muhammadusman93/AntidoteRT
https://github.com/runtime-verification/benchmark-challenge-2018/tree/master/Open/ARTiMon
https://github.com/ryanfalzon/aspectSol
https://github.com/liflab/beepbeep-3
https://gitlab.inria.fr/monitoring/bism-experiments
https://github.com/gordonpace/contractLarva
https://coq.inria.fr/
https://gricad-gitlab.univ-grenoble-alpes.fr/falconey/decentmon
https://github.com/havelund/dejavu
https://bitbucket.org/duncanatt/detecter-lite/src/master/
https://thokayem.me/drbip.html
https://frama-c.com/fc-plugins/e-acsl.html
https://github.com/MasWag/FalCAuN/releases/tag/RV2021
https://zenodo.org/record/3953565
https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc
https://github.com/matthieurenard/GREP
https://github.com/SNTSVV/VyPR-iCFTL
https://github.com/VeriXAI/Into-the-Unknown
https://isabelle.in.tum.de/installation.html
https://github.com/aarandag/larva-timedcontracts
https://github.com/havelund/logfire
https://www.powver.org/real-driving-emissions/
https://github.com/imdea-software/dLola
https://github.com/selig/qea
https://gitlab.com/cartho/modbat
https://sourceforge.net/projects/monpoly/
https://github.com/doganulus/montre
https://github.com/MoonLightSuite/MoonLight
https://bitbucket.org/seanmk/nfer/src/master/
http://projects.lsv.ens-cachan.fr/orchidsdoc/
https://github.com/ocaml-gospel/ortac
http://vasco.imag.fr/tools/partrap/
https://github.com/yahyazadeh/patriot
https://github.com/CPS-VIDA/PerceMon
https://github.com/michiari/POMC
https://bitbucket.org/rbabaeecar/prevent/src/master/
https://github.com/rasheedja/PropaFP/tree/SEFM2022
https://github.com/doganulus/reelay
https://github.com/RMLatDIBRIS
https://github.com/PattuX/RSMCheck
https://depend.csd.auth.gr/software/carla
https://zenodo.org/record/5569447
https://gitlab.com/acizmarik/sharpdetect-1.0
https://github.com/fm-polimi/zot
https://github.com/Drona-Org/SOTERonROS
https://sites.google.com/a/asu.edu/s-taliro/s-taliro
https://github.com/nphamilton/stl-gym
https://github.com/imdea-software/striver
https://github.com/morxa/tacos
https://www.tessla.io/download/
https://gitlab.inria.fr/monitoring/themis-artifact-article
http://srinivaspinisetty.github.io/Timed-Enforcement-Tools/
https://bitbucket.org/versyslab/tltk/src/master/
https://github.com/havelund/tracecontract
https://uppaal.org/
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/reactive-systems/Lola2RustArtifact


The possible values for data points DP1, DP4, DP5, DP6, DP7, DP8, and DP9
are inspired by or adopted unchanged from the taxonomy paper of Falcone et al. [32].
DP1, DP3, DP5, DP6, DP7, DP8, and DP9 have been adopted with minor renaming
changes to the abbreviations. For DP4, we have adopted all values and included the
value "graphical". This was necessary to include since the tools we’ve reviewed focused
on visualizing the output data. The other values and data points do not reflect the
option to represent such an entry, and therefore we deemed it necessary to include.
DP2, with its values, was entirely created by us. We saw a clear need for a distinction
between what a tool proposes to do and what research about said tool proposes to
improve within the tool while reviewing each individual tool. The reason for that is
the possibility to analyze research directions for certain tools (e.g. nfer).
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Figure 4: Overview of the quantity of filtered research papers from the conference
proceedings per year of the RV conference (left) and the SEFM conference
(right).

For the classification table, each data point represents a row next to the tool name
and references. The final classification table contains 70 distinct tool entries (see
Table 1). We have excluded repeated tool entries from the table for the sake of
readability (e.g. MonPoly [11, 68, 67]). For all tool entries, we attempted to provide
clickable URLs containing the tool’s official homepage or a code repository containing
the experimentation results from the papers we reviewed. We were unable to find
homepages or git repositories for the following tools: CPSDebug [10, 32], Diamont
[34], MESA [73], METIS [1], MonAmi [45], NuRV [19], OSIP [44], PyContract [22],
RVHyper [40] and VeriMon [69]. For this reason, these tools do not contain a clickable
URL.

The toolbox CADP was extended in order to ease the understanding of counterex-
amples [7]. When a given model representing a specification does not accept a trace, a
counterexample aims to give insight into why the trace did not satisfy the specification.
This functions as an explanation. However, no git repository or website was provided
containing further information about the tool’s functionality [7]. While CADP may fit
the data filtering criteria, we could not find other research papers in the regarded time
frame or the defined search domains utilizing it. Therefore, it was excluded from the
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classification.
The tools FRed [15] and CPAChecker [42] were combined into one entry due to FRed

being classified as an extension of CPAChecker. Both tools share many use cases and
were therefore classified as one entry.

