
Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Informatik

Predicting Spin - Interaction Parameters of
the Hamiltonian from Simulated INS Data of

Single Crystals

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science (M. Sc.)

eingereicht von: Eduard Gette
geboren am: 24.09.1992
geboren in: Pawlowka

Gutachter/innen: Prof. Dr. rer. nat. Lars Grunske
Dr. Jens-Uwe Hoffmann

eingereicht am: verteidigt am:

Contents
1 Introduction 5

2 Previous Work and Addressed Challenges 9
2.1 ML-Assisted Approaches . 9
2.2 End-to-End Approaches . 10

3 Artificial Neural Networks and Variational Inference 11
3.1 Fundamentals of Artificial Neural Networks 11
3.2 Convolutional Neural Networks . 14
3.3 Variational Inference and Bayesian Neural Networks 16

4 The Data Set 19
4.1 Data Generation . 19
4.2 Feature Engineering . 20
4.3 Pre-Processing . 20

5 Experiments on Undistorted Simulation Data 22
5.1 Research Methods . 22

5.1.1 Motivation . 22
5.1.2 General Experiment Structure 22
5.1.3 Evaluation . 23
5.1.4 Hyperparameter Optimization 24

5.2 Experiment 1: Baseline Bayesian CNN 27
5.2.1 Goal of the Experiment . 27
5.2.2 Architecture / Functional Model 27
5.2.3 Stochastic Model . 29
5.2.4 Training . 30
5.2.5 Evaluation . 31
5.2.6 Influence of Training-Split Size on Performance 32

5.3 Experiment 2: Influence of the Cold Posterior Effect 35
5.3.1 Goal of the Experiment . 35
5.3.2 Training . 36
5.3.3 Evaluation . 36

5.4 Experiment 3: Hybrid-Frequentist-Bayesian CNN 39
5.4.1 Goal of the Experiment . 39
5.4.2 Architecture / Functional Model 39
5.4.3 Training . 40
5.4.4 Evaluation . 40

5.5 Experiment 4: Combining All Features 44
5.5.1 Goal of the Experiment . 44
5.5.2 Training . 44
5.5.3 Evaluation . 44

3

5.5.4 Recalibration . 44

6 Discussion 48

7 Conclusion and Future Work 51

8 Bibliography 53

9 Appendix 57
9.1 Table of Abbreviations . 57

4

1 Introduction

Figure 1: Crystal and magnetic struc-
ture of BaNi2V2O8 within
(a) a honeycomb plane and
(b) a single unit cell. The
red arrows represent spin di-
rections. The magnetic ex-
change interactions are rep-
resented by the colored lines.
[24]

Elementary particles carry an intrinsic angular
momentum, which is called spin due its loose
resemblance to a quantity from classical me-
chanics associated with the motion of a rigid
object around its center of mass [18, p. 165].
The magnetic properties of a material depend
on the alignment of these spins, e.g. the spins
of the electrons in the outermost region of the
atom, called valence electrons.[47, p. 133]

Following the rules of thermodynamics, the
ground state of the spins can be determined
by finding the alignments that minimizes the
equation F = U − T ∗ S, where F is called
the free energy of the total system, U is the
internal energy, T is the temperature above
absolute zero and S is the entropy.

When studying the magnetic properties of
crystals under low temperatures, whose struc-
ture can be thought of as a 3-dimensional lat-
tice of repeating elemental cells [8, p. 7] (figure
2) and is therefore highly ordered, the free en-
ergy term is dominated by the internal energy
and therefore by the different types of interac-
tions between the individual spins and their
environment, e.g. external magnetic fields.
(figure 1) Therefore theoretical calculations
that are to be compared with experimental
results, start from a model of this energy.

One such model is the Heisenberg model, also
known in physics as the Hamiltonian, that describes the energy as a linear combination
of the energies of different types of interactions. Due to the large number of particles
involved, only a subset of all possible interactions can be considered to make the
problem tractable. Which interactions should be included to properly model the system
is usually decided in a phenomenological manner [47, p. 67].

Each type’s contribution to the overall energy is given by a hyperparameter, that has
to be estimated to model the given system. In practice these hyperparameters are
estimated using an iterative approach analogous to the one shown in figure 3. For
example in the case of this thesis the interaction structure is given by the Hamiltonian

5

Figure 2: The 14 Bravais lattices and seven crystal classes possible in three-dimensional
space. [29]

H =
∑
i>j

Jn · Si · Sj +
∑
i>j

Jnn · Si · Sj +
∑
i>j

Jnnn · Si · Sj +
∑
i>j

Jout1 · Si · Sj

+
∑
i>j

Dxy · Sc2

i +
∑
i>j

Dinplane · Sa2

i

, with Jn, Jnn, Jnnn and Jout1 , denoting the factor for the nearest, 2n-nearest, 3rd-nearest
neighbor and inter-plane interactions respectively, while Dxy and Dinplane denote the
factors for the XY-plane and the in-plane anisotropy.

The experimental data is data resulting from Inelastic Neutron Scattering, short
INS, experiments with the single crystal BaNi2V2O8 and the theoretical spectra are
obtained by sampling the hyperparameter space of the Hamiltonian and simulating
the experimental outcome using the SpinW [44] software package.

INS experiments are a special kind of spectroscopy in which a monochromatic incident
beam of neutrons is fired at a sample of the material of interest. Upon collision with the
target material an incident neutron gets diffracted and some of its energy is absorbed
by the sample, with the strength of both kinds of interactions being determined by the
state of the sample’s spins. Finally the wave vector transfer Q⃗, which represents the
position in reciprocal space, and the energy transfer h̄ω of the diffracted neutron are
registered by a set of detectors behind the sample. Combining both of those properties
in a graph provides a kind of magnetic profile for the material, called the Dynamical

6

Figure 3: A flow diagram for the analysis of dynamical spectra. [13, p. (1-5)]

Structure Factor S(Q⃗, ω) (DSF)[31, p.363-365].

However reliably fitting simulated to experimental data has proven to be difficult using
classical approaches, e.g. minimizing χ2, due to artifacts in experimental and simulated
data causing the distance function to be noisy and flat around its minimum.[37]

Recent approaches to overcome those limitations in related fields of study attempt
to leverage Machine Learning (ML) algorithms [10][37], that have proven to be
successfully applicable to a wide range of problems in other domains.[49]

In this thesis the applicability of ML algorithms to directly solve the inverse trans-
formation problem of regressing Hamiltonian parameters from simulated INS data of
single crystal materials, is investigated using a previously constructed simulated data
set of the single crystal BaNi2V2O8.

To this end the thesis is structured in the following way.

First Previous Work and Challenges gives a short overview of current attempts to
use ML to solve different problems in the field of crystallography to the best of the
author’s knowledge at the time of writing. Also the advantages and disadvantages
of the two identified approach categories are outlined providing the reasoning for the
choice of models and experiments in the consecutive chapters.

