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Abstract

Explainable machine learning is important to provide us humans with the means
to understand the decisions of an otherwise black box like machine learning model.
One way to obtain insight into the model is trying to construct a rule set which
describes under which conditions a given machine learning model’s prediction
is most likely not reliable. Machine Learning Model Diagnosis (MMD) [Cit+21]
proposed by Cito et al. is an approach to generate such a rule set by linking input
feature values to model mispredictions. The rule set is built iteratively by utilizing
rule induction to find the best performing combination of atomic predicates. Atomic
predicates are derived from the input data set and are a combination of an input
feature, a value and a comparison operator. In this thesis, we build on the work
of Cito et al., to improve rule set performance by replacing the rule generation
algorithm based on rule induction with three different approaches: ISLearn, decision
trees and Bayesian optimization. We also tackle the problem of high computational
demand with growing input data sets, by proposing and evaluating the idea to first
identifying the features most influential in causing a misprediction of the model.
Then we utilize only these most influential features to generate the misprediction
rule sets. We implement our approaches to generate misprediction explanations
and evaluate their effectiveness on machine learning models trained on a set of 11
different real-world data sets. Our evaluation shows that our decision tree approach,
in comparison to the baseline, was able to improve performance slightly, while
reducing computational demand considerably in almost all cases. Utilizing only
the most influential input features in rule construction reduced execution time
significantly (for approaches with scalability problems), with only a small decrease
in performance.
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1 Introduction

In today’s world machine learning is a promising approach to tackle a great variety
of problems. As the complexity of the machine learning systems grows it becomes
more and more complicated, if not impossible, for a human to comprehend, how the
employed machine learning model arrived at a specific conclusion. When machine
learning is utilized in safety-critical systems or systems that might severely alter a
person’s life, for example in traffic control [Lee+20], in medical diagnosis [CG19],
and self-driving vehicles [Ni+20], it is essential to resort to every possible option
to understand risk factors. Explainable machine learning is a research field that
attempts to extract some information explaining the reasons of decisions made
by a machine learning model, thus helping to shed some light into the otherwise
magical black box. It is done by utilizing varying methods to produce a human
interpretable output, including assignment of importance values to input features
[LL17] and constructing more interpretable surrogate models imitating the be-
havior of the black box. This enables the possibility to debug the system when
an error occurred, to actually grasp what caused faulty decisions and hopefully
understand how to reduce them. However, most well-known explainable machine
learning approaches like LIME [RSG16] or partial dependence plots (PDP) [Fri01]
focus on the relationship between input data and output of the trained machine
learning model, never considering the possible ground truth. In Machine Learning
Model Diagnosis (MMD) [Cit+21] Cito et al. proposed an approach to employ
rule induction to construct an easily human interpretable rule set containing the
input feature value mappings, under which a machine learning model’s output
cannot be trusted, because it is likely a misprediction. First an input data set with
a known ground truth is used on a trained model to label the data set on which
data is mispredicted. Then MMD generates a catalogue of atomic predicates from
the input data set, which are a combination of an input feature, a value and a
comparison operator. Finally rule induction is utilized to find the best performing
combination of atomic predicates and iteratively build a rule set.

In this thesis, we build on the research of Cito et al. [Cit+21] improving the
concept in two different ways. On the one hand, we replace rule induction, the
rule set generation algorithm in MMD, with three different approaches, specifically
ISLearn, decision trees and Bayesian optimization, which could improve perfor-
mance metrics of the obtained rule set. However, while performance metrics are
important, rule set length must also be considered, to keep rule set interpretable
for humans and prevent overfitting to the input data set. On the other hand, we
seek to reduce computational demand by selecting input features that have a high
impact on causing a misprediction of the machine learning model. Similar to MMD
the first step of our approach uses a trained machine learning model to label the
mispredictions made for an input data set. In the second step we train a random
forest classifier on the now misprediction labeled data set. Then we utilize random
forest feature importance to extract which input features are the most important
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Figure 1: Part of an output for a run creating a rule set by utilizing Bayesian
optimization for a heart failure machine learning model

ones to predict mispredictions of our original machine learning model. In the next
step we remove uninfluential features from the input data set and then use the
drastically reduced data set to iteratively build a rule set with our approaches:
ISLearn, decision trees and Bayesian optimization. In the final step the output is
formatted to have the same look, no matter which approach was used. In Figure
1 a part of an output example is shown. This output belongs to a run where we
used Bayesian optimization to create the rule set for a machine learning model
trained on a heart failure data set. It describes under which combination of input
feature values the model likely mispredicts. To limit the scope of this thesis we only
allowed one conjunction per rule which impairs performance metrics but increases
interpretability.

With this thesis, we strive to utilize and evaluate a number of different approaches
to generate misprediction explanations, which replace rule induction employed in
MMD. We also tackle the problem of high computational demand when construct-
ing misprediction explanations for machine learning models based on big data
sets with many features, by identifying and using only the most influential input
features for rule set generation. Finally, we consider the length of the rule sets
generated, because shorter misprediction explanations are easier to comprehend for
humans, therefore they are preferable. We implemented our approaches to evaluate
and compare their performance against each other and against MMD. For that
we took advantage of 11 machine learning models trained on a set of 11 different
real-world data sets. The following questions encapsulate the essence of our research:

RQ1 Do our approaches generate misprediction explanations with better perfor-
mance metrics?

RQ2 Do our approaches reduce computational demand?

RQ3 Do our approaches generate short misprediction explanations?
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In summary, this thesis makes the following contributions:

• We propose three new approaches to generate misprediction explanations for
machine learning models to improve performance metrics: ISLearn, decision
trees and Bayesian optimization

• We propose a technique to reduce computational demand creating the rule
sets by identifying and utilizing only the most influential features

• We implement our notions, building on the concept proposed by MMD

• We evaluate our implemented approaches and present promising results for
our decision tree technique and using only influential input features

The rest of the thesis is organized as follows: Section 2 explores related work
about the core concepts relevant to this thesis, interpretability and debugging of
machine learning models, rule learning approaches and their field of use. Section
3 lays out background knowledge for the different techniques that are employed
in this research: machine learning, MMD, ISLearn and Bayesian optimization. In
Section 4 we detail our approach of utilizing ISLearn, decision trees and Bayesian
optimization to construct misprediction explanations for machine learning models.
In addition, we explain how we extract the input features that are most influential
for mispredictions. Section 5 contains information concerning the experimental
setup while Section 6 provides the results of our sizeable evaluation. Subsequent
to the evaluation in Section 7 we discuss our findings and mention limitations.
Finally, in Section 8 we draw attention to future research possibilities.
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2 Related Work

In this Section, we provide a short overview of the related work established in
literature and current research.

Interpretability of Machine Learning Models Interpretable machine learning has
grown into an increasingly important research field, as machine learning algorithms
are used for life altering decisions or find their way into more safety-critical systems.
A general overview for this research field was compiled by Molnar in his book [Mol22]
and in his paper about the history, state-of-the-art and challenges of Explainable
Machine Learning [MCB20]. Often research in this area can be categorized into
two fields: local and global interpretability. While local interpretability focuses on
explaining the decision for one prediction, global interpretability tries to capture the
behavior of the whole model. Very well-known local interpretability techniques are
LIME [RSG16] proposed by Ribeiro et al. and SHAP [LL17] (which can also be used
for global interpretability) proposed by Lundberg and Lee, combining LIME with
Shapley Values [Sha+53]. However, these techniques in its basic form have some
considerable drawbacks. Glaring stability issues of LIME are documented in [AJ18],
while [Sla+20] proposes a way to exploit weak point in the approaches of LIME and
SHAP to hide biases and craft desired explanations. Much additional research has
been done to improve upon the shortcomings or adapt LIME for different use cases.
To name a few: [Vis+22] introduces stability indices to better quantify the stability
of LIME, ALIME [SR19] employs a better weighting function for improved stability
and local fidelity, MeLIME [Bot+20] considers the distribution of the data used to
train the black box to improve local explanations, and OptiLIME [VBC20] proposes
a version of LIME that automatically chooses the kernel width, to maximize the
stability for a user given adherence. K-LIME [Hal+17] and LIME-SUP [Hu+18]
partition the entire input space to fit multiple locally interpretable models. For
global interpretability besides the already mentioned SHAP, GALE [LHK19] and
DENAS [Che+20] have their focal point on discovering globally influential features,
while a different approach is generating simpler, easier explainable surrogate models
for the complex models [Lak+]. Many studies are focusing on explaining the reasons
for predictions made by machine learning models, but only very few consider the
ground truth for inputs and try to explain under which conditions a model likely
mispredicts. In Machine Learning Model Diagnosis (MMD) [Cit+21], on which our
thesis builds on, Cito et al. proposed an approach to employ rule generation through
rule induction to construct an easily human interpretable rule set containing the
input feature value mappings, under which a machine learning models output
cannot be trusted. One of our goals for this thesis was to reduce computational
demand for generating misprediction explanations by selecting important input
features, from which to build the rule set. In [Ges+23] Gesi et al. focus on the
same problem. They leverage feature bias to select important features to narrow
down the feature count, while we consider feature importance of machine learning
model trained to predict mispredictions.
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Debugging of Machine Learning Models More in line with our work to debug
machine learning models and identify groups of data causing mispredictions is
Errudite [Wu+19] proposed by Wu et al., seeking to conduct error analysis for NLP
models. Errudite requires significant user involvement in manually formulating
hypotheses and evaluating misprediction explanations. In contrast, our approach is
mostly automated and can be easily adapted to create misprediction explanations
for any underlying machine learner. In [Kim+20] Kim et al. proposed an approach,
tailored to Computer Vision, that automatically generates compact rules for deep
neural networks, which can be used to significantly increase the correct detection
rate and help with debugging the network’s behavior. A technique to automatically
repair neural networks MODE [Ma+18] was proposed by Ma et al. They try to
fix model bugs by identifying the model’s internal features that are the cause for
the model bugs and then select tailored training inputs to alleviate these bugs.
Their focus lies on generating additional customized training data to directly fix
certain bugs in a neural model, while we strive to provide a model agnostic way to
produce misprediction explanations, which can also be used for data augmentation,
or be employed in various other ways like output suppression.

Rule Learning Approaches Our approach generating misprediction explanations
produces decision lists and therefore is associated to [Riv87] and decision sets
[LBL16]. The objective of these techniques is exact classification through accuracy.
However, maximizing accuracy does not produce good misprediction explanations.
We instead utilize weighted F1 score to evaluate the performance of our rules,
escalating the importance of precision while not fully neglecting recall. Rule learning
approaches can be split into two classes: predictive rule discovery and descriptive
rule discovery. Predictive rule discovery generalizes data so that predictions for
new examples can be made. Some notable techniques are Ripper [Coh95], CN2
[CN89] and ID3 [Qui87]. In descriptive rule discovery the key focal point lies on
defining rules that encapsulate patterns present in a given data set. Furthermore, for
descriptive rule discovery two sub classes can be defined: association rule discovery
(unsupervised learning) and subgroup discovery (supervised learning). In association
rule discovery arbitrary dependencies between attributes are considered. Subgroup
discovery, where subgroups for a chosen property of interest are established [Atz15],
is the sub class we would assign our research to, since we aim to find the subgroup
of data with a high misprediction rate.