Next, we discuss the threats to validity from our classification results. While we have
already discussed the threats to validity of the mapping study process in Section 3.1.,
there are other points we wish to discuss in regards to our classification results. On one
hand, we were primarily able to extract information about the tools directly from the
research papers. Secondarily, we looked up documentation in available git repositories
or websites for the tools. Unlike the work of Falcone et al. [32], we are unable to
verify the results by conducting a questionnaire. Furthermore, the documentation on
some tools was broad or specifically created to evaluate or demonstrate the research
results. One such example was the tool GRACE, which we decided to exclude from the
classification due to being in an experimental stage [18]. The decision procedure for
determining whether a tool would be applicable to use cases outside of experimentation
is purely qualitative and may be biased.

4.2 Evaluation
In the following section, we discuss how the classification results correlate to and
answer the research questions. We created the data points in correlation with the
research questions. We explicitly talk about and discuss the classified tools instead of
the research papers behind them. To review the references for each tool, we refer to
Table 1. DP1 and DP2 answer RQ1. DP3 answers RQ2. DP4 yields answers to RQ5.
DP6 and DP7 answer RQ3, and lastly, DP5, DP8, and DP9 answer RQ4 (see Table 2).

Data point Research question
DP1 RQ1
DP2 RQ1
DP3 RQ2
DP4 RQ5
DP5 RQ4
DP6 RQ3
DP7 RQ3
DP8 RQ4
DP9 RQ4

Table 2: Our data points in relation to our research questions.

In Figure 5, we visualize the quantities of area of improvement (DP1) and proposed
research objective (DP2). Entries in the area of improvement and the proposed objective
are, of course, not mutually exclusive. This means that any tool may have multiple
classified areas of improvement or research objectives.

30



15

31

9

30

33

58

15

33

28

0 10 20 30 40 50 60 70

scalability

accessibility

reactivity

overhead efficiency & performance

correctness

property verification

failure prevention& reaction

testing and debugging

information collection

D
P

2
D

P
1

Figure 5: Overview of different areas of improvement (top) of the tools (DP1) and
different proposed objectives (bottom) within the papers (DP2).

For DP1, the most used area of improvement is property verification, with 58 out of
70 tools being classified as such. Examples of primarily property-verifying tools include
Diamont [34], dLola [23], NuRV [19] and RVHyper [40]. For testing and debugging,
we have classified 33 out of 70 tools. Filliâtre et al. presented the tool Ortac to
implement runtime assertion checking with a testing focus [35]. In our classification,
28 out of 70 tools were deemed to focus on information collection within the system
they’re monitoring. The tools BISM [76], SharpDetect [20] and ShapeIt [9] are strictly
improving the information collection aspect. With failure prevention and reaction, we
have classified the least amount of tools at 15 out of 70. One such tool is PatrIoT [84],
which is able to detect policy violations and effectively enforce control actions in order
to combat them.

With DP2, we analyzed the references behind the classified tools for proposed research
questions and goals. Based on our analysis, we then created the values for DP2. This
was done for cases where RV tools have already been developed and used, but research
is heading in a certain direction with the goal of extending to another area for the
application of the tool. A total of 33 out of 70 tools were classified as correctness (and
accuracy). Tools such as STLGym [43] , Viper [37], and Into the Unknown [58] focus
entirely on delivering accurate results in discovering faulty traces. With accessibility,
we counted the research focus of making the tool usable and deployable by non-experts
in the field of RV. We counted 31 out of 70 tools. A fitting example is Ortac, yet again
[35]. The tool contains a manageable complexity of deployment steps and usage in the
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well-documented ocaml-gospel specification language. 30 out of 70 tools were classified
as having the research goal of improving overhead efficiency and performance. The tool
RSMCheck by Dubslaff et al. promises a faster data-flow analysis approach compared
to state-of-the-art model-checking tools [27]. Regarding scalability over growing system
architectures, 15 out of 70 were classified as such. The tools DejaVu [46, 32, 78] and
rtamt [85] were solely classified as being aimed towards a growing scale. Lastly, 9 out
of 70 tools were classified as being geared towards the reactivity of errors within the
system. The tool Orchids [32] is aimed at discovering intrusions within logfiles in real
time and reacting to them.

Now we can answer RQ1 (What is the desired and achieved goal of the tools?) with
the information from DP1 and DP2. On one hand, the most prominent goal achieved
by the classified tools is to verify a given property in trace samples. On the other
hand, the most experimented-on goal is to improve or prove the correctness of the RV
monitor within the tool.

With DP3, we looked at the formal language that was used in order to input
specifications. We classified 32 out of 70 tools as grammar rewrite-based with LTL or
a derivative language of LTL (e.g. STL, MTL, etc.). AllenRV uses LTL with metric
extensions to model past and future properties [83]. The second group of formalisms
was categorized as "specific" to the tool and not directly applicable to other tools. We
classified 26 tools out of 70 as tool-specific. It’s important to note that tool-specific
formalisms can also be based on LTL or automata. One such example is the tool
ShapeIt [9]. ShapeIt is able to mine specifications from the target domain (CPS) in a
five-step process, generating logic formula fragments and utilizing automata-learning
to output regular expressions. Lastly, 12 out of 70 tools were primarily based on
model-checking approaches using automata. The tool METIS is primarily utilizing
automata to model properties with the goal of reducing redundancies in the monitor
[1].