Next the chapter Artificial Neural Networks and Variational Bayesian Methods
gives a short introduction to the most important concepts necessary to understand the
algorithms and methods used in this work.

Chapter 4 introduces the data set, describing how the data was obtained as well as
how feature engineering and pre-processing are performed in all experiments of the
consecutive chapter.

7

The following chapter 5 summarizes a variety of different experiments performed on
the data set and their methodology, with each one highlighting different modelling
choices and how they affect different aspects of interest of the resulting algorithms,
such as sharpness, calibration and accuracy of predictions or computational demand.

In chapter 6 all findings of the previous chapters are discussed and how they relate to
the individual research questions investigated in this thesis.

Chapter Conclusion and Future Work provides a short overview of what has been
achieved and highlights areas of interest for further research.

8

2 Previous Work and Addressed Challenges
Although at the time of writing of this thesis research on the applicability of ML for
this specific problem is still sparse, two broad categories of approaches can be identified
considering comparable problems in the wider context of determining properties of
crystal materials from experimental data.

Either (I) ML algorithms are being used as an intermediate step, e.g. to narrow down
the search space of downstream tried-and-proven methods, or (II) a direct regression
of the desired target variables from the inputs is being performed.

2.1 ML-Assisted Approaches
An often debated issue of ML algorithms, especially those based on Artificial Neural
Networks (ANN), is their black-box behavior. Gaining insights into the inner workings
of such an algorithm to understand how it makes predictions and how those predictions
are affected by changes in the input is still non-trivial and spurred an active field of
research of its own. A natural approach in natural sciences, where fitting explainable
models to experimental data is key, is therefore to solely restrict use of ML algorithms
to areas where traditional approaches have proven unreliable or too time consuming.

For example in a very closely related problem A. M. Samarakoon et al. combined
traditional iterative least-squares fitting to match simulation to experimental data
with a Variational Auto Encoder [23] (VAE). The VAE was trained to create lower-
dimensional embeddings of the data that are considered to contain only the most
relevant information, removing unwanted noise and artefacts. These embeddings are
then used in the fitting process to provide a more robust distance measure. Their
algorithm suggests multiple sets of parameters by using a tolerance threshold, allowing
for a quantitative measure of result uncertainty. [37]

Other more remotely related examples of ML-assisted efforts in the field of crystallog-
raphy include:

1. Changwoo, Chen and Lee trained various simple ML models to create a pre-
selection of scattering model classes that are likely to succeed in modelling the
provided Small-Angle-Scattering (SAS) data [5]

2. Liu et al. used a Convolutional Neural Network [26] (CNN) to suggest most
likely space groups for a given atomic pair distribution function with a top-6
accuracy of 91.9 % [27]

Related challenges addressed by this thesis. Even though hybrid approaches are
easier to interpret because they only apply black-box algorithms at non-critical steps
to support tried-and-proven methods, they do not fully leverage the capabilities of
artificial neural networks. For example the algorithm proposed by A. M. Samarakoon

9

et al. can only be used to predict discrete combinations of values sampled from the
search space, while the optimal solution might be somewhere between those values.
Although its granularity can be improved by increasing the number of iterations of the
process, the time to find a solution scales linearly with the number of simulations.

For this reason in this thesis the following questions are addressed to alleviate the
previously mentioned black-box problem of ANN-based approaches:

• How is uncertainty quantification performed in hybrid-approaches and what are
the underlying assumptions/ limitations?

• How can some of those concepts be transferred to end-to-end approaches?

• Based on that, which steps effectively reduce uncertainty in end-to-end models?

2.2 End-to-End Approaches
Despite being hard to interpret ML algorithms have established themselves as state-
of-the-art in a variety of fields, even outperforming humans in specific tasks such as
playing the board game Go[38].

At the time of writing to the best of the author’s knowledge no results on using ANNs
to predict Hamiltonian parameters from single crystal INS data, real or simulated, in
an end-to-end manner have been reported. Nevertheless several approaches to apply
end-to-end ML algorithms to solve related problems have been developed, including:

1. Garcia-Cardona et al. use a shallow CNN to predict crystallographic symmetry
classes and a random forest regressor to estimate unit cell parameters of crystal
structures from simulated Scattering Length Density (SLD) profiles [15]

2. Souza et al. employed different ML algorithms regularly used in computer vision
tasks to solve the classification problem of whether an image contains a diffraction
pattern or not [41]

3. Sullivan et al. formulate the problem of integrating Bragg peaks as a segmentation
problem using a U-Net [36] to create Bragg peak masks [43]

Transferring the main concepts of the approaches in the aforementioned related topics
of research to the task of regressing Hamiltonian parameters leads to the following
questions that are investigated in later chapters:

Related challenges addressed by this thesis.

• Are ANN employed in an end-to-end manner capable of accurately predicting
Hamiltonian parameters from simulated INS data?

• Which trade-offs have to be considered?

• How to determine an optimal set of hyperparameters?

10

3 Artificial Neural Networks and Variational Inference
3.1 Fundamentals of Artificial Neural Networks
Machine learning is a field of study concerned with the development and training of
mathematical models and algorithms capable of automatically extracting meaningful
patterns from large collections of data without being explicitly programmed. [2, p. 1-2]

One such class of algorithms are Artificial Neural Networks (ANN) (figure 4), often
just called Neural Networks (NN) or Multilayer Perceptron MLP. [2, p. 229]

Figure 4: Venn diagram of machine learning concepts and classes. ([20], Fig. 1)

In the case of feedforward NN models the functional form is a series of functional
transformations described by the equation:

zj = h(
D∑

i=1
w

(l)
ji xi + wj0) (3.1)

, where zj with j = 1...M denotes the so called activation of the jth unit, l denotes
the lth step of the series, known as the layer, wji the weight parameter of the jth unit
for the ith component of the input vector x⃗ and wj0 the corresponding bias. h is a
differentiable, nonlinear function named activation function.[2, p.227-228]

Consecutive layers operate on the activations of the previous layer. All layers between
the input and the last layer, the output layer, are called hidden layers and the total
number of layers is commonly referred to as the depth of the NN. Besides learning a
nonlinear mapping from their inputs to a useful representation, output layers have the
additional purpose of shaping the output of the NN into a format suitable for the task
the model is intended to perform.

Visually, feedforward networks are commonly depicted in the form of network graphs
such as shown in figure 5.