Applications of Rule Learning In the following we note some research utilizing
rule learning techniques. Song et al. proposed association rule mining-based methods
to predict defect associations and defect correction effort [Son+06] to support
developers in finding defects in software and help in better managing testing
resources. With STUCCO [Cas+17] Castelluccio et al. present an algorithm,
inspired by contrast set mining, to automatically determine statistically significant
properties in crash groups, to make crash reports more understandable and thus
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help in discovering the root cause of the crash. Contrast set mining has also been
employed by Qian et al. to discern different groups of crashes [Qia+20]. They
tackle scalability by proposing a way to apply contrast learning to continuous data,
removing the need for discretization.
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3 Background

In this thesis we build on the concept of MMD to create misprediction explanations
for machine learning models. Instead of utilizing rule induction, to construct the
rule set, we employ three different approaches: ISLearn, decision trees and Bayesian
optimization. In this Section, we give a quick overview of relevant definitions
and introduce the techniques employed and the approaches used to generate the
rule sets. This contains brief overviews for machine learning algorithms, ISLearn,
Bayesian optimization and the research we build on: MMD.

3.1 Terminology

The following definitions that are closely associated to [Mol22] will lay the founda-
tion to avoid different connotations in literature.

Definition 1: Machine Learning Machine learning is a set of methods, where
not all instructions must be explicitly given. Instead, computers learn from data
to make and improve predictions.

Definition 2: Machine Learning Algorithm A machine learning algorithm, often
referred to as a Learner, is the program used to train a machine learning model
from a data set

Definition 3: Machine Learning Model A machine learning model is the model
trained by a machine learning algorithm, that is able to link inputs to predictions.
Since in this thesis we only utilize machine learning models that provide binary
classification as predictions, we also refer to them as classifiers.

Definition 4: Black Box Model A black box model is a system where no details
about the inner processes are known. In machine learning it means that the model
does not disclose the cause for a given prediction. An example for a black box
model is a neural network.

Definition 5: White Box Model The opposite of a black box model is a white
box model, also called interpretable model. In such a model the individual decision
made can be followed and understood. An example for a white box model is a
decision tree.

Definition 6: Features Features are the inputs used for classification. They are
the columns in a data set. For example, the age of a persons or the number of
commits for git repositories.
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Definition 7: Interpretable/Explainable Machine Learning Interpretable or
Explainable Machine Learning refers to the techniques which make the behavior
and predictions of machine learning systems comprehensible to humans.

Definition 8: Model Explanation A model explanation can be many things,
like an interpretable decision tree as a surrogate for a more complex model, or
feature importance values to be able to gauge the impact of different features. We
often use the term “misprediction explanation”, which for us refers to a simple
and human interpretable decision list, containing only comparisons of features to
constant values separated by conjunctions and disjunctions.

3.2 Machine Learning

MMD and our approaches construct explanations for machine learning models,
which describe under which conditions a given model is likely to mispredict, allowing
to render predictions unreliable in these cases. We also utilize machine learning
techniques, namely random forests and decision trees, to select features with high
impact on causing mispredictions and as a procedure to build our rule sets. Machine
learning techniques can be categorized into three major classes:

• supervised learning,

• unsupervised learning,

• reinforcement learning.

Supervised learning is based on training data, containing inputs and corresponding
outputs, and tries to devise a generalized system to link inputs to outputs. In
contrast, the data for unsupervised learning does not contain outputs and the
goal of the learner is to independently discover patterns or clusters in the data to
sort it into different groups. Finally, reinforcement learning focuses on discerning
the optimal behavior in an environment to maximize a reward. The behavior is
discovered by interacting with the environment and evaluating how it reacts. Our
work in this thesis falls under the area of supervised learning.

Supervised learning techniques work on a set of training data consisting of a
number of input features and a target, which contains the desired output (label) for
every instance (row in data set). The target can be boolean for a binary classification,
more than two classes for a multiclass classification, or a continuous value for a
regression problem. Based on this data the algorithm builds a mathematical model
to learn a function, by continuously optimizing an objective function, that is able
to predict the label of a never-before-seen input. The value of a trained model is
measured by how accurate it can predict the output for inputs not contained in
the training data. In the following, we will introduce the two supervised learning
algorithms relevant to our work.
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Figure 2: A made up example decision tree (of height h=2) predicting the survival
chance after a heart failure. The survival chance is the highest for patients
under the age of 80 and with a heart ejection fraction over 20 percent.

3.2.1 Decision Tree

Decision trees can be utilized to handle classification, as well as regression problems.
We will focus on decision tree classifiers [SH77], since that is the variation, we
use in this thesis. The decision tree classifier operates by deducing a number of
decision rule to predict the target for a given training data set. The decision rules
are structured in a tree-like composition where every branch in the tree constitutes
one of these rules. Every node in the tree contains a comparison of a feature f to
a constant value c in the form f > c or f ≤ c. The leaf node of a branch holds the
label for that decision rule while the first node from which all branches originate is
called root node. Figure 2 shows a made-up decision tree learned on medical data of
heart failure patients. The target of the data is whether a patient survived or died
due to a heart failure. The tree predicts that patients, which are either above the
age of 80 or have a heart ejection fraction below 20 percent, have the highest risk
of death. Based on the training data and training parameters provided the model
learned to relate the input features age and ejection fraction with the patient’s
chance of survival. When utilizing the model to predict the output for a new data
instance the evaluation starts at the root node. The comparison contained in the
root node is checked against the feature of the new data instance. If the check is
successful the branch labeled “true” is traversed down, else if the check fails the
“false” branch is chosen. This procedure continues until a leaf node of the tree is
reached. The label of the leaf node is the prediction provided by the decision tree
model.
The CART algorithm [Bre+84] is one of the most established techniques to

construct such decision trees. The most common way to find the best split conditions
is to consider the Gini index metric. The Gini index is a metric that ranges from 0
to 1 and measures how pure a node is. A Gini impurity of 0 means that all inputs,
used to learn the tree, reaching this node are allied to the same class, while a Gini
impurity of 1 signifies that the elements are randomly distributed across the classes.
When choosing the split condition, the algorithm tries to minimize Gini impurity
for the newly spawned sub nodes. The construction is finished when certain user
defined conditions are reached, like a maximum tree depth or a minimum number
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Figure 3: Overview of the Random Forest classifier [Jag17], depicting the approach
to combining the predictions of multiple decision trees to derive the final
class for an input.

of training instances per leaf node.

Decision trees are white-box machine learning models because their behavior
and reasons for predictions can be easily understood by humans. For any arbitrary
new input, a human can follow the decision process step by step, starting at the
root node, considering each threshold comparison and follow the corresponding
branch down the tree, to get a comprehensive grasp on which input features had
what impact on the prediction. However, one considerable drawback of decision
trees is, that they tend to overfit to the training data when they grow too big. This
means, the model might perform well for the training data, but as soon as new
unseen inputs are used, performance drops and small changes in feature values can
suddenly wildly change the predicted class.

3.2.2 Random Forest

To combat the disadvantages that come with using a single decision tree, ensemble
learning can be employed. Ensemble learning is a technique to group up a number
of weak base learners, like decision trees, which then work together to present
a better final prediction. Every model in the ensemble may struggle with high
variance or high bias, but the results can then be combined to reduce the impact
and yield increased model performance. One way to build such an ensemble is
called bagging [Bre96], where multiple models are trained on different subsets of
the training data set. For decision trees specifically this technique was employed
to create random forest estimators [Bre01] proposed by Leo Breiman, thus in
random forests many CART based decision trees work in tandem to provide a
better prediction.

In Figure 3 the concept of the random forest algorithm is shown. A random forest
predicts the label for a new input by evaluating the input with every decision tree
of the ensemble. After every tree has given its prediction, the final classification is
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done by either majority voting in case of random forest classifiers, or by calculating
the average in case of random forest regressors. As already mentioned for the
technique of bagging, random forests in comparison to decision trees, provide
better predictions, by reducing variance and bias.

3.3 MMD: Machine Learning Model Diagnosis

Machine Learning Model Diagnosis (MMD) [Cit+21] proposed by Cito et al. is
the research which our thesis builds on. It describes an approach to employ rule
generation through rule induction to construct an easily human interpretable rule
set containing the input feature value mappings, under which a machine learning
model’s output cannot be trusted. This misprediction explanation can then for
example be utilized to gain insight into the limitations of the training data or model
itself, to elevate the performance of a predictive model, or for output suppression.

MMD automatically constructs misprediction explanations based on two inputs:
a trained machine learning model and a corresponding input data set with known
ground truth. When disjunctions are allowed in the rule set then the desired recall
value of caught mispredictions also needs to be specified. The technique works fully
model agnostic, meaning it can be used for models trained by any kind of learner.
The process of generating the rule set works in three steps:

1. Labeling Mispredictions

2. Generating Atomic Predicates

3. Learning Rules

Labeling Mispredictions First, utilizing the provided machine learning model
and inputs, a new data set is built by labeling each instance of the inputs on
whether they are mispredicted or not. This is done by letting the model predict
an output for each input and then comparing that output with the known ground
truth.

Generating Atomic Predicates Next, the algorithm determines the building
blocks for the misprediction explanation. These are called atomic predicates and
are based on the input data set and have the form xiopc where xi is a feature, op
is a comparison symbol and c is a constant. Every feature of the input data set
is considered and if it is a categorical variable all predicates of the form xi = cj
and xi ̸= cj are added, where cj are all the possible categories in the feature. The
operators /leq, > are used for numerical and ordinal features, while the constants
are chosen with equal frequency binning [KK06].
This approach of generating predicates does not scale well for data sets with many

features, especially in the next step, when during rule learning all the possible
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Figure 4: An ISLa pattern which covers the correct sample inputs by instantiating
an invariant that compares if an input feature is greater than an integer.

predicates need to be evaluated to find the best performing rule. This is why
we propose an approach to preselect a number of influential features to reduce
computational demand.

Learning Rules Lastly, after generating all the atomic predicates the rule set can
be built from them. To reach the desired coverage of mispredictions the rule set is
created in iterations. Starting with full input data set, the best performing rule is
deduced. Then, if the desired coverage is not reached the cycle starts anew with a
subset of the input data, built by removing all instances already covered by the
current rule set. In this way every additional rule is generated on a smaller and
smaller subset of data, specifically to cover the mispredictions not already caught
by other rules. To construct the best performing rule from the atomic predicates
beam search is employed. When no further improvements can be made, a single
atomic predicate is added to one of the rules in the beam and then compared to
the worst rule in the beam. Performance is measured as a linear combination of
precision, recall, and rule size. While precision is given a higher weight because it
is the primary factor, recall and rule size have to be a part of the evaluation to
prevent the misprediction explanation from becoming too long.
With our work we evaluate the outcome of three different approaches (ISLearn,

decision trees, Bayesian optimization) of learning the best performing rules and
constructing the misprediction explanation.