Regarding RQ2 (Which specification formalism is most commonly used in RV tools?)
we come to the conclusion that grammar-based approaches with LTL are the most
commonly used specification formalisms to model specifications.

With DP6 and DP7, we reviewed the way the tools react to discovered undesired
behavior within the system. In Figure 6, we visualize our results of each value’s count.
In regards to active reactions, we classified 12 out of 70 tools as containing runtime
enforcement features. The tools AntidoteRT [80], Into the Unknown [58] and OSIP [44]
serve as examples of tools containing enforcement reactions. An interesting observation
is that all three listed tools are designed for adaptive systems, using enforcement to
influence processing steps within the neural network. 7 out of 70 tools were classified as
containing exception steps. The tool Orchids contains steps for exception handling in
the implementation [32]. We classified 6 out of 70 tools as having recovery mechanisms.
And lastly, 3 out of 70 tools contained rollback features to revert the system to a state
before the error occurred. OSIP [44] and Into the Unknown [58] are examples for tools
containing this feature. The most prevalent value for active reaction however, was
"none" with 46 out of 70 tools. One example of a tool without an active reaction is
Ortac [35]. Lastly, 6 tools had a very specific architecture and contained countless
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parts, which we classified as "not applicable". One such tool is Coq [26, 17]. Coq is
a proof assistant that, as a base tool, is not required to be applied to a system and
therefore can’t react actively. With the tool ARTiMon [55, 32], we were unable to find
enough information to classify the active reaction aspect.
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Figure 6: Overview of the tools’ reaction. Please note that a tool may have an active
reaction and a passive reaction approach (DP6, DP7).

In DP7, we reviewed the passive reaction aspect of the tools. The most prevalent
value was "specification output", meaning most tools output their findings of the trace
sample after processing. The tools RVHyper [40], RSMCheck [27] and MoonLight [8]
are a few examples of having a specification output. 25 out of 70 tools react passively
by outputting an explanation for why certain verdicts were reached with regards to
the specification analysis. The tools Alloy [81] and CPSDebug [10] primarily focus on
outputting an explanation. 9 out of 70 tools offer additional information in the form of
statistics about the quantity of violated or satisfied specifications [32]. The framework
TeSSLa [50] and the tool S-TALIRO [30] were classified as containing statistics among
their features. Lastly, 5 out of 70 tools did not contain a passive reaction, and 2 tools
were not applicable for the same reasons as with the active reaction. No tools contained
insufficient information in regards to a passive reaction.

Now we can answer RQ3 (How do the tools handle discovered errors?). We can
answer this question twofold. First, in regards to a passive reaction, the majority of
tools output the results of the specification analysis. Second, in regards to an active
reaction, the majority of tools do not contain features that can be classified as active
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reactions.
In DP5, we reviewed the qualitative measure of invasiveness of the tools (see Figure

7. On one hand, we classified 50 tools as primarily non-invasive, meaning they do
not share memory space or measure components within the system that the system
accesses as well. On the other hand, 24 out of 70 tools were deemed primarily invasive.
The tools DejaVu [46, 32, 78], detectEr [32], RVHyper [40] and TeSSLa [50] had a more
complex architecture with both invasive and non-invasive features.
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Figure 7: Overview of the amount of tools classified as invasive against non-invasive
(DP5). Tools can be classified as both values if they contain architectures
with invasive and non-invasive parts.

For DP8 and DP9, we looked at when the monitor operates in regards to the
system and how it is synchronized time-wise. In Figure 8, we visualize the counting
of tools in regards to DP8. We classified 56 tools as having an online monitoring
component, meaning the monitor continuously runs during the system’s runtime. The
tool PATRIOT [84] contains an exclusively online monitoring component to actively
enforce policy violations in IoT systems. Furthermore, we classified 41 out of 70 tools as
having an offline monitoring component. This means that the monitor runs outside of
the system’s runtime. The proof assistant Isabelle [49] and the tool MoonLight [8] both
exclusively execute offline. A total of 28 out of 70 tools contained either a monitor that
can run both in offline and online mode or multiple monitors with a task separation
covering online and offline. The tool PyContract had insufficient information to fulfill
this data point [22].

Regarding the synchronization of the tool’s runtime, we classified 51 out of 70 tools
as running at least partly in synchronization with the system (see Figure 9). Examples
for synchronous runtime include the tools SharpDetect [20], TLTk [21] and UPPAAL
[57, 60, 53]. Furthermore, 24 out of 70 tools were classified as running asynchronously
to the system (e.g. nfer [32, 51], Striver [39], TiPEX [33, 32]). 11 out of 70 tools were
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Figure 8: Overview of the deployment of RV monitors within the classified tools (DP8).

classified as containing both synchronous and asynchronous parts in their architecture.
With even more complex architectures, we deemed the tools as not applicable in regards
to synchronization. Examples include the tools VerifAI [79, 82] and ParTraP [13, 32].
We were unable to find enough information to classify the tool VeriMon [69] in regards
to synchronization and therefore classified it as "insufficient information".