11

Figure 5: Network diagram for a feedforward neural network with two hidden fully
connected (FC) layers. Variables are depicted as nodes and weights as edges
between those nodes. Fully connected describes the property that nodes in
consecutive layers are connected to all nodes of the previous layer.([2], Fig.
5.1)

From a theoretical point of view feedforward NNs are universal approximators, meaning
that they are capable of approximating any measurable function to any desired degree
of accuracy given at least one hidden layer with a sufficiently large number of hidden
units. A corollary of this result is that if a deterministic relationship between the
input and the target exists, the quality of the approximation is solely dependent on
an adequate choice of training procedure and hyperparameters, i.e. number of hidden
units.[19]

The process of training a NN for a regression problem is best understood when analyzed
from a probabilistic point of view. For the sake of simplicity the problem is reduced to
regression of a single real valued target variable t, which is assumed to follow a Gaussian
distribution with the mean being dependent on the network input x and a constant
variance β−1. Given these assumptions the conditional probability distribution to be
approximated can be expressed as

p(t|x, w) = N (t|y(x, w), β−1) (3.2)

12

Following a maximum likelihood approach, provided a data set of N independent,
identically distributed observations X = {x1, ..., xN} and a set of target values T =
{t1, ..., tN}, the task of finding a set of weights wML that approximate the unknown
distribution as closely as possible, is framed as an optimization problem, i.e. maximizing
the likelihood function:

wML = arg max
w

p(t|X, w, β) = arg max
w

N∏
n=1

p(tn|xn, w, β) (3.3)

By convention ML tasks are formulated in terms of minimization of a so called loss
function[17, p. 80] L. For regression this loss function is the sum of squared errors,
which can be derived from the previous equation by taking the negative logarithm of
the likelihood function

L(x, w) = β

2

N∑
n=1

(y(xn, w) − tn)2 − N

2 ln(β) + N

2 ln(2π) (3.4)

and finally dropping all constants, since they do not affect the optimization. The final
optimization task is then given by

arg min
w

L(x, w) = arg min
w

N∑
n=1

(y(xn, w) − tn)2 (3.5)

After finding the optimal mean estimator y(x, wML), the estimated variance is given
by

σ2
ML = β−1

ML = 1
N

(y(xn, wML) − tn)2 (3.6)

[2, p.233-234]

The most commonly used training algorithm to find wML, gradient descent, consists of
two stages: (I) the feed-forward stage and (II) the backpropagation stage.

In the first stage the input data is passed in forward direction through all layers of
the network and the error between the network’s output and the targets is calculated.
Then in the backpropagation stage the contribution of each weight to the total loss
is calculated in the inverse direction, from the last to the first layer, by calculating
the gradient of the loss function with respect to the models weights. Each weight’s
contribution is used to adapt the weight for the next iteration of the algorithm.

13

Computation of the exact gradient is very expensive when dealing with large data sets,
because it requires to pass the entire data through the network for each iteration. As a
result in practice it is more common to compute an unbiased estimate of the gradient
instead, by taking the average gradient over small random subsets of the data, the
so called minibatches[17, p. 290], cycling over the entire data set multiple times until
convergence. Each cycle is referred to as an epoch. The simplest representative of this
type of algorithm is Stochastic Gradient Descent (SGD) (figure 6).

Figure 6: Pseudo-code for the SGD algorithm[17, p. 291]

3.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are special NN models from the class of
deep neural networks (see figure 4) that employ the mathematical operation known
as convolution or some variation of it, in place of general matrix multiplication in at
least one of their layers. In most programming libraries, although still being called
convolution by convention, the cross-correlation function, which for a two-dimensional
input I and kernel K takes on the form

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i + m, j + n)K(m, n) (3.7)

is implemented instead.[17, p. 326] Figure 7 provides a visualization for the operation
specified by equation 3.7.

Convolutional layers possess four important properties that motivate their usage in
deep learning, when dealing with data that has a known grid-like topology, like images
or time series:

14

Figure 7: Example of 2-D cross-correlation. No padding is applied, so the output is
restricted to areas where the kernel lies entirely within the image.([17], Fig.
9.1)

1. sparse interactions: Every output is only affected by a small subset of size
k of the inputs, where k is the size of the convolution kernel which is usually
several orders of magnitude smaller than the input’s size m. This reduces the
number of operations and required parameters to compute the output of one layer
down from (m ∗ n) to (k ∗ n) per example. It is also noteworthy that although
direct connections are sparse, deeper layers of CNNs, through the outputs of their
previous layer, are indirectly connected to an increasing proportion of inputs, i.e.
possess a larger receptive field. As a result the complexity of learned features of
each layer increases in the direction of increasing depth.

2. parameter sharing: Each weight is not only used exactly once but rather for
multiple functions in the same model, e.g. given an image input a single set of
parameters is learned that is applied to every position in the image. Although
not relevant regarding the runtime of forward propagation this further reduces
the storage requirements of the model.

3. equivariant representations: The special kind of parameter sharing, as visu-
alized by figure 7, gives the layers the property of equivariance to translation,
meaning that a translation of the features in the input results in an equal
translation of the activations of the output.

4. input-size flexibility: CNNs allow for a variety of mechanisms to handle inputs
of varying size, e.g. through a combination of 1x1-convolutions and pooling
operations, which is useful for many applications like image segmentation tasks.

[17, p.329-335]

15

3.3 Variational Inference and Bayesian Neural Networks
In contrast to the maximum-likelihood estimation (MLE) approach described by
equation 3.3, which is employed by standard NN models and results in point-estimates
for the optimal weights, in Bayesian inference the full posterior probability distribution
of the weights is calculated. According to Bayes’ theorem this posterior distribution
can be computed as

p(Ω|T) = p(T |Ω) ∗ p(Ω)
p(T) (3.8)

, where T is an observed variable dependent on a latent variable Ω, p(T |Ω) is the
likelihood, prior p(Ω) is a distribution that captures prior information about Ω and
p(T) is the marginal probability distribution of observations known simply as marginal
or evidence.

Unfortunately in many cases the computation of the marginal, given by

p(T) =
∫

w∈Ω
p(T |w)p(w)dw (3.9)

is either not available in closed form or takes exponential time to compute.[3]

Variational Inference (VI) is an approach to compute an analytical approximation
of the intractable posterior distribution p(T), that combines the computational speed
advantage of MLE with the statistical benefits of the Bayesian approach.