3.4 ISLearn

ISLearn is a technique for learning ISLa constraints from a set of defined patterns.
Both ISLa and ISLearn were proposed by Steinhöfel and Zeller [SZ22].
ISLa, or Input Specification Language, is a string constraint solver that has

its own specification language. It allows the user to specify input constraints like
“each row of a .csv file has to have at least 10 columns” or “a variable has to be
defined before it is used”. This tackles the problem, that grammar-based fuzzers
tend to produce an amount of syntactically valid but semantically invalid system
inputs. ISLa allows to generate tailored system inputs for testing. By adding or
removing input specifications, distinct parts of the program functionality can be
checked. The inputs are derived from a language defined by a context-free grammar
in Backus–Naur form.
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ISLearn, as already mentioned, learns ISLa constraints from inputs and a set
of patterns. The patterns are instantiated according to the given inputs and
then merged into conjunctive normal form. Inputs can be provided to ISLearn
already categorized into positive and negative examples, or a prop function can be
defined, which is able to differentiate between valid and invalid inputs. ISLearn
can also generate more sample inputs on a given program property. A number of
common patterns are already predefined in a catalog, but new patterns can easily
be added. In Figure 4 an exemplary pattern is depicted. When running ISLearn
that pattern will be instantiated with nonterminal symbols of the grammar defining
the language of our inputs and certain integers derived from our sample inputs.
Then the performance of the resulting invariants in covering the correct sample
inputs are evaluated and ranked based on specificity and recall.

3.5 Bayesian Optimization

Bayesian optimization is a machine learning based optimization method for finding
the optimal value of a black box function that is time consuming to evaluate. An
extensive overview is given by Frazier [Fra18]. The goal of the algorithm is to
maximize a continuous objective function and works best when the input vector
does not exceed 20 dimensions. As already mentioned, it is mostly used for functions
that are extremely computationally expansive to evaluate, so only a limited amount
of evaluation is feasible for reasons like monetary cost or time needed per run. The
focus of Bayesian optimization is locating the global optimum of a function and
not get stuck in local optima. Since its specialty is optimizing expensive black box
functions, Bayesian optimization works very well for tuning hyperparameters in
machine learning algorithms, where each new training cycle can be costly.
The two major components of Bayesian optimization are a Bayesian statistical

model and an acquisition function. The Bayesian statistical model is a technique to
represent the beliefs about the behavior of an unknown function. Bayes’ theorem
is applied to update the beliefs after new observations. In our context it models
the given objective function that has to be optimized. A common choice for the
Bayesian statistical model is a gaussian process. A gaussian process is defined by its
mean function and covariance function. While the mean function carries the prior
assumptions about the behavior of the function, the covariance function holds the
expectation regarding the smoothness of the function. As new observations about
the objective function are made the mean and covariance functions are updated to
form the posterior distribution, which guides the search for the optimum. The second
key component of Bayesian optimization is the acquisition function. This function
determines the next point to assess when searching for the optimum of the objective
function. It tries to balance exploration and exploitation, so new areas of the search
space are explored to not get trapped in local optima, while still investigating areas
of known high value. The user can choose from different acquisition functions, with
each one being more or less effective for different problems.
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Figure 5: Overview of our approach

4 Generating Misprediction Explanations

In this section, we will introduce our approach of extending the concept of Ma-
chine Learning Model Diagnosis (MMD) [Cit+21], to construct better performing
misprediction explanations for black box machine learning models and to reduce
computational demand of the technique. The basis for our approaches is the fol-
lowing two key issues: On the one hand, utilizing rule induction to construct the
rule set might not be the optimal choice, and can be outperformed by a different
technique. On the other hand, generating atomic predicates for every input feature
and using them all, can be very costly for feature rich input data. That is why
we propose a procedure to first identify the features that have a high impact on
causing mispredictions.

Figure 5 gives an overview about the sequence and individual steps of our
proposed approach. MMD and ISLearn, both part of Step 4 are colored grey
to highlight that we utilized the original implementations of the corresponding
research papers and only did small adjustments, like constructing the required
grammars and adding relevant patterns for ISLearn.

Overview Similar to the approach of MMD, our technique requires a machine
learning model and an input data set with known ground truth for said model.
For that we use 11 real-world binary classification data sets and split them into
training and test sets, with 70 percent of the instances sorted into the training set,
while the remaining 30 percent establish the test set. Then we train a machine
learning model on the training set (Step 1). This is the machine learning model we
later generate our misprediction explanation for. In the next step we make use of
the trained model to identify the instances of the test set, which are mispredicted
(Step 2). The following step of our process sequence is optional: We extract the
input features that are most influential in causing a misprediction, by considering
the feature importance of a newly trained random forest classifier (Step 3). After
utilizing the information about the most impactful features to reduce the input
data considerably, or skipping that step and just using all features, one of the four
approaches to generate the rule set can be chosen: MMD, ISLearn, Decision Trees
or Bayesian Optimization (Step 4). Lastly, the output given by the different rule
learning approaches is formatted to always present a uniform output (Step 5).

23



4.1 Training Machine Learning Model

Since we require black box machine learning models for analyzing and building
misprediction explanations, the first step in our process is to train the needed
models. For the basis of the models, we chose 11 real-world data sets, which are
presented in more detail in Section 5. For the scope of this work, we decided to
limit the chosen data sets to binary classification problems, but the procedure can
be adapted to also work for multi-class classification or regression problems. There
are various machine learners to choose from for classification task, we decided to
train random forests for two reasons. They are very fast to train and to predict
labels for data instances. In addition, since random forests are a tree-based and
not distance based models, less data pre-processing, like feature scaling, is required.
Some pre-processing is obviously still required to handle problems like multi-class
features or incomplete instances, often found in real-world data sets. As we already
noted before, our approach is fully model agnostic, which means any other machine
learner for binary classifications could replace the random forest classifier. We
trained our models on 70 percent of the data set and kept 30 percent as the test
set. The test set is essential later, because we still need data with a known ground
truth to label mispredictions of the trained model. To prevent an evaluation of
our approach based on a “luckily” chosen training set, we trained five models on
different training sets derived from the data set. Furthermore, the data is split in
a stratified fashion to always assure that both sets contain the right proportions of
target labels. The numerous trained random forests and corresponding test sets
are stored for later use, so they never need to be retrained.

4.2 Labeling Mispredictions

After preparing the machine learning black boxes, for which we will construct
misprediction explanations, and their corresponding test sets, the process of labeling
the mispredictions is pretty straightforward. Considering a labeled data set D :
X → Y and a trained machine learning model M : X → Y , where x ∈ X is a
data instance and y ∈ Y, y ∈ {0, 1} are the matched labels, and noting that D
actually contains the ground truth for its data instances, we define the function
L : X → {0, 1} as follows:

L(x) =

{
1 if M(x) ̸= D(x)
0 otherwise

(1)

Summarized in words: The function L(x) is 1 if the prediction given by the machine
learning model for a data instance is not the label found in the test set, which is
the known ground truth. In this way we build a new data set Dmis : X → {0, 1}
so that the following equation is valid:

Dmis(x) = 1 ⇔ (M(x) ̸= D(x)) (2)
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Figure 6: Overview of how we reduce the data set to the input features with the
highest impact on causing mispredictions.

This is done by utilizing the trained random forest to predict the label for every
single data instance in the test set and then comparing them to the ground truth.
The resulting new misprediction labeled data set Dmis contains each input instance
in D but now linked to a new boolean label, indicating if the given instance is
mispredicted by the model. This information is of course essential for later deducing
rules and then assembling our misprediction explanations.

4.3 Extracting Influential Input Features for Faster Computation

Next, after labelling the data instances from the test set, which are mispredicted,
follows the process step in which we employ our approach to improve scalability
of explanation generation. Computational demand for constructing misprediction
explanations with MMD in general does not scale well with growing data sets.
Especially the number of input features has a dramatic effect on execution time,
because the number of combinations of different atomic predicates in a rule, that
need to be checked, grows exponentially. To combat that phenomenon the idea for
our approach is to reduce the number of input features that need to be considered
when assembling the rule set. So, the main question is: Which input features have
the highest impact on causing the machine learning model to mispredict? Figure 6
shows an overview of the process and the steps taken to filter out the important
features. The general idea is, since we have access to the data set from the previous
step, mapping input features to model mispredictions, we can train a machine
learning model that tries to predict, for a given data instance, whether our original
black box mispredicts for the same data instance (Step 1). Afterwards we can
use an explainable machine learning technique, called feature importance, to learn,
which input features have the most influence on predicting mispredictions and thus
also likely have a high impact on causing the mispredictions in the original black
box model (Step 2). Next, we can choose a desired number of most influential input
features (Step 3) and finally we considerably reduce the number of features in the
input data set by removing all features not deemed influential enough (Step 4).
Feature importance in machine learning refers to a measure of how much an

input feature influences the model’s prediction. So, this measure can be utilized
to quantify the degree of usefulness of each specific feature. A comprehensive
overview of various importance techniques is provided by Wei [WLS15]. To predict
mispredictions, we decided to train random forests as our models, because they
allow for very fast calculation of the needed feature importance values, but in
theory the usage of every other machine learning model, that allows determination
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of importance values is possible. We tried three different approaches to extract
feature importance values from our trained misprediction models: Gini importance,
permutation importance and SHAP.
Gini importance is a measure that can directly be computed from the random

forest structure. It considers the average decrease in impurity caused by each
feature over all the trees in the random forest. The impurity of a node in a decision
tree describes how well the tree was able to split the training data, so that a node
contains mostly instances of one class. This information can easily be accessed,
since all needed values were already computed during random forest training, this
method is extremely fast. However, a drawback is that Gini importance can be
misleading since it has a bias towards high cardinality features.
Permutation importance is an alternative to the impurity-based approach of Gini

importance. Permutation importance works by permuting the values of a feature
in a test data set and observing the difference in the performance when training a
need model. Permutation importance overcomes the limitations of Gini importance,
since it does not overvalue high cardinality features, but the technique becomes
computationally expensive for large data sets, since it requires refitting the model
many times. Additionally, to get the most out of permutation importance a test
set for the model is needed, which would reduce the data available to train our
misprediction model on.
The third option was SHAP, since Shapley values can be combined to get a global

explanation. The intention behind feature importance with SHAP is that large
absolute Shapley values indicate important features. To get a global importance
value, the absolute Shapley values per feature can be averaged across the whole
data. Utilizing SHAP in this way can become computationally expensive.
We realized pretty fast, that using SHAP is not an option for us, because it

took more time finding the influential features and constructing the misprediction
explanation on a smaller data set, then just using the full data set with all features.
When we compared Gini importance to permutation importance the suggested
most influential features were certainly different, but when we evaluated some mis-
prediction explanations constructed with these features, the results of permutation
importance were in many cases drastically worse, no matter the amount of used
data permutations. Thus, at least for our data sets, permutation importance was
considerably slower, reduced training data for our misprediction model (works on
test set) and provided worse results. These are the reasons why we decided to
default to the somewhat error prone, but very performant method of Gini impor-
tance. In our implementation of our approach, we make the number of returned
most influential input features definable by an input parameter, which allows
us to evaluate the effect of the number of features on misprediction explanation
performance, computational demand, and rule set length.
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Figure 7: Overview of the iterative process of constructing a misprediction expla-
nation.