With the information from DP5, DP8 and DP9 in mind, we can answer RQ4 (How
are the tools deployed?). First, we have seen the majority of tools use non-invasive
approaches in regards to interference with the regarded system. Second, the majority
of RV monitors are operating online during the runtime of the regarded system.
However, offline monitors are also frequently used. Third, the majority of tools operate
synchronously without requiring a system halt.

Regarding the final data point DP4, we looked at the way the tools output their
findings. In Figure 10, we visualize the counting of the individual possible values. On
one hand, 47 out of 70 tools use either a sequence of verdicts, witnesses, or robustnesses.
On the other hand, 22 out of 70 tools use a single output value of either a verdict, a
witness or a robustness. 7 out of 70 tools use visualization features to generate graphical
output. Examples include the tools PerceMon [6] or TACoS [48]. We classified 3 tools
as not being applicable for the output classification in the case of the tool’s functionality
being too specific to the applied system (e.g. GIFC [71]).
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Out of 22 tools using a single output structure for the output, 21 output a single
verdict. Examples include E-ACSL [55, 32], Larva [29, 32] and MoonLight [8]. Fur-
thermore 12 out of 22 tools output a single witness (e.g. MoonLight). Finally, 5 out
of 22 tools output a single robustness value, like the tool iCFTL built on the VyPR
framework [25, 24]. These values are not mutually exclusive. This means that, for
example, MoonLight can output both a single verdict and a single witness.

Out of 47 tools, using a sequence of output values, 33 tools output a sequence of
verdicts. Examples include Viper [37], Reelay [59, 32] and PropaFP [65]. Furthermore,
31 tools in this set output a sequence of witnesses, like DR-BIP [28] or MonPoly
[11, 68, 67]. Finally, 13 out of 47 tools that output a sequence of values used robustness
values as output. Tools like Diamont [34], AntidoteRT [80] and VerifAI [79, 82] attempt
to measure the degree of violation that occurred on given specifications. These values
are also not mutually exclusive. A tool may have a sequence of verdicts and witnesses,
in addition to a single robustness output, bundled with a graphical visualization.

With this information in mind, we can answer the final research question RQ5 (How
are the tools evaluating the trace?). We conclude that the majority of tools output
sequences of values. In most cases, these sequences contain only verdicts. However,
witnesses are also often used for a sequence of output values.
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5 Conclusion
In this work, we have conducted a systematic mapping study on RV tools for the time
span of 2016-2022. We adopted parts of the taxonomy introduced by Falcone et al. [32]
and applied data filtering criteria to their set of classified tools. In total, we adopted
23 classified tool entries from their work. Their tool entries covered the time span from
2016 to 2018. Then we added 47 RV tool entries to the set and classified them. The
entries were extracted from the time span of 2018 to 2022 from the SEFM and RV
conferences.

We have shown the primary design choices for the applicability of recently developed
or extended RV tools. Research in the form of surveys on tools is rare in the field of RV.
This leads to frequent research gaps in the contextualization of developments. With
this work, we contribute a tabular collection of 70 RV tools and their classification.

For future work, we consider adding a quality assessment to our classification table
by reaching out to the tool’s authors to verify our results. Furthermore, we believe
it is important to test the tools on a domain that has been specifically set up for
demonstration runs. This, however, is a time-consuming research direction, as many
of our mentioned tools have specific input or deployment requirements. We also
recommend adding other research platforms to the search domains to look for further
RV tool research.

38



References
[1] G. Allabadi, A. Dhar, A. Bashir, and R. Purandare. METIS: Resource and

context-aware monitoring of finite state properties. In C. Colombo and M. Leucker,
editors, Runtime Verification, pages 167–186, Cham, 2018. Springer International
Publishing.

[2] A. Aranda García, M.-E. Cambronero, C. Colombo, L. Llana, and G. J. Pace.
Runtime verification of contracts with Themulus. In F. de Boer and A. Cerone,
editors, Software Engineering and Formal Methods, pages 231–246, Cham, 2020.
Springer International Publishing.

[3] S. Azzopardi, J. Ellul, R. Falzon, and G. J. Pace. AspectSol: A solidity aspect-
oriented programming tool with applications in runtime verification. In T. Dang
and V. Stolz, editors, Runtime Verification, pages 243–252, Cham, 2022. Springer
International Publishing.

[4] R. Babaee, A. Gurfinkel, and S. Fischmeister. Predictive run-time verification of
discrete-time reachability properties in black-box systems using trace-level abstrac-
tion and statistical learning. In C. Colombo and M. Leucker, editors, Runtime
Verification, pages 187–204, Cham, 2018. Springer International Publishing.

[5] R. Babaee, A. Gurfinkel, and S. Fischmeister. Prevent: A predictive run-time
verification framework using statistical learning. In E. B. Johnsen and I. Schaefer,
editors, Software Engineering and Formal Methods, pages 205–220, Cham, 2018.
Springer International Publishing.

[6] A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, and G. Fainekos. Perce-
Mon: Online monitoring for perception systems. In L. Feng and D. Fisman,
editors, Runtime Verification, pages 297–308, Cham, 2021. Springer International
Publishing.