To this end, first an approximation q(Ω) from some tractable family of distributions Q
is selected. Next a set of parameters for this distribution is searched, that minimizes
the distance, measured by some adequate distance measure, between the true posterior
and the approximation such that q∗(Ω) ∆= p(Ω|T), where q∗ denotes the best found
estimation. As with many non-convex optimization problems there is a trade-off
between accuracy of the estimation and time complexity of the computation, which
can be controlled by relaxing constraints or using further approximations, e.g. of the
optimization objective.[30, p. 731]

In VI a common choice for the distance measure is the inverse Kullback-Leibler (KL)
divergence, also known as I-projection or information projection[30, p. 733]:

DKL(q, p) =
∑

x

q(x)ln(q(x)
p(x)) = Eq(x)[ln(q(x)) − ln(p(x))] (3.10)

16

Choosing the I-projection over the forward KL divergence stems from the observation
that in practical applications the true posterior will often be multimodal, due to non-
identifiability in the latent space or complex nonlinear dependence on the parameters.[2,
p. 469] As shown in figure 8 minimization of DKL(p, q) would lead to an approximation
that averages across all modes for common choices of q(x), leading to poor predictive
performance as the average of two good parameter values is usually not a good choice of
parameters itself.[2, p. 469] Besides being more tractable to compute, the information
projection is therefore the more sensible choice from a statistical point of view.[30,
p. 733]

Figure 8: Comparison forward vs. inverse KL divergence. Blue contours show a bimodal
distribution p(Z) to be approximated, red contours show the corresponding
best-fit Gaussian distribution q(Z). (a) Best-fit q(Z) minimizing forward KL
divergence DKL(p, q), (b) & (c) Two-possible best-fit distributions minimizing
inverse KL divergence DKL(q, p) ([2], Fig. 10.3)

After defining the distance measure the optimization goal can be formulated as:

q∗(Ω) = arg min
q(Ω)∈Q

DKL(q(Ω), p(Ω|T)) (3.11)

Although optimizing this specific objective is still not tractable due to its dependence
on computing the evidence, an alternative, tractable objective can be derived from
equation 3.11, called the Evidence Lower BOund (ELBO):

ELBO(q(Ω)) = Eq(Ω)[ln(p(Ω, T))] − Eq(Ω)[ln(q(Ω))]
= Eq(Ω)[ln(p(T |Ω))] − DKL(q(Ω), p(Ω))

(3.12)

In the literature the ELBO is defined as the negative KL divergence plus ln(p(T)),
which is a constant w.r.t. q(Ω), and therefore maximizing the ELBO is equivalent

17

to minimizing the KL divergence. Taking the negative ELBO finally yields the error
function suitable for training a Bayesian Neural Network (BNN), known as the
Variational Free Energy (VFE):[4]

VFE = −ELBO = DKL(q(Ω), p(Ω)) − Eq(Ω)[ln(p(T |Ω))] (3.13)

The VFE is a sum of a data-dependent part, referred to as the likelihood cost, and the
complexity cost, which depends on the prior over the network weights. An intuitive
interpretation of how this cost function influences the training process is that it forces
the training process to converge to a solution that captures the prominent patterns in
the data as closely as possible, while imposing a form of regularization on the possible
values of the weights through the prior in the complexity cost part.[4]

By definition, a neural network model is termed a Bayesian neural network, whenever
a distribution is placed over the network parameters[16, p. 3] such as shown in figure
9. BNNs are therefore models that treat latent parameters as random variables for
which a distribution can be estimated using Bayes’ Theorem, conditioned on what
is observable in the training data. Standard neural networks, in contrast, take on
a frequentist perspective on the problem, where only the data is treated as random
variables, while weights are assumed to have some true value that is just unknown.[16,
p. 8]

Figure 9: Comparison of how weights are modelled in standard NN vs. BNN. Left: each
weight has a single fixed value. Right: each weight is assigned a distribution
of possible values. ([4], Fig. 1)

18

4 The Data Set

4.1 Data Generation

Figure 10: Distributions of ground truth labels
for each interaction parameter.

Measurements of powder samples lack
positional information in the recipro-
cal space, due to the random orienta-
tions of the individual crystals within
the sample, whereas single crystal
measurements do not suffer from this
issue and therefore have the poten-
tial to improve prediction accuracy
for this class of materials.

For this reason the given data set
consists of samples obtained by run-
ning multiple simulations for a sin-
gle crystal sample of the material
BaNi2V2O8, assuming a different con-
figuration of interaction parameters
for each run. As already mentioned
in the introduction, the SpinW[44]
software package was used for all sim-
ulations.

Configurations were created ran-
domly by sampling from six indepen-
dent Gaussians, one for each parame-
ter, at the beginning of each iteration,
with the Gaussians being parameter-
ized by mean and standard deviation
as follows:

• Jn: N (12.3, 0.6)

• Jnn: N (1.25, 0.15)

• Jnnn: N (0.2, 0.15)

• Jc: N (−0.00045, 0.001)

• DXY : N (0.0695, 0.01)

• Dinplane: N (−0.0009, 0.0002)

Besides discarding configurations for which the simulation could not be performed, no
other filtering has been applied. The distributions of target values resulting from this
data generation procedure are shown in figure 10.

19

4.2 Feature Engineering
Using the complete four-dimensional reciprocal space, resulting from simulations of
single crystals, as input to train a NN model is computationally prohibitive.

Instead in order to reduce the data to a more manageable size and still capture most of
the spatial information contained in the reciprocal space, different subsets of seven cuts
along high symmetry directions are chosen as inputs to all algorithms. Specifications
for all crystallographic directions are provided in figure 12.

4.3 Pre-Processing
All experiments conducted for this thesis use the same pre-processing scheme.

Experiments on undistorted data only apply min-max-normalization to the input-cuts
followed by column-wise convolution with a Gaussian intensity-normalization-kernel
(figure 11) to simulate the broader lines observable in real experiments due to limited
instrument resolution. An example of the resulting inputs is given in figure 12.

Figure 11: Gaussian Intensity-Normalization-Kernel.

Labels are always min-max-normalized to values between zero and one using the global
maximum and minimum values for each parameter over the entire data set.

20

Figure 12: Overview: Dimensions and crystallographic directions of all seven cuts.
Zero values are white for better visibility. The plotted example is the result
of running the simulation with Jn = 11.224705, Jnn = 1.405528, Jnnn =
0.135243, Jc = −0.007999, DXY = 0.159600, Dinplane = −0.004701 and
applying column-wise convolution with the Gaussian kernel shown in figure
11. All parameter values are given in units of meV.

21

5 Experiments on Undistorted Simulation Data

5.1 Research Methods
5.1.1 Motivation

Introducing stochasticity into ANNs, i.e. through learning weight distributions using
variational inference, provides multiple advantages when compared to frequentist
models.

Revisiting the most important argument that NNs are statistical black-box models,
whose decision process is mostly uninterpretable and solely justified through empirical
means[16, p. 3], one key benefit is the ability to express uncertainty in these models
and their predictions.[16, p. 23]

Another noteworthy argument is that Bayesian analysis provides meaningful theoret-
ical foundations to reason about the effectiveness of some methods and algorithms
currently used in many deep learning models, whose usage was previously justified only
through empirical results.[16, p. 24] Dropout[42] is an example of such a widely used
algorithm, for which it was shown by Kingma et al. that it can be considered a special
case of the Stochastic Gradient Variational Bayes (SGVB)[23] method with local
reparameterization.[22]

For the reasons given above the purpose of the following sections is to show through
empirical means whether a BNN can be used to obtain reliable estimates of Hamiltonian
parameters from the given data set. Due to the higher complexity incurred by using
BNNs, which combine neural network models with stochastic modelling, the experiments
are further designed to explore how the performance of the model is affected by different
modelling choices and a lack of information in order to provide guidance on how to
improve upon the models performance and which trade-offs to consider.