4.4 Learning Rule Sets

In this process step we present the rule set construction techniques, which we
evaluated. Hence in the following we describe the general idea and the different steps
of constructing a misprediction explanation for a black box machine learning model.
Then we will take a closer look at the individual approaches and their subtleties
in our implementation. The explanation is assembled based on the information
contained in the previously misprediction labeled test set. Since the techniques
require the ground truth for every data instance, additional inputs cannot simply be
generated and we need to work with the fixed amount of information contained in
the data sets chosen for our evaluation. Similar to the procedure described by Cito
et al. for MMD [Cit+21], our rule set construction approaches, utilizing decision
trees and Bayesian optimization, also operate iteratively. For ISLearn we had to give
up on allowing disjunctions and could only create single rules, because ISLearn’s
method to derive the rule sets becomes extremely computationally expensive for
data sets with many features. Figure 7 shows the iterative sequence of process steps
when generating an explanation with MMD, decision trees or Bayesian optimization.
In (Step 1) a rule consisting of a series of predicates connected by conjunctions is
constructed to cover as many instances in the labeled data set as possible, while
minimizing false positives. This is the step that works differently for every of the
four approaches we evaluate and will be discussed in detail later. After a rule has
been built, it is added to the current rule set. From the second rule onwards, the
new rules are connected to the rule set by disjunctions (Step 2). Next, we calculate
the recall of the current rule set, meaning, which percentage of instances in the
labeled data set are covered after adding the new rule and then we compare the
calculated recall with a defined desired coverage value (Step 3). If the desired
coverage of mispredictions is reached by the current rule set, the construction
process is finished and we can begin with formatting the final output. For handling,
output parsing of MMD and ISLearn, and calculating metrics for misprediction
explanations, we implemented a specialized RuleSet class. If the desired coverage
is not reached, we have to add another rule to the rule set, so a loop back to Step
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(a) Redundant rules (b) Redundant predicates

Figure 8: Example for a rule set with redundant rules or predicates.

1 is needed. However, after the first rule subsequent rules are not constructed by
considering the whole data set again, but only the subset of instances not already
covered by the current rule set is used. In (Step 4) these already covered data
instances are removed from the data set to create a new one, wholly consisting
of uncovered data. In this fashion additional rules are iteratively generated to
specifically cover not already covered mispredictions. For this thesis we restricted
each rule to be composed of a maximum of two predicates. The approaches and
the implementation are however easily adaptable to allow for more predicates. We
also have refrained from minimizing rule sets. This makes it possible, that rule
sets may contain rules or predicates in a rule, that are redundant. Figure 8 shows
an example for both: In 8a the second rule is redundant because of the first rule.
In 8b the first predicate of the last rule is redundant. Since MMD also provides
the option to only produce and present the performance for a single best rule, our
outputs always contain both results: for a single rule with only conjunctions, and
for a rule set reaching the desired coverage of mispredictions.

Misprediction Explanations with MMD To be able to assess the performance
of our proposed rule generation approaches, and to analyze how MMD fares when
it is employed together with our method for identifying the most influential input
features, we utilized the implementation of MMD [cit22] provided by Cito et al. We
kept all the provided standard parameter settings, especially the weights that are
assigned to precision, recall and rule length when MMD evaluates the performance
of a rule to find the best one. We only did a small change to the code that allows
us to set the parameter “allow disjunctions” when calling the function, making it
easy to switch between single rule and rule set generation mode. For our use case
MMD requires following additional inputs: a data frame with the tabular data,
a tuple consisting of the name of the target feature and the boolean value that
should be explained, a dictionary mapping from relevant attributes in the tabular
data to their type (D (discrete), I (integer), C (continuous)), and a value for the
desired coverage that is aimed to be reached when using disjunctions. However,
since MMD also considers rule set length, the desired coverage is not guaranteed
and can be lower if too many rules would be needed to reach the coverage. As a
result, MMD provides a number of possible rule sets, ranked by precision first and
recall second. It always is a trade-off between precision and recall, more precision
means less recall and vice versa. Since all of our proposed approaches guarantee
a rule set that fulfills the desired coverage, we first try to filter for results, which
also reach the coverage requirement. If no option can provide that, then a rule set
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Figure 9: Grammar for the heart failure data set.

with a lower coverage is selected. Because we try to compare to the “best” rule set
provided by MMD and multiple rule sets with trade-off between precision and recall
make the choice unclear, we opted to find a good middle ground by calculating the
weighted F-score for every option. The F1-score is the harmonic mean of precision
and recall, thus symmetrically represents both in one metric. However, instead of
weighting precision and recall the same, we put more focus on precision, because
a misprediction explanation with a high recall and a low precision is worthless.
Finally, after choosing the rule set with the best weighted F-score we use our
RuleSet class to parse and format the MMD output and calculate specificity of the
misprediction explanation.

Misprediction Explanations with ISLearn The first approach we present utilizes
ISLearn [SZ22] to choose the best rules and generate misprediction explanations. We
use the implementation of ISLearn version 0.2.13 provided by Dominic Steinhöfel
[rin22]. Like with MMD we deliberately keep all the standard parameters and make
no code changes. However, in comparison to MMD, ISLearn requires a considerable
amount of additional preparation. This stems from the input requirements of
ISLearn, because it comes with the ability to independently construct new data
instances if needed. That is not relevant for us but still enforces some overhead.
First ISLearn requires a grammar for the input language of every data set we use.
Exemplary, the grammar constructed for the heart failure data set is shown in
Figure 9. As shown by the example, the grammars are very generic and do not
consider negative or floating-point values. The reason is, that we preprocess the
data sets to remove those. On the one hand, it makes the grammars shorter and on
the other hand, it helps with defining the patterns needed for ISLearn. To remove
negative and floating-point values we preprocess the data in the following way: We
normalize the values for every column, by first finding the min and max value for
a feature f and then calculating the normalized value for each data instance with:

normalizedf =
valuef −minf

maxf −minf

(3)
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Figure 10: Patterns used for ISLearn.

Now that all values are scaled to between 0 and 1, thus there are no more negative
values, we round to the eighth decimal places and then multiply each value by one
hundred million to deal with floating point values as well. Later, after ISLearn
has provided us results, when we parse and format the output, we reverse the just
mentioned steps to display the correct values. After preprocessing the data set, it
needs to be split into positive and negative input samples based on the label. Since
ISLearn expects the inputs to be in ISla DerivationTree string form, we need to
parse each data instance of the positive and negative samples with the aid of the
defined input grammar. The last step we have to take before running ISLearn is to
define all the irrelevant non-terminals in the grammar that we do not want to be
considered when constructing instances from patterns. For our example grammar
in Figure 9 that would be the non-terminals “onenine”, “maybe digit”, “digits”
and “digit”. We find these by collecting all non-terminals reachable from the start
symbol and then removing all non-terminals produced directly by the start symbol.
Additionally, when working with our approach to only use the most influential
features, the grammar needs to be re-written to remove irrelevant features from the
start symbol and as non-terminals. ISLearn is then executed with following inputs:
grammar, positive and negative examples, desired recall value, maximum number
for conjunctions and disjunctions, the irrelevant non-terminals and a pattern file.
As we already mentioned we kept the number of conjunctions at a maximum
of one per rule and we had to disallow disjunctions for ISLearn because of high
computational cost, scaling with both number of features and data instances. So,
even when reducing the number of features with our approach it was not feasible
to allow disjunctions. The two patterns defined by us and used by ISLearn for
instantiation are shown in Figure 10. The patterns correspond to the allowed
structure of predicates in rules: “feature ≤ value” or “feature > value”. ISLearn’s
results are presented as instantiated patterns in conjunctive normal form ranked
by specificity first and recall second. Figure 11 depicts an example output. In this
case the rule “diabetes > 0 and serum creatinine > 13793103” was identified as
the best performing one. The second integer is so high because it is before the

Figure 11: ISLearn output example.
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Figure 12: Decision tree example with depth = 2.

data preprocessing is reversed. To make the output easier to comprehend and
compare to the other approaches it is parsed and transitioned into our unified rule
set format. In contrast to MMD we immediately choose the highest ranked rule as
the “best” rule, because all of ISLearn’s proposed rules satisfy the desired recall
and under that condition are objectively ranked best to worst based on specificity.
As a last step before presenting the misprediction explanation we calculate the
precision of the rule set, since it is not provided by ISLearn.

Misprediction Explanations with Decision Trees The third approach we evaluate
for rule construction utilizes training decision trees to determine the best possible
rule to cover mispredictions. As a first step, before we start training decision trees
and extracting rules, we examine the data set to establish the maximum number
of decimal places present in a single value. This is necessary to be able to round
the later extracted threshold values to a reasonable length. Like with our other
approaches the final misprediction rule set is constructed iteratively rule by rule,
until the desired coverage of mispredictions is reached. One iterative cycle works as
follows: First, we use the currently still uncovered data instances (in the first cycle
this amounts to the whole data set) to train a decision tree with the information,
if a data instance is mispredicted as the target. We always utilize defined random
seeds to keep the results reproducible. To train the trees we employ the python
library scikit-learn and keep the default input parameters, but set the maximum
allowed tree depth to two. This limits the rules, we extract from the trees, to two
predicates, like we aimed to do for all of our approaches. In the next step four
possible rules are derived from the trained decision tree. Considering the example
tree depicted in Figure 12 we now explain the rule extraction process. We begin
assembling the rule strings by traversing the tree structure starting at the root
node. The feature name and threshold are extracted and depending on whether the
left or right child node are considered next Age ≤ 80 or Age > 80 are concatenated
to the rule, followed by an and if the child node is not a leaf node. The same
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procedure is then repeated for every child node, in this case only two more times,
but our implementation fully works for deeper trees, to construct rules with more
predicates. When a leaf node is reached the corresponding rule string is complete
and we save the information about the number of training samples that reach this
leaf. For our example tree the four extracted rules would be:

1. Age ≤ 80 and ejection fraction ≤ 20

2. Age ≤ 80 and ejection fraction > 20

3. Age > 80 and diabetes ≤ 0

4. Age > 80 and diabetes > 0

Since our training target for the decision tree was the misprediction of a data
instance, the mentioned saved sample information of the leaf nodes tells us how
well a rule performs. Rule 1 for example covers 250 data instances of the data set.
Fifty of those are instances that are mispredicted, but we also cover 200 instances
for which the model decides correctly, therefore this would not be a good rule
to add to the rule set. Hence, the next step is choosing the best performing rule
from these options. This is done by calculating precision, recall and then weighted
F-score for every rule. We opted to select the rules by weighted F-score to find
a good middle ground between long, very precise, probably overfitted rule sets
and short rule sets with high coverage but low precision. In this example, even if
Rule 2 covers more misprediction Rule 3 with a higher weighted F-score is chosen
because of the higher precision. The weight used for the F-score can be used as a
hyperparameter to change the balance between precision and recall, thus allows
to tailor the misprediction explanation based on requirements for those. After
identifying the best performing rule, the chosen one is added to the rule set. Then
we calculate the coverage of mispredictions of the current rule set based on the full
input data set. If the desired coverage is not reached, the data instances that are
already covered are removed from the data set and a new iterative cycle starts by
training a decision tree on the reduced data set to find the next best performing
rule for not already covered data instances. Otherwise, if the desired coverage is
reached, the precision and specificity of the final misprediction explanation are
calculated and the results are presented. It is noteworthy, because of the scope
of this thesis, we utilize this approach in its simplest form. Many improvements
are conceivable to possibly improve performance of the misprediction explanation,
like influencing the decision tree composition with training parameters or using a
random forest like method to train multiple decision trees on slightly varying data
subsets when searching for the best rule.