[7] G. Barbon, V. Leroy, and G. Salaün. Counterexample simplification for liveness
property violation. In E. B. Johnsen and I. Schaefer, editors, Software Engi-
neering and Formal Methods, pages 173–188, Cham, 2018. Springer International
Publishing.

[8] E. Bartocci, L. Bortolussi, M. Loreti, L. Nenzi, and S. Silvetti. Moonlight: A
lightweight tool for monitoring spatio-temporal properties. In Runtime Verification,
pages 417–428. Springer International Publishing, Oct. 2020.

[9] E. Bartocci, J. Deshmukh, C. Mateis, E. Nesterini, D. Ničković, and X. Qin.
Mining shape expressions with ShapeIt. In R. Calinescu and C. S. Păsăreanu,
editors, Software Engineering and Formal Methods, pages 110–117, Cham, 2021.
Springer International Publishing.

39



[10] E. Bartocci, N. Manjunath, L. Mariani, C. Mateis, and D. Ničković. Automatic
failure explanation in CPS Models. In P. C. Ölveczky and G. Salaün, editors,
Software Engineering and Formal Methods, pages 69–86, Cham, 2019. Springer
International Publishing.

[11] D. Basin, M. Gras, S. Krstić, and J. Schneider. Scalable online monitoring
of distributed systems. In J. Deshmukh and D. Ničković, editors, Runtime
Verification, pages 197–220, Cham, 2020. Springer International Publishing.

[12] D. Basin, S. Krstić, and D. Traytel. Almost event-rate independent monitoring of
metric dynamic logic. In S. Lahiri and G. Reger, editors, Runtime Verification,
pages 85–102, Cham, 2017. Springer International Publishing.

[13] A. Ben Cheikh, Y. Blein, S. Chehida, G. Vega, Y. Ledru, and L. du Bousquet. An
environment for the ParTraP trace property language (tool demonstration). In
C. Colombo and M. Leucker, editors, Runtime Verification, pages 437–446, Cham,
2018. Springer International Publishing.

[14] S. Berkovich, B. Bonakdarpour, and S. Fischmeister. GPU-based runtime verifi-
cation. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, pages 1025–1036, 2013.

[15] D. Beyer and M.-C. Jakobs. FRed: Conditional model checking via reducers and
folders. In F. de Boer and A. Cerone, editors, Software Engineering and Formal
Methods, pages 113–132, Cham, 2020. Springer International Publishing.

[16] M. Bures, M. Klima, V. Rechtberger, X. Bellekens, C. Tachtatzis, R. Atkinson,
and B. S. Ahmed. Interoperability and integration testing methods for iot
systems: A systematic mapping study. In F. de Boer and A. Cerone, editors,
Software Engineering and Formal Methods, pages 93–112, Cham, 2020. Springer
International Publishing.

[17] A. Chattopadhyay and K. Mamouras. A verified online monitor for metric
temporal logic with quantitative semantics. In J. Deshmukh and D. Ničković,
editors, Runtime Verification, pages 383–403, Cham, 2020. Springer International
Publishing.

[18] A. Cimatti, C. Tian, and S. Tonetta. Assumption-based runtime verification with
partial observability and resets. In B. Finkbeiner and L. Mariani, editors, Runtime
Verification, pages 165–184, Cham, 2019. Springer International Publishing.

[19] A. Cimatti, C. Tian, and S. Tonetta. NuRV: A nuXmv extension for runtime
verification. In B. Finkbeiner and L. Mariani, editors, Runtime Verification, pages
382–392, Cham, 2019. Springer International Publishing.

[20] A. Čižmárik and P. Parízek. SharpDetect: Dynamic analysis framework for
C#/.NET programs. In J. Deshmukh and D. Ničković, editors, Runtime Verifica-
tion, pages 298–309, Cham, 2020. Springer International Publishing.

40



[21] J. Cralley, O. Spantidi, B. Hoxha, and G. Fainekos. TLTk: A toolbox for parallel
robustness computation of temporal logic specifications. In J. Deshmukh and
D. Ničković, editors, Runtime Verification, pages 404–416, Cham, 2020. Springer
International Publishing.

[22] D. Dams, K. Havelund, and S. Kauffman. A python library for trace analysis. In
T. Dang and V. Stolz, editors, Runtime Verification, pages 264–273, Cham, 2022.
Springer International Publishing.

[23] L. M. Danielsson and C. Sánchez. Decentralized stream runtime verification.
In B. Finkbeiner and L. Mariani, editors, Runtime Verification, pages 185–201,
Cham, 2019. Springer International Publishing.

[24] J. H. Dawes and D. Bianculli. Specifying properties over inter-procedural, source
code level behaviour of programs. In L. Feng and D. Fisman, editors, Runtime
Verification, pages 23–41, Cham, 2021. Springer International Publishing.

[25] J. H. Dawes and G. Reger. Explaining violations of properties in control-flow
temporal logic. In B. Finkbeiner and L. Mariani, editors, Runtime Verification,
pages 202–220, Cham, 2019. Springer International Publishing.

[26] C. Dubois, O. Grinchtein, J. Pearson, and M. Carlsson. Exploring properties
of a telecommunication protocol with message delay using interactive theorem
prover. In E. B. Johnsen and I. Schaefer, editors, Software Engineering and
Formal Methods, pages 239–253, Cham, 2018. Springer International Publishing.