5.1.2 General Experiment Structure

Except for the first experiment, which introduces a first concrete implementation of
a BNN model and therefore additionally serves as a baseline, all other experiments
follow the same basic structure.

First the baseline model is tweaked accordingly to incorporate a single modelling choice
to be investigated in the experiment. This tweak is done in a minimally invasive way,
meaning that as much as possible of the baseline model is preserved. The reasoning
behind starting from the baseline for every experiment is to isolate the effect of the
tweak on the model’s performance as much as possible.

Next the resulting model is trained from scratch on a training-split of the data set.
During the training procedure the development of the loss and the root mean squared
error on the training-split and another split of the data set, named validation-split, is
monitored to be able to early detect issues in the training procedure such as over-fitting.

22

Finally the performance of the successfully trained model is evaluated on a separate
test-split.

After every experiment a thorough performance comparison of the resulting model and
the baseline is given to summarize the effect of the respective modelling tweak.

5.1.3 Evaluation

In order to be considered useful the BNN’s predictions must be accurate, sharp and
calibrated. Given a distribution of predictions for a single sample, the predictions are
termed accurate if the mean of the distribution is close to the ground truth value and
sharp if the distribution has low variance. Predictions are calibrated if the empirically
observed confidence level is close to the expected confidence level. A model is termed
accurate, sharp or calibrated if it outputs predictions with the respective property.

Estimate distributions are obtained by running the prediction step NP P S times over the
entire test split, with NP P S = 25, resulting in 25 separate predictions per parameter
per sample.

Getting the model’s estimate ŷi of the ground truth yi for each sample xi is done by
taking the mean over all prediction vectors ŷi,j of the ith sample:

ŷi = 1
NP P S

NP P S∑
j=1

ŷi,j (5.1)

Confidence intervals are obtained similarly by calculating the respective upper and
lower quantiles on a per component basis over all 25 predictions.

Following the definitions above the resulting models’ performance in all experiments is
measured by the following three metrics, each on a per target and over-all basis:

1. Mean Squared Error (MSE):

MSEk(Ŷ , Y) = 1
N

N∑
i=1

(yi − ŷi) ∗ (yi − ŷi), k ∈ {1, ..., K} (5.2)

MSE(Ŷ , Y) = 1
K

⟨MSEk(Ŷ , Y), 1⟩ (5.3)

, where * denotes component-wise multiplication, Y the matrix of ground truth
labels, Ŷ the matrix of estimates for Y , N the total number of samples in the
data set and K the total number of targets.

23

MSE measures the accuracy of predictions, i.e. how close predictions are to the
ground truth value.

2. Calibration loss - cal (adapted from [25, p. 5, Eq. 9]):

p̂k
j = 1

N
||{yk

i |1 ≤ i ≤ N ∧ LB(Ck
i,j) ≤ yk

i ≤ UB(Ck
i,j)}|| (5.4)

calk(p̂k
1, ..., p̂k

m, p1, ..., pm) =
m∑

j=1
wj(pj − p̂k

j)2 (5.5)

cal(p̂1
1, ..., p̂K

m, p1, ..., pm) =
K∑

k=1
calk(p̂k

1, ..., p̂k
m, p1, ..., pm) (5.6)

, where Ck
i,j denotes the predicted jth confidence interval for the kth target of

the ith sample, LB(Ck
i,j) its lower bound, UB(Ck

i,j) its upper bound, yk
i the

kth component of the ground truth vector for the ith sample, p̂k
j the empiric

proportion of yk
i that fall within the respective confidence interval and pj the

expected proportion.

Cal measures the reliability of the CI calculated from the predictions of the model,
i.e. how close the empiric CIs are to the expected CIs. It is proportional to the
area between the optimal line and the calibration curve in a reliability diagram.

3. Sharpness loss - sha (adapted from [25, p. 5, Eq. 10]):

shak(ŷ1,1, ..., ŷN,NP P S
) = 1

N

N∑
i=1

vark(ŷi,1, ..., ŷi,NP P S
) (5.7)

sha(ŷ1,1, ..., ŷN,NP P S
) = ⟨shak(ŷ1,1, ..., ŷN,NP P S

), 1⟩ (5.8)

, where vark denotes a function which calculates the per-target variance over the
kth components of all provided ŷi,j.

Sha measures how strongly predictions of the model for the same sample deviate
on average.

5.1.4 Hyperparameter Optimization

Neural network models possess a variety of hyperparameters, controlling every aspect
from its functional or stochastic model to the speed of learning and the degree of
generalization, rendering the concrete choice of hyperparameters one of the most
important modelling decisions.

24

Besides their potentially high number, the effects of hyperparameters on the success of
the training procedure are intertwined and must therefore be optimized simultaneously.
In combination with the empiric observation that NNs tend to take a long time until
they converge to a final set of weights, it is apparent that a brute-force random- or
grid-search of the hyperparameter space will often either take too much time or will
not find a high performing set of hyperparameters.

For the above mentioned reasons throughout all experiments KerasTuner’s[33] imple-
mentation of the Bayesian Hyperparameter Optimization (BHPO) algorithm is used
to determine the hyperparameters most relevant to the respective experiment. This
implementation uses a Gaussian Process (GP) prior with a kernel from the family of
Matérn covariance functions with the common choice defaults ν = 5

2 = 2.5 and θ = 1.
By using this specific choice of parameters, i.e. ν = p+ 1

2 , p ∈ N+, the resulting Matérn
5/2 kernel can be simplified to a product of an exponential function and a polynomial
of degree p as shown in the following equations, which conditions the GP to model the
loss function as a smooth, two times differentiable function[35, p.84-85].

r2(x, x′) =
D∑

d=1

(xd − x′
d)2

θ2
d

(5.9)

KM52(x, x′) = θ0 ∗ [1 +
√

5r(x, x′) + 5
3r2(x, x′)]e−

√
5r(x,x′) (5.10)

The Lower Confidence Bound (LCB) of the GP

LCBGP (x, κ) = µ(x) − κ ∗ σ(x), here κ = 2.6 (5.11)

is used as an acquisition function, with µ and σ being the predicted mean and the
marginal standard deviation function of the fitted GP respectively, while κ is a hyper-
parameter that controls the exploitation-exploration trade-off.[39]

Intuitively the GP constructs a probabilistic model based on previous observations of
the training process {xn, yn}N

n=1, where xn is a vector of previously tried hyperparameter
values and yn is e.g. the realized validation loss of the trained model.