Misprediction Explanations with Bayesian Optimization The last of the four
rule construction approaches we implement utilizes Bayesian optimization, to
derive the best misprediction covering rule for given data set. This technique
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Figure 13: The eight possible rules checked per optimization cycle.

also assembles the rule set in iterative steps. The objective function expects four
parameters for which we do not know the value combination that produces the best
result: The two possible features in a rule, represented by an integer corresponding
to the column number, and two reasonable threshold values to compare to. Since
bounds need to be set for the range of threshold values that are investigated by
the Bayesian optimization and the reasonable values for each feature vary greatly,
we opted to first normalize the data set, resulting in a consistent value range
from 0 to 1. We employed the Bayesian optimization implementation gp minimize
from the scikit-optimize python library and set it to test 25 initial points and to
perform 40 optimization steps. We used a defined random state to keep the results
reproducible. In our objective function all the covered data instances for each of the
eight possible rules are determined (shown in Figure 13). Then for every rule option
the precision, recall and finally weighted F-score is calculated. The highest weighted
F-score is chosen and returned as a negative, since gp minimize tries to minimize
the result. After 40 cycles Bayesian optimization we receive the index and threshold
values that produced the highest weighted F-score in a rule. First, we reverse the
normalization of the threshold values and afterwards due to the fact that the only
the features and threshold values are known, but not the exact rule structure,
we need to check each rule option once more to identify the correct structure.
After adding the rule to the current rule set the coverage of the misprediction
explanation is calculated. If the desired coverage is not reached all already covered
instances are removed from the data set, and the next rule is derived by beginning
a new iterative cycle with the reduced data set. Otherwise, if the desired coverage
is reached, the precision and specificity of the final misprediction explanation is
calculated and the results are presented.

4.5 Formatting Outputs

The last process step is formatting the outputs of MMD and our approaches.
This produces a final output that is structured identically no matter of the rule
construction method employed and thus allows for a better comparability. Figure
14 shows the structure of a final output based on an example, produced by utilizing
MMD to construct misprediction explanations for a model trained on a heart
failure data set. As we already mentioned, the outputs contain to separate rule
sets: One without disjunctions, consisting of the best single rule, and one rule
set with disjunctions aiming to reach a desired coverage. In this case the desired
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Figure 14: Structure of final outputs no matter the rule construction approach.

coverage was set to 60 percent of the mispredictions. The explanation in this
example also uses our technique to reduce the size of the input data, by discovering
the five most influential input features, which are then the only ones considered
to build the rule sets. The output provides the following metrics for evaluation:
Specificity, precision, recall, CPU time used to create an explanation, and the length
of the given rule set. Next to precision and recall we opted to also display and
evaluate specificity, because focusing at only precision and recall can be misleading.
Assuming a precision of 50 percent and recall of 100 percent the explanation can
either be pretty good or completely useless. If the model mispredicts only for a
low percentage of data instances, a low precision is not as detrimental, because
only a small proportion of correct predictions is wrongly classified to cover all
mispredictions. However, if the models misprediction rate is higher, for example
35 percent, the same value for precision and recall would mean, that another 35
percent of the correct predictions are misclassified by the rule set, cutting out more
than half of them. Specificity helps with that by measuring the number of false
positives.

Summary In this Section, we presented our proposed approach to improve on
the ideas of Machine Learning Model Diagnosis [Cit+21] by Cito et al. We showed
how we employ different techniques to iteratively construct the rules from which
the final misprediction explanation is composed of. We also illustrated how we aim
to reduce high computational cost when explaining model mispredictions based
on feature rich data sets. This is done by identifying the features, which possess
the biggest impact on causing mispredictions. In the following sections, we will
evaluate our approach, based on 11 real-world data sets and study the effect on
performance metrics, computational cost and explanation length.
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5 Experimental Setup

In this section we introduce our experimental approach to evaluate our proposed
techniques based on 11 real world data sets. We have implemented the different
rule construction approaches and the procedure to reduce the input data set by
identifying influential input features. As a baseline to compare our results to, we
utilize the initial approach of Cito et al. [Cit+21]. In our introduction (Section 1)
we already proposed the following research questions:

RQ1 Do our approaches generate misprediction explanations with better relevance
metrics?

RQ2 Do our approaches reduce computational demand?

RQ3 Do our approaches generate short misprediction explanations?

To answer these research questions, we compare the misprediction explanations gen-
erated by our proposed approaches against the baseline in six different ways. First,
we compare the precision, recall and specificity metrics, to assess the performance
of the resulting explanations (RQ1). Next, we examine computational demand,
which we measured by observing CPU time required to construct misprediction
explanations with each approach (RQ2). Then we analyzed the length of the
generated rule sets by summing up the number of used predicates (RQ3). In our
evaluation section (Section 6) the answer to each of these research questions is split
into two partial answers. The reason is, that we evaluate each rule construction
approach when considering all input features (Section 6.1), and another time,
together with our approach to utilize only influential input features to improve
scalability (Section 6.2).

Technical Setup To construct misprediction explanations the black box models
to be examined and corresponding test sets are required, so we have access to input
data with known ground truth. We keep the model training process consistent to
facilitate similar starting conditions with the different data sets. First, we split
the whole data set into training set and test set with a 70/30 split. This provides
us with a sufficient test set to construct the misprediction explanation from. We
also always utilize a fixed random seed when splitting the data set to enable
reproducibility. We used the python library scikit-learn to train random forests as
our black box models, because they are fast to train and quick to predict labels for
new data instances, but our approaches work seamlessly with any other type of
model. When training the models, we kept the default settings of 100 trees and
no maximum depth, but again used a fixed random seed. The trained models and
corresponding test sets are then saved to a storage device, to allow for repeated
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and fast access later. Lastly, we use a python script to automatically create and
save the grammars for each test set, which are needed to generate explanations
with ISLearn.

Data Sets We utilize 11 different real world data sets to train our black box models,
where one is a relatively small heart failure data set. The remaining ten, which are
far bigger in size, we selected to evaluate our approaches, since they were also used by
Gesi et al. [Ges+23] when proposing a technique to reduce computational demand
when constructing misprediction explanations, which is different but close to our
idea. Contained are five software engineering data sets (merge conflict prediction
for four programming languages and one bug report close time prediction) and
five non software engineering tasks (Job Change, Bank Marketing, Hotel Booking,
Water Quality and Spam Email). Some data sets required extensive preprocessing
to be used for training a model. In the following we only give a short summary
of the changes made. In case of interest the commented implementation can be
inspected for all changes. For the heart failure data set the follow-up time feature
is removed, since it is related too closely to the target (only patients that survived
still need follow-up visits). The non-software engineering data sets required many
changes, including: removing instances with empty features or assigning values
if possible, removing features that are unknown for the majority of instances,
replacing string features with integers, consolidating multiple features with the
same information and handling multi class features. The software engineering data
sets did not require any preprocessing.

Measures To assess the performance of the approaches, we utilize the following
statistical metrics: precision, recall, specificity and the weighted F-score. In the
following we use these abbreviations: TP = True positive, TN = True negative,
FP = False positive, FN = False negative. In our case precision is the fraction of
data instances that are correctly identified as mispredictions among all instances
covered by the explanation. Precision is formally defined as:

Precision =
TP

TP + FP
(4)

While precision measures if the rule set covers the correct data instances recall
quantifies the amount of mispredictions the explanation is able to cover and how
many are missed. The formal definition of recall is:

Recall =
TP

TP + FN
(5)

Together precision and recall can already give a good overview of the performance,
but without in-depth knowledge of the underlying composition of the data set,
results can be deceiving. With only these two metrics it does not become clear,
how big the portion of the data instances is, which are correctly predicted by
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the model, but wrongly covered by the explanation. Therefore, we opted to also
include specificity, which reveals the percentage of data instances that are correctly
predicted by the model and uncovered by the rule set, thus making clear how many
correct predictions are unnecessarily deemed untrustworthy. Specificity is formally
defined as:

Specificity =
TN

TN + FP
(6)

Another important measure we utilized is the weighted F-score, we used to choose
the best rule, out of multiple options. The default F1-score is the harmonic mean
of precision and recall, which means the contribution of precision and recall to the
F1-score are equal. Since precision is essential for a useful misprediction explanation
we doubled the weight of precision. Fβ is the formal symbol for the weighted F-
score, where recall is considered β times as important as precision, thus in our case
β = 0.5. Formally, weighted F-score has the following definition:

Fβ = (1 + β2) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(7)

Experimental Process Because of the way the data set is split into training set
and test set can have significant impact on the model performance and thus by
extension change the resulting misprediction explanation, we cannot depend on
the evaluation of a single possible split. Therefore, we trained five models for each
data set, based on five different data splits, to allow for more reliable conclusions.
In addition, since CPU time required also varies slightly each run, we also execute
each experiment five times. Considering, that we utilize random seeds at every step,
these extra executions always provide the exact same misprediction explanations
and are solely to measure the variance in execution time.
Provided that the five random forest models, corresponding test sets and gram-

mars are already accessible in saved form, an experiment proceeded as follows:
(1) Our implementation is provided with following inputs: black box model to
be examined, model type to train to predict mispredictions (in our case always
a random forest classifier, but can be extended), if our approach to only use in-
fluential features should be used and how many, the technique that should be
used to generate the rules, and the desired coverage of the resulting misprediction
explanation. (2) Labeling each data instance if it is mispredicted by the black box
model. (3) Optional step: Train random forest on misprediction labeled data set
and utilize feature importance to identify most influential features, then shrink
data set. (4) Generate misprediction explanation iteratively rule by rule with the
chosen approach, until desired coverage is reached. (5) Measure performance and
CPU time used for single best rule and full rule set.
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To keep to scope of the evaluation reasonable we opted to use following combinations
of values for desired coverage and number of most influential input features:

• all features + desired coverage of 30/40/50/60/70/80%

• 5 most influential features + desired coverage of 30/40/50/60/70/80%

• 2/3/4/6 most influential features + desired coverage of 60%

Computational Setup The experiments were run exclusively on a compute server
with an AMD EPYC 7713P processor (64 cores), 1.5 GHz and 256 GB of system
memory.

Source Code and Results The complete source code used for the evaluation,
and all results are available through a public repository (github.com/buchwind/
misprediction_explanation).
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6 Evaluation

This Section presents the results of our experiments and we assess the performance
for each approach, with and without our proposed technique to only utilize influential
input features. This makes the answer to our RQ1, RQ2 and RQ3 multifaceted,
since in addition to comparing one rule construction approach to another, we also
need to consider the effect on the misprediction explanations when relying only
on selected features. For RQ1 we examine weighted F-score and specificity of the
constructed rule set. The answer for RQ2 is given by measuring the CPU time
needed for each experiment. Finally, for RQ3 we inspect the explanation length by
summing-up the number of predicates the rule sets consist of. To present our results
we utilize boxplots, which are a standardized way of capturing the distribution
of gathered data and indicate eventual outliers. As we mentioned before, when
allowing disjunctions and building an explanation with ISLearn the computational
demand was too high, especially for feature rich data sets. For this reason, the
ISLearn approach is only shown when evaluating the generation of single rules.