[27] C. Dubslaff, P. Wienhöft, and A. Fehnker. Be lazy and don’t care: Faster CTL
model checking for recursive state machines. In R. Calinescu and C. S. Păsăreanu,
editors, Software Engineering and Formal Methods, pages 332–350, Cham, 2021.
Springer International Publishing.

[28] A. El-Hokayem, S. Bensalem, M. Bozga, and J. Sifakis. A layered implementation
of DR-BIP supporting run-time monitoring and analysis. In F. de Boer and
A. Cerone, editors, Software Engineering and Formal Methods, pages 284–302,
Cham, 2020. Springer International Publishing.

[29] J. Ellul and G. J. Pace. Runtime verification of ethereum smart contracts. In
2018 14th European Dependable Computing Conference (EDCC), pages 158–163,
2018.

[30] G. Fainekos, B. Hoxha, and S. Sankaranarayanan. Robustness of specifications
and its applications to falsification, parameter mining, and runtime monitoring
with S-TaLiRo. In B. Finkbeiner and L. Mariani, editors, Runtime Verification,
pages 27–47, Cham, 2019. Springer International Publishing.

[31] Y. Falcone, S. Krstić, G. Reger, and D. Traytel. A taxonomy for classifying
runtime verification tools. In C. Colombo and M. Leucker, editors, Runtime
Verification, pages 241–262, Cham, 2018. Springer International Publishing.

41



[32] Y. Falcone, S. Krstić, G. Reger, et al. A taxonomy for classifying runtime
verification tools. International Journal on Software Tools for Technology Transfer,
23:255–284, May 2021.

[33] Y. Falcone and S. Pinisetty. On the runtime enforcement of timed properties. In
B. Finkbeiner and L. Mariani, editors, Runtime Verification, pages 48–69, Cham,
2019. Springer International Publishing.

[34] V. Fernando, K. Joshi, J. Laurel, and S. Misailovic. Diamont: Dynamic monitoring
of uncertainty for distributed asynchronous programs. In L. Feng and D. Fisman,
editors, Runtime Verification, pages 184–206, Cham, 2021. Springer International
Publishing.

[35] J.-C. Filliâtre and C. Pascutto. Ortac: Runtime assertion checking for OCaml
(tool paper). In L. Feng and D. Fisman, editors, Runtime Verification, pages
244–253, Cham, 2021. Springer International Publishing.

[36] J.-C. Filliâtre and C. Pascutto. Optimizing prestate copies in runtime verification
of function postconditions. In T. Dang and V. Stolz, editors, Runtime Verification,
pages 85–104, Cham, 2022. Springer International Publishing.

[37] B. Finkbeiner, S. Oswald, N. Passing, and M. Schwenger. Verified rust monitors for
Lola specifications. In J. Deshmukh and D. Ničković, editors, Runtime Verification,
pages 431–450, Cham, 2020. Springer International Publishing.

[38] H. J. Goldsby, B. H. C. Cheng, and J. Zhang. Amoeba-rt: Run-time verification
of adaptive software. In H. Giese, editor, Models in Software Engineering, pages
212–224, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[39] F. Gorostiaga and C. Sánchez. Striver: Stream runtime verification for real-time
event-streams. In C. Colombo and M. Leucker, editors, Runtime Verification,
pages 282–298, Cham, 2018. Springer International Publishing.

[40] C. Hahn. Algorithms for monitoring hyperproperties. In B. Finkbeiner and
L. Mariani, editors, Runtime Verification, pages 70–90, Cham, 2019. Springer
International Publishing.

[41] S. Hallé and R. Khoury. Writing domain-specific languages for BeepBeep. In
C. Colombo and M. Leucker, editors, Runtime Verification, pages 447–457, Cham,
2018. Springer International Publishing.

[42] J. Haltermann and H. Wehrheim. Information exchange between over- and
underapproximating software analyses. In B.-H. Schlingloff and M. Chai, editors,
Software Engineering and Formal Methods, pages 37–54, Cham, 2022. Springer
International Publishing.

42



[43] N. Hamilton, P. K. Robinette, and T. T. Johnson. Training agents to satisfy
timed and untimed signal temporal logic specifications with reinforcement learning.
In B.-H. Schlingloff and M. Chai, editors, Software Engineering and Formal
Methods, pages 190–206, Cham, 2022. Springer International Publishing.

[44] V. Hashemi, P. Kouvaros, and A. Lomuscio. OSIP: Tightened bound propagation
for the verification of ReLU neural networks. In R. Calinescu and C. S. Păsăreanu,
editors, Software Engineering and Formal Methods, pages 463–480, Cham, 2021.
Springer International Publishing.

[45] K. Havelund, M. Omer, and D. Peled. Monitoring first-order interval logic. In
R. Calinescu and C. S. Păsăreanu, editors, Software Engineering and Formal
Methods, pages 66–83, Cham, 2021. Springer International Publishing.

[46] K. Havelund and D. Peled. An extension of LTL with rules and its application
to runtime verification. In B. Finkbeiner and L. Mariani, editors, Runtime
Verification, pages 239–255, Cham, 2019. Springer International Publishing.