Mean function µ encodes the GP’s current estimate of the loss function as a function
of the hyperparameters, while the marginal standard deviation function σ encodes the
GP’s uncertainty about the value of the function at each point in the hyperparameter
space.

Acquisition function LCBGP determines at each iteration of the BHPO algorithm which
point of the hyperparameter space will be sampled for the next training procedure by

25

assigning a score to each point from a set of candidate points. The candidate point with
the lowest score will be used for the next training procedure. If κ = 0 the candidate
point that minimizes the GP’s current estimate of the loss function will be selected,
whereas large values of κ will entice the algorithm to select candidate points in areas
where the GP’s uncertainty about its estimate of the loss function is high.

26

5.2 Experiment 1: Baseline Bayesian CNN
5.2.1 Goal of the Experiment

The outcome of this experiment provides a first trained model, that serves as a baseline
to evaluate all future experiments against.

5.2.2 Architecture / Functional Model

Figure 13: Architecture of the baseline bayesian CNN. The model consists of five
convolution blocks followed by a channel-wise global average pooling layer.
Each block applies (3x3)-convolution with (1,1)-strides and same-padding
to the previous layer’s output followed by a (2x2)-max pooling operation
with (2, 2)-strides. The number of convolution kernels doubles after each
block starting at 24 kernels. The output layer is a FC layer with six units
applied to the flattened output of the previous layer. In total the model
has approx. 1.7 mio. trainable parameters.

From a theoretical point of view a FC-NN model is capable of learning the concept of
topology, that is hard-coded into CNNs, from the data, since CNNs can be seen as
similar to a special subclass of FC networks with an infinitely strong prior that forces
weights outside of the support of the kernel to zero and the weights for one hidden unit
to be identical to the weights of its neighbor but shifted in space.[17, p. 341]

Another important observation is that for the given data set the exact spatial information
is of great importance because both, the presence and the absence of diffracted neutrons

27

in every position in space, encode relevant information about the material.

Combined the previous two aspects suggest that in theory a FC-NN architecture is the
best choice to model the data at hand, due to its capacity to extract the information
encoded in the spatial distribution represented by the image data in a more general
way than CNNs, which are limited by the in-built assumptions.

In practice however, the use of FC-NN architectures on image data has often proven to
be impracticable due to the high computational demand and the intricacies of training
models with a large number of parameters. Besides that, CNNs have been used in
research to successfully solve a variety of problems due to the properties outlined in
section 3.2, which allow them to learn to extract useful features from data with a
grid-like topology, i.e. images, more efficiently than FC models.

As both, the high resolution of the input data and the additional parameters required
for modelling uncertainty in BNNs, worsen the aforementioned issue of practicality of
FC NN models by further increasing the computational demand, for the purpose of
this thesis the architecture of the baseline model was chosen to be a CNN-architecture
as shown in figure 13.

All layers, except the output layer, apply a variant of the Swish activation function[34]
(figure 14) with the value of the β parameter being set to 1, , which is known as Swish-1
or Sigmoid-Weighted Linear Unit (SiLU)[11], on their outputs.

Figure 14: Swish activation function.([34], Fig. 4) The β parameter controls the degree
to which the Swish activation function interpolates between the linear
function linear(x) = x

2 and the Rectified Linear Unit (ReLU) function
ReLU(x) = max(0, x).[34]

28

Swish is defined as

Swish(x) = x ∗ σ(β ∗ x) (5.12)

with σ being the sigmoid function σ(z) = (1 + e−z)−1.

Usage of this specific activation function was motivated by the experiments conducted
by P. Ramachandran et al.[34], which have shown for a variety of common activation
functions, that the performance of multiple state-of-the-art models can be improved
by simply replacing the previously used activation function by Swish without any
further architectural optimizations. While β can be treated as an another tainable
parameter in the network, setting β = 1 was enough to improve the performance in
the experiments conducted by P. Ramachandran et al.[34] and S. Elfwing et al.[11]
and is therefore a natural choice for the baseline model.

Choosing the number of units in the first convolution block and the total number
of convolution blocks in the model was done using the previously introduced BHPO
algorithm.

Regarding the implementation of the models and the training procedures the following
Python libraries have been used in all experiments:

1. TensorFlow[28]

2. TensorFlow Probability[9]

3. Keras[6]

5.2.3 Stochastic Model

As already mentioned in section 3.3 the variational approximate distribution is to be
selected from a family of tractable distributions.

To this end in Mean Field VI (MFVI) the assumption is made that the true posterior
can be approximated using a variational distribution that can be expressed as a product
of distributions, one for each group of independent latent variables, i.e.

q(w1, ..., wM) =
R∏

i=1
qi(wGi

) (5.13)

, where M denotes the number of weights, R the number of groups and wGi
the

set of weights that belong to the ith group. Under this assumption the VFE can be
computed efficiently if the prior p(Ω) and each qi in equation 5.13 is set to be a Gaussian

29

distribution, since the second part - the KL divergence between weights’ posterior and
their prior - can be calculated in closed-form.[7]

Gaussian mean-field approximations, although often criticized for not being able to
capture the true beliefs about the weights’ distribution due to strong underlying
assumptions, are still standard for modern Bayesian neural network inference[14] and
therefore lend themselves as sensible choices for the baseline model.

Furthermore Farquhar et al. have presented evidence that as networks become deeper
the performance gap between mean-field and structured-covariance approximate poste-
riors shrinks, indicating that for deep models Gaussian MFVI (GMFVI) is capable of
reasonably approximating the true posterior.[12]

Lastly as will be discussed in the following part, GMFVI also possesses other desirable
properties that allow for a more stable training procedure.

All of the aforementioned arguments lead to following choice of stochastic model for
the baseline model which corresponds to the default values of the respective layers’
implementation in the TensorFlow Probability library:

1. Prior: ∀ 1 ≤ i ≤ M wi ∼ N (0, 1)

2. Initialization Posterior: ∀ 1 ≤ i ≤ M wi ∼ N (0, 0.052)

5.2.4 Training

Figure 15: Overview: Progress of the training procedure. Left: VFE loss per epoch.
Right: Root Mean Squared Error (RMSE) per epoch. Orange curve
represents the corresponding quantity on the training split, blue on the
validation split.

Training the baseline model was done for 30 epochs (figure 15) on a training data set
of 32.000 samples of CUT-1 with a batch size of 16, using the Adam[21] optimizer with
a learning rate of 0.00024974, found using BHPO, ϵ = 1e − 7, β1 = 0.9 and β2 = 0.999.
Validation and testing was done on separate splits of the data, each containing 3.200
samples.

30

Unless stated otherwise all experiments in section 5 are conducted on the same training-
validation-test splits.