6.1 Experimental Results with all Input Features

In this Section we evaluate how our proposed rule creation approaches perform,
compared to the baseline of MMD [Cit+21] in the three categories: Performance
Metrics, Computational Demand and Explanation Length. In these exper-
iments the misprediction explanations are constructed by considering all input
features, hence our technique to prune the less important features is not used.

6.1.1 Performance Metrics

First, we display the obtained statistical measures for the 11 data sets and five
repetitions. Figure 15 through 19 show the weighted F-score and specificity for
the different rule construction approaches when generating a single rule or a full
misprediction explanation satisfying a desired coverage. We opted to utilize the
weighted F-score for our evaluation, since the overall performance of a misprediction
explanation is a balance between precision and recall. We weighted the F-score
such that precision is considered two times as important as recall. The reason is,
that recall is important, but an explanation with high recall and low precision is
not desirable, because of many false positives, thus leaving only an unnecessarily
low number of true negatives to work with. Still, even when weighted, F-score alone
might convey a misleading picture for some cases i.e. low precision and high recall
for data sets with many mispredictions. That is why we also evaluate specificity to
quantify data instances, that are accurately identified as correctly predicted from
the black box model.

Single Rule Figure 15 displays the weighted F-score and specificity for single
rules constructed by MMD, Bayesian optimization and decision trees for 11 data
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Figure 15: Weighted F-scores and specificity for Bayes, MMD and Trees (single
rule).

Figure 16: Weighted F-scores and specificity for ISLearn (single rule).

40



sets and five repetitions. Figure 16 contains the statistical measures for the ISLearn
approach. The results for MMD, Bayesian optimization and decision trees can
be presented in one Figure because, when constructing only one rule without
disjunctions, the given desired coverage has no effect and the outcome is always
the same for these approaches. In contrast ISLearn is able to adhere to the desired
coverage even when only generating a single rule. Overall, the visual data shows,
that MMD had a problem to find a good rule without covering the whole hotel
data set. The same is true for MMD, Bayesian optimization and decision trees for
the spam and water data sets. The reason is likely an already badly performing
black box, causing a high amount of mispredictions for the test sets, thus making
it hard to cover many mispredictions without also covering correctly predicted
data instances. Bayesian optimization achieves a higher or comparable median
F-score for four data sets while keeping a better or similar specificity. For the spam
data set the F-score is slightly better but the specificity results show that nearly
the whole data set is covered by the rule, making the explanation useless. For
the remaining six data sets Bayesian optimization could not reach the baseline
performance. The decision tree approach performs better or comparable in nine of
the eleven cases. Like with Bayesian optimization, the F-score for the spam data
set is close but the specificity is lacking. Overall, the specificity for this approach
is better than the baseline in most cases, or only slightly worse but instead a big
increase of the F-score can be observed in these cases. For ISlearn the spam data
set is missing, because even if only allowing conjunctions, handling around 100
features took too much time. The advantage of ISLearn seems to be, that it can
handle the water data set far better than the other approaches, providing rules
with reasonable specificity. Since we use F-score weighted towards precision and
the F-score in most cases only slightly decreases for a higher desired coverage,
this means ISLearn is able to find good rules to increase recall without reducing
precision too much. It is not surprising, that the specificity reduces drastically for
higher coverage values, since with only one rule and a maximum of two predicates,
in most cases it is impossible to only cover mispredictions. In eight cases ISLearn
is able to provide rules with F-scores comparable or higher than the baseline. On
average, extracting rules from decision trees performed best.

Rule Set Figure 17 displays weighted F-score and specificity for misprediction
explanations adhering to a given desired coverage, constructed by MMD for 11
data sets and five repetitions. Figure 18 and Figure 19 depict the same for the
Bayesian optimization and decision tree approach respectively. It is important to
know, that for MMD, when disjunctions are allowed, a desired coverage can be
set, but it is not guaranteed that a rule set option is generated, which reaches
this coverage. Since MMD provide multiple rule set options, we first selected the
ones which achieved the desired coverage and then chose the explanation with
the highest weighted F-score. If no option had a high enough coverage we settled
for a lower coverage. The visualized data shows, no matter the approach, that
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Figure 17: Weighted F-scores and specificity for MMD (rule set).

Figure 18: Weighted F-scores and specificity for Bayesian optimization (rule set).
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Figure 19: Weighted F-scores and specificity for decision trees (rule set).

for many cases the F-score and specificity stay the same for an increasing desired
coverage. This happens, when the rule constructed to clear a lower coverage already
covers enough mispredicted data instances to reach the higher coverage values.
Comparing the Bayesian optimization approach to the baseline, it performs similar
or better in 6 cases. Same as shown above, when constructing and evaluating
only a single rule, explanations generated by Bayesian optimization have a very
low specificity for the spam data set. Likewise, the same is true for MMD in
combination with the hotel data set. Our decision tree approach improves the
performance of constructed misprediction explanations in all but one case, in both
weighted F-score and specificity. While the F-score for the spam data set is also
comparable, the specificity in that case is far below the baseline. In summary
decision trees performed by far the best in constructing misprediction explanations
when employing the whole data set with all features.

Summary The experimental results show that utilizing our approach to extract
rules from decision trees instead of using rule induction like in MMD improves
performance of the resulting single rule in nine of eleven cases and resulting
misprediction explanation in ten of eleven cases. The efficient and effective technique
to find good data splitting features and thresholds by considering Gini impurity,
provides better results even in this simple form, with still more potential for
improvement. For both, single rule and rule set construction, Bayesian optimization
could improve on the baseline only in a few cases, while performing alike or worse
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Figure 20: CPU time required by Bayes, MMD and Trees (single rule).

in many. These results could possibly be improved with more optimization cycles,
but as we will show later, would result in a high increase in computational demand.
Sadly, ISLearn could only be evaluated for single rule generation, but was able to
convincingly improve upon the baseline in 6 of 11 cases. One unique strong point
of ISLearn is its ability to find the best rule that guarantees the desired coverage,
even for single rule generation, and get as close as possible to it. This seems to
improve results especially for data sets for which MMD struggles to provide rules
that not also cover most of the correctly predicted data instances.

Partial Answer to RQ1 Based on the experimental results, we conclude the
following:

RQ1 Based on our evaluation, we conclude that our decision tree approach to
construct misprediction explanations improves performance compared to
the baseline in 9 of 11 cases for single rule generation and in 10 of 11 cases
for full rule sets satisfying a desired coverage. Additionally, ISLearn was
able to improve one additional single rule case that decision trees could not
advance.

6.1.2 Computational Demand

Figure 20 through 22 show the computational demand, in form of CPU time in
seconds, for the different rule construction approaches, when generating a single
rule or a full misprediction explanation satisfying a desired coverage. This is done
for all 11 data sets and its five repetitions. Since execution time is always slightly
different even for the exact same code, we opted to also run each repetition five
times and calculate the average CPU time required.
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Figure 21: CPU time required by ISLearn (single rule).

Figure 22: CPU time required by MMD (top), Bayes (middle) and Trees (bottom)
(rule set).
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Single Rule Figure 20 displays the CPU time required for single rules constructed
by MMD, Bayesian optimization and decision trees for the 11 data sets and five
repetitions. Figure 21 contains the computational demand for the ISLearn approach.
Overall, a clear dependency between data set size (instances as well as features)
and CPU time required is shown in the visualized data for MMD, decision trees and
ISLearn. Demonstrated by the results for the heartWT and spam data sets, which
are by far the smallest and biggest respectively. For Bayesian optimization the
computational demand stays relatively stable for all cases, because the workload
for this approach is somewhat fixed, based on the number of optimization cycles,
initial points and points to sample. Compared to the baseline this helps for the
big spam data set, but is a disadvantage for smaller ones. Bayesian optimization
could only improve upon the baseline in 3 cases, while being significantly worse
for many. The results for ISLearn show the already mentioned problem of high
computational cost for feature rich data sets. For the spam data set with around
100 features even single rule generation was not feasible anymore in a reasonable
time. It is considerably worse in every case then the baseline and can only beat
Bayesian optimization for the small heartWT data set. One interesting detail is,
that the execution time is reduced for a higher desired coverage. The reason is
probably, that ISLearn tries to find the best rule, while getting as close as possible
to the required coverage, thus a lower coverage means more possibilities to reach
that coverage. In contrast to ISLearn, decision trees are extremely fast in providing
a rule. In all but one case the rule construction is finished in less than a second
of CPU time. The exception is the big spam data set for which rule construction
took around three seconds. For every case the decision tree approach required
significantly less CPU time than the baseline.

Rule Set Figure 22 depicts CPU time required for misprediction explanations
adhering to a given desired coverage, constructed by MMD, as well as with our
Bayesian optimization and decision tree approaches. The connection, mentioned
above, between computational demand and data set size is still true, but since it
is now possible that multiple rules are generated iteratively to satisfy a desired
coverage, the number of rules required becomes also a significant factor. If the
median execution time stays the same for increasing coverage values, the reason
for that is, that in the process of trying to cover for example 40 percent of the
mispredictions, the next rule added to the rule set already increases coverage to
above 80 percent, thus satisfying all other options. For Bayesian optimization the
execution time stays pretty predictable: The time required to construct a single
rule, multiplied by the number of rules needed to reach the coverage threshold. For
decision trees every iterative step of adding another rule to the explanation becomes
faster than the last one, because the tree needs to be trained on a smaller data set.
Bayesian optimization was considerably quicker than the baseline in 5 cases: the
four merge conflict prediction data sets and the spam data set. A big drawback is,
that every additional rule for the rule set adds substantial computational demand.
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For the bank data set Bayesian optimization is faster than the baseline for a low
desired coverage, but when more rules need to be added the approach falls behind.
The outlier for the bank data set and coverage of 80 percent is from a repetition
we forcible stopped after two hours because the rule set generation was stuck in an
endless loop. For 880 executions this happened 3 times. The reason was not obvious
but likely a missed edge case when implementing the approach. Our decision tree
approach eclipsed the results of the baseline exactly like for single rule generation.
In ten of eleven cases the misprediction explanation was generated in less or around
one second of CPU time.

Summary The experimental results show that utilizing our approach to extract
rules from decision trees drastically reduces computational demand of both, single
rule and full misprediction explanation generation for every case. Single rule and
rule set construction taken together, Bayesian optimization again could improve
on the baseline only in a few cases, while performing alike or worse in many. The
results would get even worse when trying to improve explanation performance by
increasing optimization cycles, initial points or points to sample. ISLearn could
not compete and the results show it is very computationally expensive.

Partial Answer to RQ2 Based on the experimental results, we conclude the
following:

RQ2 Based on our evaluation, we conclude that our decision tree approach to
construct misprediction explanations drastically reduces computational
demand compared to the baseline for single rule generation, as well as for
full rule sets satisfying a desired coverage, in every case.

6.1.3 Explanation Length

Figure 23 shows the length of generated misprediction explanations, in number of
predicates contained within, for the different rule construction approaches. This
is done for all 11 data sets and their five repetitions. The visual data shows, that
in many cases the median rule set length does not change much for increasing
coverage thresholds. The reason is the same, we already mentioned above: The
explanation constructed for a lower coverage might already clear higher thresholds.
The occasionally big variance in rule set length for different repetitions shows the
big impact a certain split into training set and test set can have on the results. In
the most cases MMD provided the shortest misprediction explanations or at least
similar length, while the rule sets constructed with Bayesian optimization usually
contained the most predicates.
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Figure 23: Number of predicates in explanation created by MMD (top), Bayes
(middle) and Trees (bottom).
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Partial Answer to RQ3 Based on the experimental results, we conclude the
following:

RQ3 Based on our evaluation, we conclude that our decision tree and Bayesian
optimization approaches did not produce misprediction explanations with
reduced rule set length compared to the baseline.