[47] K. Havelund and G. Roşu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24:189–215, 2004.

[48] T. Hofmann and S. Schupp. TACoS: A tool for mtl controller synthesis. In
R. Calinescu and C. S. Păsăreanu, editors, Software Engineering and Formal
Methods, pages 372–379, Cham, 2021. Springer International Publishing.

[49] J. J. Huerta y Munive. Affine systems of ODEs in Isabelle/HOL for hybrid-
program verification. In F. de Boer and A. Cerone, editors, Software Engineering
and Formal Methods, pages 77–92, Cham, 2020. Springer International Publishing.

[50] H. Kallwies, M. Leucker, M. Schmitz, A. Schulz, D. Thoma, and A. Weiss. TeSSLa
– an ecosystem for runtime verification. In T. Dang and V. Stolz, editors, Runtime
Verification, pages 314–324, Cham, 2022. Springer International Publishing.

[51] S. Kauffman. nfer – a tool for event stream abstraction. In R. Calinescu and C. S.
Păsăreanu, editors, Software Engineering and Formal Methods, pages 103–109,
Cham, 2021. Springer International Publishing.

[52] B. Kitchenham, O. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman.
Systematic literature reviews in software engineering – a systematic literature
review. Information and Software Technology, 51:7–15, Jan. 2009.

[53] P. Kobialka, S. L. Tapia Tarifa, G. R. Bergersen, and E. B. Johnsen. Weighted
games for user journeys. In B.-H. Schlingloff and M. Chai, editors, Software Engi-
neering and Formal Methods, pages 253–270, Cham, 2022. Springer International
Publishing.

43



[54] M. A. Köhl, H. Hermanns, and S. Biewer. Efficient monitoring of real driving
emissions. In C. Colombo and M. Leucker, editors, Runtime Verification, pages
299–315, Cham, 2018. Springer International Publishing.

[55] N. Kosmatov, F. Maurica, and J. Signoles. Efficient runtime assertion checking
for properties over mathematical numbers. In J. Deshmukh and D. Ničković,
editors, Runtime Verification, pages 310–322, Cham, 2020. Springer International
Publishing.

[56] P. Kushwaha, R. Purandare, and M. B. Dwyer. Optimal finite-state monitoring
of partial traces. In Runtime Verification, pages 124–142. Springer International
Publishing, Sept. 2022.

[57] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi. Formal verification of
human-robot interaction in healthcare scenarios. In F. de Boer and A. Cerone,
editors, Software Engineering and Formal Methods, pages 303–324, Cham, 2020.
Springer International Publishing.

[58] A. Lukina, C. Schilling, and T. A. Henzinger. Into the Unknown: Active
monitoring of neural networks. In L. Feng and D. Fisman, editors, Runtime
Verification, pages 42–61, Cham, 2021. Springer International Publishing.

[59] K. Mamouras, A. Chattopadhyay, and Z. Wang. A compositional framework
for quantitative online monitoring over continuous-time signals. In L. Feng and
D. Fisman, editors, Runtime Verification, pages 142–163, Cham, 2021. Springer
International Publishing.

[60] L. Miedema and C. Grelck. Strategy switching: Smart fault-tolerance for weakly-
hard resource-constrained real-time applications. In B.-H. Schlingloff and M. Chai,
editors, Software Engineering and Formal Methods, pages 129–145, Cham, 2022.
Springer International Publishing.

[61] A. Momtaz, N. Basnet, H. Abbas, and B. Bonakdarpour. Predicate monitoring in
distributed cyber-physical systems. In L. Feng and D. Fisman, editors, Runtime
Verification, pages 3–22, Cham, 2021. Springer International Publishing.

[62] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology, 64:1–18, 2015.

[63] F. Pontiggia, M. Chiari, and M. Pradella. Verification of programs with exceptions
through operator precedence automata. In R. Calinescu and C. S. Păsăreanu,
editors, Software Engineering and Formal Methods, pages 293–311, Cham, 2021.
Springer International Publishing.

[64] N. Rapin. Reactive property monitoring of hybrid systems with aggregation. In
Y. Falcone and C. Sánchez, editors, Runtime Verification, pages 447–453, Cham,
2016. Springer International Publishing.

44



[65] J. Rasheed and M. Konečný. Auto-active verification of floating-point programs
via nonlinear real provers. In B.-H. Schlingloff and M. Chai, editors, Software
Engineering and Formal Methods, pages 20–36, Cham, 2022. Springer International
Publishing.

[66] G. Reger and K. Havelund. What is a trace? a runtime verification perspective.
In T. Margaria and B. Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications, pages 339–
355, Cham, 2016. Springer International Publishing.

[67] J. Schneider. Randomized first-order monitoring with hashing. In T. Dang
and V. Stolz, editors, Runtime Verification, pages 3–24, Cham, 2022. Springer
International Publishing.

[68] J. Schneider, D. Basin, F. Brix, S. Krstić, and D. Traytel. Scalable online first-
order monitoring. In C. Colombo and M. Leucker, editors, Runtime Verification,
pages 353–371, Cham, 2018. Springer International Publishing.