As previously stated, each weight is considered to be independent of the others, following
its own Gaussian distribution, which is symmetric around zero. These two properties
of the stochastic model are of special interest for the training process because combined
they allow for efficient sampling of pseudo-independent weight perturbations for each
sample within a mini-batch using the Flipout algorithm. Flipout achieves the ideal
linear decay of 1

B
, with batch size B, of the stochastic gradients’ variance, leading to

significant reductions of training time.[45]

5.2.5 Evaluation

Figure 16: Ground Truth vs. Mean Prediction of the Baseline Model sorted in ascending
order of ground truth yi. The dashed gray line illustrates a perfect fit, ŷi = yi.
IQR is the Interquartile Range, which is the range between Q3 and Q1.

Analyzing figure 16 allows for several interesting observations.

First of all it is apparent that not all targets could be modelled equally well. DXY for
example has a very thin point cloud along the optimal line and narrow Confidence
Intervals (CI) indicating that the model is capable of accurately predicting this
interaction parameter with high confidence. On the other hand, the model seems

31

to have learned to always predict the mean of Jc, which is a poor estimate of the
ground truth for most samples. Given that the baseline model was trained solely on
samples of CUT-1 and that the confidence intervals for Jc are very broad, the most
likely explanation for the poor performance on this target is that CUT-1, which only
contains a small fraction of information about the reciprocal space, lacks information
about the inter-honeycomb-plane interactions of the spins.

Inspecting the MSE and Sha row of table 1 quantitatively confirms the above observation,
since both rows show different values for each interaction parameter with a maximum
value at the Jc column and minimum value at the DXY column.

Second, the model’s predictions reflect that in the simulated data set some areas of
the interaction-parameter space have been under-sampled, leading to deteriorated
performance of the network in those areas. DXY and Dinplane are especially suited
to support this claim, since they both have narrow tails on opposite sides of their
respective distributions as shown in figure 10. While the low number of samples with
values in the upper range of DXY makes it harder for the BNN to accurately predict
values in the normalized range above ∼ 0.7, the same is true in the opposite direction,
i.e. the lower end of the normalized value range, for values of Dinplane below ∼ 0.4.

Metric Per Target Values Over-all
Jn Jnn Jnnn Jc Dxy Dinplane

MSE 0.00328 0.00475 0.00346 0.01182 0.00035 0.00711 0.00513
Cal 0.00249 0.00130 0.00419 0.00076 0.05040 0.00021 0.05934
Sha 0.00458 0.00688 0.00547 0.01277 0.00063 0.00873 0.03906

Table 1: Performance Summary of the Baseline Model. All values are rounded to five
decimals.

From Table 1’s second row it can be inferred that the CIs calculated from the baseline
model’s predictions are also not equally reliable across targets and that there should
be intervals for which the model is either over- or under-confident.

Inspecting the per-target calibration curves (figure 18) shows that the model is almost
perfectly calibrated for Jc and Dinplane, well calibrated for Jn, Jnn and Jnnn with a
slight tendency towards being under-confident and highly under-confident for DXY .

5.2.6 Influence of Training-Split Size on Performance

Besides the number of trainable parameters of the model, which is determined by BHPO
after the training data is fully specified, the amount of required resources for training
depends on the size of the individual samples and the total number of samples in the
training-split of the data set. As previously stated in section 4, the size of the training
inputs has been reduced by only providing cuts through the much larger reciprocal
space to the network during training for the sake of feasibility. Further reduction of the

32

available information could severely limit the capability of the model to extract useful
patterns from the data, leading to the choice of keeping the full resolution of the cuts.

Therefore to strike a balance between required training time and performance of the
resulting model, the number of samples in the training-split is set to 32.000 samples.
In order to show that this is a reasonable choice leading to meaningful predictions,
figure 17 summarizes the effect of training-split size on the over-all performance of the
baseline model trained from scratch two more times, using 10.000 and 20.000 samples
respectively. While the effect on calibration is inconclusive, which is to be expected as
it is the result of misspecification of the stochastic model and approximate inference,
figure 17 shows that increasing the number of samples provides diminishing returns
w.r.t. sharpness and accuracy and that the chosen cut-off value is made in accordance
with the elbow method.

Figure 17: Summary: Performance vs. Size of the Training-Split of the Data Set.

33

Figure 18: Per-target calibration curves of the baseline model. The abscissa shows the
expected proportion of ground truth values that fall within the respective
CI over the test split, while the ordinate shows the observed proportion
over the test split. Values above and below the optimal line show that that
the model’s predictions are under-confident or over-confident respectively
for the values in the corresponding CI’s range.

34

5.3 Experiment 2: Influence of the Cold Posterior Effect
Although in theory the Bayesian posterior should give the optimal predictive perfor-
mance, assuming the stochastic model is correctly specified[14], it is commonly observed
in practice that the performance of BNNs can be improved significantly by artificially
sharpening the Bayesian posterior.[46]

A common implementation to achieve this effect in BNNs, trained using GMFVI, is to
introduce a hyperparameter, usually referred to as temperature T ∈ [0, 1], which should
not be confused with the temperature of the sample in an INS experiment, to the VFE
loss function and optionally to the Gaussian prior of the weights, such that

VFET = −ELBOT = T ∗ DKL(q(Ω), p(Ω)T) − Eq(Ω)[ln(p(T |Ω))] (5.14)

p(Ω)T = N (µ, T ∗ σ2) (5.15)

Choosing T = 1 leads to the original Bayesian posterior, while choosing T < 1 down-
weights the complexity cost during training and reduces the prior’s variance. Only
down-weighting the complexity cost part of the loss function allows the network to
over-count the importance of the data relative to the imposed regularization, while
the down-scaled variance of the prior T ∗ σ allows for learning of narrower weight
distributions that behave more like the weights in non-probabilistic neural networks. If
only equation 5.3 holds the resulting posterior is called tempered, while applying T to
both - VFE and prior - results in a cold posterior.[1]

The deviation of the empirical results from theory has motivated researchers to in-
vestigate the origins of this so-called Cold Posterior Effect (CPE). At the time of
writing it appears that the CPE can arise from a variety of sources, including bad
priors, data curation and data augmentation, and therefore in practice no simple fix
seems to exist.[32]

5.3.1 Goal of the Experiment

In this experiment it is tested whether the CPE can be used to improve the predictive
performance of the baseline model and how the sharpness and the calibration are
affected by cold and tempered posteriors.

35

5.3.2 Training

Leaving all other aspects of the training procedure equal, the baseline BNN was
trained from scratch twice as shown in figure 19, with the only modification being the
aforementioned adaptations given by equations 5.3 and 5.3.

Figure 19: Overview: Progress of the training procedure. Left: VFE loss per epoch.
Right: RMSE per epoch. Orange/Turquoise curve represents the corre-
sponding quantity on the training split, blue/gray on the validation split.
Top: Tempered Posterior, Bottom: Cold Posterior.