6.2 Experimental Results with most influential Input Features

In this Section we evaluate how our proposed rule creation approaches perform,
compared to the baseline of MMD [Cit+21], when only utilizing a set number of
most influential input features when constructing the misprediction explanation.
We also assess the effects on MMD and use the same three evaluation categories
as in Section 6.1.

6.2.1 Performance Metrics

Figure 24 through 31 show the weighted F-score and specificity for the different
rule construction approaches, when generating a single rule or a full misprediction
explanation with either a changing coverage and five influential input features, or
with a desired coverage of 60 percent and a variable number of features. Since
displaying the results for single rules and a changing amount of influential input
features requires eight graphs, these can be found in the Appendix as Figure 39
through 42 on page 74 and 75.

Single Rule First, we present how utilizing only a number of influential input
features impacts the performance when generating single rules with the different
approaches. Figure 24 displays the weighted F-score and specificity for single rules
constructed by MMD, Bayesian optimization and decision trees when using the five
most influential input features of every data set. Figure 25 contains the statistical
measures for the ISLearn approach. The visualized data shows, that only with a
few exceptions, the mean performance of the generated misprediction explanations
is very similar to the results when utilizing all input features (page 40). This is true
for both weighted F-score and specificity. Additionally, the variance in performance
for different repetitions is reduced in many cases. Using only a small number of
important features also allowed us to use ISLearn together with the spam data set,
which was not possible with all features. When observing the performance change
when relying on two, three, four or six influential features (Figure 39 through 42)
it is apparent, that for single rules there are only small differences in many cases.
Bayesian optimization is somewhat of an exception, since in some cases a significant
drop of the F-score can be noticed for a higher number of features.
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Figure 24: Weighted F-scores and specificity for MMD, Trees and Bayes (single
rule, five features).

Figure 25: Weighted F-scores and specificity for ISLearn (single rule, five features).
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Figure 26: Weighted F-scores and specificity for MMD (rule set, five features).

Figure 27: Weighted F-scores and specificity for Bayesian optimization (rule set,
five features).

51



Figure 28: Weighted F-scores and specificity for decision trees (rule set, five fea-
tures).

Variable Coverage Next, we show the performance of full misprediction expla-
nations adhering to a given desired coverage, when utilizing only the five most
influential input features for rule construction. Figure 26 through 28 depict the
weighted F-score and specificity of MMD, as well as for Bayesian optimization and
decision trees. The visual data shows, just like with single rule construction, the
performance of the rule sets, build with only five important features, is in most
cases as good or only slightly worse than using all input features. A slight loss
in performance is not surprising, since most of the pruned features also have a
non-zero importance in causing mispredictions, thus at least some information is
lost. We hoped the performance of Bayesian optimization would increase when
presented with less features, since this would reduce wasting limited optimization
cycles on low impact features. In some cases this worked and increased performance
significantly, but not as universally as we hoped. In many cases, the weighted
F-score remained nearly the same. Overall, the decision tree approach provided
the best results in most (8 of 11) cases, with Bayes being ahead in two and one
case tied between MMD and Trees.

Variable Feature Count Finally, for performance we inspect full misprediction
explanations with a desired coverage of 60 percent, when using a changing amount
of influential input features for rule construction. Figure 29 through 31) show the
weighted F-score and specificity of MMD, as well as for Bayesian optimization
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Figure 29: Weighted F-scores and specificity for MMD (rule set, coverage: 0.6).

Figure 30: Weighted F-scores and specificity for Bayesian optimization (rule set,
coverage: 0.6).
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and decision trees. The results show, that even when generating multiple rules to
build a rule set reaching the coverage threshold, the number of available influential
features to work with does not seem to have a clear impact, or in most cases
nearly no impact at all. In many cases utilizing only the two most influential input
features is enough to reach similar or only slightly worse results, while for Bayesian
optimization the performance even increases for some cases.

Summary The experimental results show that utilizing our approach to identify
input features with high impact on causing model mispredictions, and using only
these influential features to construct single rules or full misprediction explanations
leads to similar or only slightly reduced performance in most cases, compared
to considering all input features. The slight reduction in performance results
from the loss of information, when removing less influential input features, since
they still have a non-zero importance in causing mispredictions. The benefit is a
reduced performance variance between different repetitions in many cases. Bayesian
optimization is an exception, because for this approach, a significant improvement
of performance can be observed for some cases. The reason is, that Bayesian
optimization has a fixed amount of optimization cycles, and by already filtering out
input features with low importance, more cycles can be used to pin point better
feature and threshold combinations. The number of influential features used to
construct the misprediction explanations in most cases had no significant impact
on the performance or did not reveal a clear trend.

Figure 31: Weighted F-scores and specificity for decision trees (rule set, coverage:
0.6).
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Partial Answer to RQ1 Based on the experimental results, we conclude the
following:

RQ1 Based on our evaluation, we conclude that our approach to identify input
features with high impact on causing model mispredictions, is not able to
increase performance for MMD and decision trees, while improving results
for Bayesian optimization only in a few cases.

6.2.2 Computational Demand

Figure 32 through 35 show the computational demand, in form of CPU time in
seconds, for the different rule construction approaches, when generating a single
rule or a full misprediction explanation with either a changing coverage and 5
influential input features, or with a desired coverage of 60 percent and a variable
number of features. The results for single rules and a changing amount of influential
input features can be found in the Appendix as Figure 38 on page 73.

Single Rule Figure 32 displays the CPU time required for single rules constructed
by MMD, Bayesian optimization and decision trees with the five most influential
input features. Figure 33 contains the computational demand for the ISLearn
approach. The results show, that our approach, to only utilize influential input
features, significantly reduces the computational demand of MMD and ISLearn for
every case. Making it even feasible to generate rules for the spam data set with
ISLearn. For Bayesian optimization the execution time stays in the same range of
200 to 250 seconds, exactly like when using all features. This is not surprising, as we
already mentioned, that the computational demand of the Bayesian optimization
approach is not dependent on the data set size. Our decision tree approach required
more time for every case, when also employing the feature reduction. The reason
is, that the explanation construction is already extremely quick with all features,
and the time saved by using less features cannot offset the time required to train a

Figure 32: CPU time required by MMD, Trees and Bayes (single rule, five features).
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Figure 33: CPU time required by ISLearn (single rule, five features).

Figure 34: CPU time required by MMD (top), Bayes (middle) and Trees (bottom)
(rule set, five features).
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random forest to predict mispredictions and then identify influential features with
feature importance. The visualized data for varying number of features (Figure
38) clearly demonstrates the reduction of computational demand for MMD and
ISLearn when using less features. For the decision tree approach the difference is
negligible.

Variable Coverage Figure 34 depicts the CPU time required for building full
misprediction explanations with the five most influential input features. Most of
the observations made for single rule generation are true for rule set construction
as well. The computational demand for MMD is considerably reduced in every
case. The execution time of the decision tree approach is still longer than just
using all features, even when multiple trees would be trained on less data. Whether
Bayesian optimization is faster or slower depends on the number of rules needed
to reach the desired coverage, when using only a reduced number of features. On

Figure 35: CPU time required by MMD (top), Bayes (middle) and Trees (bottom)
(rule set, coverage: 0.6).
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average, execution time is shorter for six cases, and higher in the remaining five,
thus it depends on the data set and no clear statement can be made.

Variable Feature Count Figure 35 shows the CPU time required for building
full misprediction explanations with a varying number of important input features,
when adhering to a desired coverage of 60 percent. For MMD it is again very
clear, that reducing the number of utilized input features considerably reduces the
median CPU time required in nearly every case. For the decision tree approach
the difference in execution time is again insignificant. The results for Bayesian
optimization do not show a distinct connection between computational demand
and number of influential features used. The outlier for two influential features and
the job data set contains two of the three repetitions that we terminated after two
hours, because they got stuck in an endless loop of adding the same rule to the
rule set.

Summary The experimental results show that utilizing our approach to identify
input features with high impact on causing model mispredictions, and using only
these influential features to construct single rules or full misprediction explanations,
leads to significantly reduced computational demand for MMD and ISLearn in
every case. Since the execution time of the Bayesian optimization approach is
not dependent on the data set size and mostly based on the number of iterative
explanation construction steps needed to reach the desired coverage, no general
statement can be made when comparing results to the baseline. The decision tree
approach does not benefit from utilizing only the most influential input features,
because it is already extremely quick when using all features, and the time saved
from working with less features, does not outweigh the time spent to identify
important features. Still, even with the slightly increased execution time and the
reduced computational demand of MMD and ISLearn, the decision tree approach is
by far the fastest in providing single rules as well as full misprediction explanations.
Additionally, a clear correlation between computational demand and number of
features used can be observed for MMD and ISLearn, while the effect for decision
trees is insignificant.

Partial Answer to RQ2 Based on the experimental results, we conclude the
following:

RQ2 We conclude that our approach to identify input features with high impact on
causing model mispredictions, is able to significantly reduce computational
demand for MMD and ISLearn in every case, while providing mixed results
for Bayesian optimization, and increased execution times for decision trees.
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Figure 36: Number of predicates in explanation created by MMD (top), Bayes
(middle) and Trees (bottom) (five features).

6.2.3 Explanation Length

Figure 36 and 37 show the length of generated misprediction explanations, in number
of predicates contained within, for the different rule construction approaches, when
generating full misprediction explanations with either a changing coverage and five
influential input features, or with a desired coverage of 60 percent and a variable
number of features.

Variable Coverage The visualized data in Figure 36 shows, when utilizing only
the five most important features, MMD produces explanations with nearly the
same length compared to using all features, with exceptions in case of the spam
and water data sets. This is not surprising since the explanation length is also
considered by MMD when constructing the rule set, keeping the explanations
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short. For Bayesian optimization the results match the findings for computational
demand. A longer rule set leads to a proportional increase in execution time. In
that vein it is also true, that like for computational demand, Bayesian optimization
cannot improve upon the baseline consistently. For some cases the explanations are
shorter, while for others slightly longer rule sets are constructed, but in most cases
the difference in length is rather small. The same can be observed for decision trees,
where the rule set length rarely differs more than a few predicates. Overall, the
findings observed for explanation length with all features are still true: On average
MMD produces the shortest rule sets, while Bayesian optimization provides the
longest.

Figure 37: Number of predicates in explanation created by MMD (top), Bayes
(middle) and Trees (bottom) (coverage: 0.6).
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Variable Feature Count Figure 37 shows, that for MMD and decision trees,
the number of influential features used had no noteworthy impact on the median
explanation length. That is also true for Bayesian optimization in most cases, except
for the bank and java data sets. The outliers for the job data set are again from
the same two faulty repetitions mentioned in Section 6.2.2 paragraph “Variable
Feature Count”.

Partial Answer to RQ3 Based on the experimental results, we conclude the
following:

RQ3 Based on our evaluation, we conclude that our approach to identify input
features with high impact on causing model mispredictions is not able to
consistently reduce misprediction explanation length, but in most cases the
length stays close to the same or only slightly increases.