[69] J. Schneider, D. Basin, S. Krstić, and D. Traytel. A formally verified monitor for
metric first-order temporal logic. In B. Finkbeiner and L. Mariani, editors, Runtime
Verification, pages 310–328, Cham, 2019. Springer International Publishing.

[70] M. Schwenger. Monitoring cyber-physical systems: From design to integration.
In J. Deshmukh and D. Ničković, editors, Runtime Verification, pages 87–106,
Cham, 2020. Springer International Publishing.

[71] A. L. Scull Pupo, L. Christophe, J. Nicolay, C. de Roover, and E. Gonzalez Boix.
Practical information flow control for web applications. In C. Colombo and
M. Leucker, editors, Runtime Verification, pages 372–388, Cham, 2018. Springer
International Publishing.

[72] J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. Smolka, S. Stoller, and
E. Zadok. Interaspect: aspect-oriented instrumentation with GCC. In Formal
Methods in System Design, volume 41, page 295–320, 2012.

[73] N. Shafiei, K. Havelund, and P. Mehlitz. Actor-based runtime verification with
MESA. In J. Deshmukh and D. Ničković, editors, Runtime Verification, pages
221–240, Cham, 2020. Springer International Publishing.

[74] J. Shijubo, M. Waga, and K. Suenaga. Efficient black-box checking via model
checking with strengthened specifications. In L. Feng and D. Fisman, editors,
Runtime Verification, pages 100–120, Cham, 2021. Springer International Publish-
ing.

[75] S. Shivakumar, H. Torfah, A. Desai, and S. A. Seshia. SOTER on ROS: A
run-time assurance framework on the robot operating system. In J. Deshmukh and
D. Ničković, editors, Runtime Verification, pages 184–194, Cham, 2020. Springer
International Publishing.

45



[76] C. Soueidi, A. Kassem, and Y. Falcone. BISM: Bytecode-level instrumentation
for software monitoring. In J. Deshmukh and D. Ničković, editors, Runtime
Verification, pages 323–335, Cham, 2020. Springer International Publishing.

[77] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli, C. Colombo,
Y. Falcone, A. Francalanza, S. Krstić, J. M. Lourenço, D. Nickovic, G. J. Pace,
J. Rufino, J. Signoles, D. Traytel, and A. Weiss. A survey of challenges for runtime
verification from advanced application domains (beyond software). In Formal
Methods in System Design, volume 54, pages 279–335, 2019.

[78] A. Temperekidis, N. Kekatos, and P. Katsaros. Runtime verification for FMI-based
co-simulation. In T. Dang and V. Stolz, editors, Runtime Verification, pages
304–313, Cham, 2022. Springer International Publishing.

[79] H. Torfah, S. Junges, D. J. Fremont, and S. A. Seshia. Formal analysis of AI-based
autonomy: From modeling to runtime assurance. In L. Feng and D. Fisman,
editors, Runtime Verification, pages 311–330, Cham, 2021. Springer International
Publishing.

[80] M. Usman, D. Gopinath, Y. Sun, and C. S. Păsăreanu. Rule-based runtime
mitigation against poison attacks on neural networks. In T. Dang and V. Stolz,
editors, Runtime Verification, pages 67–84, Cham, 2022. Springer International
Publishing.

[81] C. Vick, E. Kang, and S. Tripakis. Counterexample classification. In R. Calinescu
and C. S. Păsăreanu, editors, Software Engineering and Formal Methods, pages
312–331, Cham, 2021. Springer International Publishing.

[82] K. Viswanadha, E. Kim, F. Indaheng, D. J. Fremont, and S. A. Seshia. Parallel
and multi-objective falsification with Scenic and VerifAI. In L. Feng and D. Fisman,
editors, Runtime Verification, pages 265–276, Cham, 2021. Springer International
Publishing.

[83] N. Volanschi and B. Serpette. Allenrv: An extensible monitor for multiple
complex specifications with high reactivity. In B. Finkbeiner and L. Mariani,
editors, Runtime Verification, pages 393–401, Cham, 2019. Springer International
Publishing.

[84] M. Yahyazadeh, S. R. Hussain, E. Hoque, and O. Chowdhury. PatrIoT: Policy
assisted resilient programmable IoT system. In J. Deshmukh and D. Ničković,
editors, Runtime Verification, pages 151–171, Cham, 2020. Springer International
Publishing.

[85] E. Zapridou, E. Bartocci, and P. Katsaros. Runtime verification of autonomous
driving systems in CARLA. In J. Deshmukh and D. Ničković, editors, Runtime
Verification, pages 172–183, Cham, 2020. Springer International Publishing.

46



Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den 8. Mai 2023

47


	Motivation
	Cyber-Physical Systems as a Domain
	Adaptive Systems as a domain
	State of the Art
	Goal of this work
	Research questions
	Work Structure

	Background and Definitions
	Definitions
	Taxonomy of Runtime Verification
	Specification
	Trace
	Interference
	Reaction
	Application
	Monitor
	Deployment
	Related work

	Mapping Study
	Threats to Validity
	Searching Process
	Keyword Identification
	Study Selection
	Data Extraction
	Analysis and Classification

	Classification of tools
	Mapping study process
	Evaluation

	Conclusion