Evaluation Summary Altogether, the main conclusions of our evaluation are:
The decision tree approach was able to improve upon the baseline’s performance
in most cases, while also reducing computational demand drastically. ISLearn
has serious scalability problems, and Bayesian optimization could not reliably
outdo the results of MMD. When utilizing our approach to construct misprediction
explanations exclusively with influential input features, computational demand
is reduced significantly for rule construction approaches, whose execution time is
influenced by the number of input features. The loss of information by only using
a small number of input features only slightly reduced explanation performance
and slightly increased rule set length.

6.3 Threats to Validity

In this thesis, we rely on non-deterministic processes to construct misprediction
explanations for a black box machine learning model. Therefore, we acknowledge
possible internal and external threats to the validity of our work.

Internal Since machine learning algorithms intrinsically contain non-deterministic
characteristics, utilizing them always poses a major threat to internal validity. It
is essential to be certain, that results are not just random occurrences. For that
reason, a thorough statistical evaluation is required, which we did by training five
models for every data set with different training sets and running every experiment
five times. We use the same data sets as Gesi et al. [Ges+23], whose research topic
is very similar to ours. Additionally, we did not tune the input parameters of the
baseline we compare against (MMD) or changed hyperparameters to influence the
results of our approaches. We kept the default input parameters when training
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machine learning models with the exception of limiting the maximum decision tree
depth to two, when the tree is used to extract rules with two predicates. Finally,
we automated the data collection as well as the statistical evaluation, to avoid
human error.
The baseline determines performance of an explanation with precision and recall.

Because our used data sets display a noticeable difference in class distribution, we
opted to also measure specificity, which in turn enables us to assess the quality of
generated misprediction explanation with more confidence.

External The central threat to external validity is, whether our experimental
results can be generalized for other black box models, based on the restricted
number of evaluated models we trained. Still, since we utilized models based on a
variety of real-life data set, we are convinced that our approaches will induce similar
results for all kind of data sets. In addition, our techniques are fully model-agnostic
and consequently work for any type of machine learning model.
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7 Discussion and Limitations

In the following, we discuss the results of this thesis and detail certain limitations
of our proposed approach.

Requirement of Test Data To generate a misprediction explanation for a given
black box machine learning model, a corresponding test data set is required,
because data instances with known ground truth are needed to be able to check
for mispredictions. For most cases this also makes it impossible to easily generate
additional data instances, since the ground truth is not known. Additionally,
if the constructed misprediction explanation performs well for new data is very
dependent on the quality of the test data set. Our experimental results for repetitions
with different training-test data splits already show considerable differences in
performance and rule set length of the generated explanations. Consequently,
the test set needs to have a reasonable split between correct predictions and
mispredictions, as well as contain data instances that represent the full value range
of every feature if possible. Otherwise, the misprediction explanation might only
perform well for a certain input space covered by the test data set.

Precision, Recall and Length A balance must be struck between precision
recall and explanation length. Focusing too much on two characteristics always
worsens the third. Maximizing precision and recall leads to long, overfit rules,
while maximizing precision and keeping the rule set short causes a low recall. The
third option is a low precision when focusing on recall and length. Under these
constraints it is important to adjust the weights of these characteristics depending
on the use case.

Rule Construction Approaches MMD utilizes rule induction with beam search
to construct the rules for misprediction explanations and we proposed three more
possible approaches, employing ISLearn, decision trees and Bayesian optimization.
Each option has advantages and disadvantages, which need to be considered. Since
MMD takes rule length into account, it consistently provides short explanations,
but in return the suggested rule sets could not always satisfy the desired coverage
and MMD becomes expensive for bigger data sets. ISLearn is the only approach,
able to adhere to a coverage threshold for single rules. I addition ISLearn tries
to produce an explanation with a coverage close to the threshold, while the
other approaches tend to overshoot the target. In return ISLearn has even bigger
scalability problems than MMD making it extremely computationally expensive in
its current state. Bayesian optimization’s execution time is not affected by data
set size at all, but performance of produced explanations likely decreases for an
increasing number of input features, when the number of optimization cycles is
not increased as well. Furthermore, in our experiments, rule sets constructed with
Bayesian optimization contained the most rules. Our decision tree approach is able
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to produce misprediction explanations extremely fast, while also providing the best
explanation performance in most cases. Without tweaking the training parameters,
rule sets tend to be longer than MMD, since it can happen, that rules with very
high precision but low recall are added to the explanation.

Rule Performance Measure When constructing a misprediction explanation,
the manner in which the performance of rules is compared against each other is
very influential on the final result. MMD considers a mix of precision, recall and
rule length. Since we limited the rule length to a maximum of two predicates
for our thesis, we utilized weighted F-score to assess, which rule to add to the
explanation next. In this way, both precision and recall matter, but we were able
to increase the weight of precision to double that of recall. In most cases this
prevented both: very long rule sets, by adding rules with high precision but only
covering a few mispredictions, and many false positives, by using high recall rules
with low precision. Still, the exact weights are arbitrarily chosen, just to favor
precision. A more sophisticated way to measure rule performance is desirable and
even required when incorporating the possibility of different rule lengths.

Feature Importance Measure For our approach to identify the most influential
input features we needed an explainable machine learning technique to extract,
which input features have overall the most impact on a model’s prediction. We
tried three options for random forests with scikit-learn: the build-in impurity-
based feature importance, feature importance based on feature permutation and
feature importance with SHAP. The misprediction explanations constructed when
employing SHAP performed in many cases slightly better than the one generated
when using impurity-based feature importance, but SHAP is so computationally
expensive (especially for bigger data sets), that the overall execution times increased,
rendering the feature reduction meaningless. Impurity based feature importance
can be susceptible for high cardinality features and feature importance based
on feature permutation is an alternative that overcomes these limitations, but
is more costly. The two approaches certainly deemed different input features as
most influential, but when constructing misprediction explanations with them,
the ones relying on permutation importance performed far worse, even when we
tried different amount of feature permutations. For these reasons we settled for
impurity-based feature importance in this thesis, but the whole approach would
unquestionably benefit from a fast but more reliable feature importance measure.

Baseline We chose to compare our results against the explanations provided by
MMD, since the research by Cito et al. [Cit+21] presents the idea of misprediction
explanations we tried to improve upon, in both performance and computational
demand. During our work on this thesis, new research was published by Gesi et al.
[Ges+23], also aiming to improve upon MMD by leveraging feature bias to select
important features. Since, we use a different approach to select important features,
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we considered comparing our results to theirs, and chose to use the same data
sets to make that possible. We distanced ourselves from the idea after we could
not even get close to reproduce the performance they calculate as the baseline for
MMD and checking the data set coverage of one example explanations presented
in the paper. One example rule set given in the paper is for the ruby merge conflict
data set, which has around 40.000 data instances. The given rule set only covers
eight data instances from the full data set. Even considering, that all these eight
are split into the test set and mispredicted by the trained model, we are unable
to comprehend how the precision and recall values of more than 90 percent are
calculated for the rule set.
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8 Conclusion and Future Work

In this thesis, we proposed different approaches to improve upon the idea of
misprediction explanations presented by Cito et al. [Cit+21]. We aimed to boost
explanation performance by utilizing different rule construction techniques and
to enhance scalability with a procedure to identify input features with the most
impact on causing mispredictions. Instead of rule induction with beam search, we
evaluated the use of ISLearn, Bayesian optimization and decision trees to generate
rules. To reduce the number of input features, we trained a random forest to predict
mispredictions and employed impurity-based feature importance, to extract the
significant ones.

We evaluated the effectiveness of our approaches by constructing misprediction
explanations for machine learning black boxes trained on 11 real-world data sets
and compared the results to MMD as a baseline, in three essential characteristics:
(i) Rule Set Performance, (ii) Computational Demand and (iii) Rule Set Length.
The experiments were repeated with and without our feature reduction approach,
and for construction of single rules or full misprediction explanations. Because
of severe scalability problems ISLearn could only be evaluated when generating
single rules (no disjunctions). Evaluating performance, the results for ISLearn
and Bayesian optimization suggest no consistent improvement, performing worse
for some and better for other cases, compared to the baseline. The decision tree
approach however was able to improve upon the baseline in most cases. Considering
computational demand, ISLearn could not compete, while Bayesian optimization
could beat the baseline only in a few cases. In contrast, decision trees eclipsed
the results of the baseline drastically reducing computational demand in every
case. In some cases, up to more than 99.9 percent, producing a better performing
explanation in around one second instead of more than 30 minutes. Evaluating rule
set length, MMD already constructs short rule sets and both Bayesian optimization
and decision trees could not improve upon that in most cases. The experimental
results show, that explanation performance is usually only slightly reduced and
rule set length just slightly increased, when utilizing our approach to construct the
explanation exclusively with influential input features. In return computational
demand is reduced significantly for rule construction approaches, whose execution
time is influenced by the number of input features. An exception is our decision
tree approach, which already is very fast, and identifying the features to use takes
more time than is saved by training the decision trees on less features.

In conclusion, determining and utilizing only influential input features can signif-
icantly reduce computational demand of constructing misprediction explanations,
when a slight reduction in performance is acceptable. Furthermore, the results for
our decision tree approach are very promising, being able to provide slightly better
performing explanations than the baseline in a fraction of the time, without the
need to limit input features for scalability.
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Future Work There are several opportunities for improvement with future re-
search, some already mentioned in Section 7. All rule set construction approaches
would benefit greatly from the introduction of a more sophisticated rule perfor-
mance measure. MMD uses weights for precision, recall and rule length, while
our approaches utilize weighted F-score to quantify rule performance. Both are
somewhat rudimentary and considering more rule and rule set characteristics
might improve explanation quality as a whole. When reducing the number of
input features to improve scalability, it is crucial to select the correct ones to
keep. We use impurity-based feature importance to extract the most influential
features from a random forest, which is trained to predict mispredictions. However,
impurity-based feature importance has flaws and a more reliable technique would
be desirable, but needs to be computationally cheap to be feasible. If the technique
is model agnostic, this would also allow to train more complex machine learning
models than random forests, to better predict mispredictions. Since employing
decision trees to generate rules had very promising results, even without influencing
training parameters, the approach can likely be improved with a more sophisticated
training process. Exploring different options for training parameters or varying
data subsets, in a random forest like fashion, might discover better rules than
the current straight forward method. Finally, an unexplored topic is the relation
between the composition of the test set used to construct a misprediction expla-
nation and the performance of the rule set for new unseen data. No universally
useful misprediction explanation can be built from a test data set only containing
instances with minimal differences, if the black box model was trained on more
varied feature values. Thus, the question arises: What are necessary requirements
regarding test sets, to construct misprediction explanations useful in practice?
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Appendix

Figure 38: CPU time required by top to bottom: MMD, ISLearn, Bayes and Trees
(rule set, coverage: 0.6).
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Figure 39: Weighted F-scores and specificity for MMD (single rule, coverage: 0.6).

Figure 40: Weighted F-scores and specificity for ISLearn (single rule, coverage: 0.6).
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Figure 41: Weighted F-scores and specificity for Bayes (single rule, coverage: 0.6).

Figure 42: Weighted F-scores and specificity for Trees (single rule, coverage: 0.6).
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