For the tempered posterior experiment an optimal temperature T ∗
tempered = 0.02682 was

found by the BHPO algorithm, while the optimal temperature for the cold posterior
experiment was slightly lower with a value of T ∗

cold = 0.01681.

5.3.3 Evaluation

Comparison of the over-all MSE values of table 2 shows that both modified posteriors
lead to increased over-all performance on the test split over the baseline, with the
tempered posterior model being slightly more accurate than the cold posterior model.
Taking a closer look at the MSE per target values reveals that this performance gain is
mainly achieved through more accurate predictions on the nearest-neighbor interaction
parameters Jn, Jnn and Jnnn, as visualized in figure 21.

Regarding the calibration, both modified posteriors lead to higher Cal scores meaning
that sharpening the posterior lead to deterioration of the baseline model’s calibration.

36

Figure 20: Comparison of the per target calibration curves of the Baseline model (BL)
vs. Tempered Posterior model (TP) vs. Cold Posterior model (CP)

This is especially true for the tempered posterior model, which increased the over-all
calibration loss by a factor of ∼ 2.4, while the cold posterior model only increased
the cal error by ∼ 26%. Table 2 also shows that the sources of deterioration of the
calibration are the same parameters for which the accuracy could be improved for the
tempered posterior, indicating the existence of an accuracy-vs-calibration trade-off
when leveraging the CPE through simply down-weighting the complexity cost. Also,
while the CP model’s calibration curves are much closer to the BL model’s curves, both
modifications show a tendency to exaggerate the BL model’s direction of miscalibration
as can be seen in figure 20.

Lastly tempered and cold posteriors outperform the baseline on all targets regarding
the sharpness of the predictions, as shown in the last three rows of table 2, with the
CP model being slightly sharper than the TP model.

Considering all of the findings above, the cold posterior model can be considered a
significant improvement over the baseline model, because it strongly improves upon
accuracy and sharpness while almost preserving the original model’s calibration.

37

Metric Per Target Values Over-all
Jn Jnn Jnnn Jc Dxy Dinplane

MSE BL 0.00328 0.00475 0.00346 0.01182 0.00035 0.00711 0.00513
MSE TP 0.00054 0.00073 0.00094 0.01170 0.00018 0.00682 0.00348
MSE CP 0.00081 0.00121 0.00111 0.01185 0.00020 0.00681 0.00366
Cal BL 0.00249 0.00130 0.00419 0.00076 0.05040 0.00021 0.05934
Cal TP 0.03065 0.03360 0.01914 0.00285 0.05553 0.00043 0.14220
Cal CP 0.00793 0.00244 0.00407 0.00318 0.05622 0.00103 0.07486
Sha BL 0.00458 0.00688 0.00547 0.01277 0.00063 0.00873 0.03906
Sha TP 0.00131 0.00175 0.00167 0.01161 0.00024 0.00761 0.02418
Sha CP 0.00125 0.00170 0.00155 0.01112 0.00020 0.00697 0.02278

Table 2: Performance Comparison of the Baseline model (BL) vs. Tempered Posterior
model (TP) vs. Cold Posterior model (CP). All values are rounded to five
decimals.

Figure 21: Comparison of the per target MSE scores of the Baseline model (BL) vs.
Tempered Posterior model (TP) vs. Cold Posterior model (CP).

38

5.4 Experiment 3: Hybrid-Frequentist-Bayesian CNN
In order to model each weight as being a sample from some distribution, rather than
having a single unknown ground truth value, BNNs require a significant amount of
additional trainable parameters, which depends on the chosen distributions’ parame-
terizations.

Even in the simplest case, where each parameter is modelled by its own independent
Gaussian distribution, like in many implementations of GMFVI[14], BNNs require
twice as many weights, one for the mean and one for the standard deviation of the
Gaussian, as a frequentist model with the same architecture.

In an attempt to reduce the number of trainable parameters, while maintaining the
ability to express uncertainty in the model, the following experiment explores the
effectiveness of an approach inspired from the experiments conducted by J. Snoek et
al.[40] and J. Zeng et al.[48].

5.4.1 Goal of the Experiment

In this experiment it is empirically tested whether a hybrid BNN can provide comparable
performance to a fully-Bayesian NN on the given data set.

5.4.2 Architecture / Functional Model

Figure 22: Architecture of the Hybrid BNN. All blocks are equal to those described
in figure 13 except for the number of hidden units. Only the last layer is
probabilistic.

Motivated by the approach presented by J. Zeng et al.[48], in a first attempt all but the
last Bayesian dense layer of the baseline model have been replaced by point-estimate
layers, while all other aspects have been kept equal to the BL’s architecture. Training

39

this hybrid model with an adapted learning rate, found by the BHPO algorithm, however
did not provide meaningful results, with the model converging to the mean-predictor
during training.

The issue mentioned above proves that in general a fully-Bayesian NN can not be
converted to a hybrid BNN by simply replacing Bayesian by frequentist layers. For this
reason, in addition to the learning rate, for this experiment the number of blocks and
the number of hidden units in the first layer, which determines the number of hidden
units in all but the last other layers, have been adapted using BHPO, resulting in the
architecture shown in figure 22 with a total of ∼ 100.000 trainable parameters.

5.4.3 Training

Figure 23: Overview: Progress of the training procedure. Left: VFE loss per epoch.
Right: RMSE per epoch. Blue curve represents the corresponding quantity
on the training split, magenta on the validation split.

Model training was done until convergence of the RMSE (figure 23), using a learning
rate of 0.00031444 for a total of 15 epochs, with all other aspects of the training
procedure left equal to the baseline training.

To prevent the point-estimate layers from over-fitting the L2 regularization penalty is
applied for each point-estimate kernel wi.

L2(wi) = α ∗
K∑

j=1
(wj

i)2, with α = 0.01 (5.16)

5.4.4 Evaluation

According to the over-all scores in table 3 the BL model significantly outperforms
the hybrid model on the MSE and Sha metrics, meaning the baseline predictions are
sharper and more accurate than the predictions made by the hybrid model.

40

Metric Per Target Values Over-all
Jn Jnn Jnnn Jc Dxy Dinplane

MSE BL 0.00328 0.00475 0.00346 0.01182 0.00035 0.00711 0.00513
MSE H 0.00881 0.00721 0.00911 0.01218 0.00297 0.00844 0.00812
Cal BL 0.00249 0.00130 0.00419 0.00076 0.05040 0.00021 0.05934
Cal H 0.00111 0.00056 0.00085 0.00108 0.00548 0.00099 0.01008

Sha BL 0.00458 0.00688 0.00547 0.01277 0.00063 0.00873 0.03906
Sha H 0.00867 0.00753 0.00933 0.01156 0.00283 0.00914 0.04906

Table 3: Performance Summary of the BL model vs. Hybrid model (H). All values are
rounded to five decimals.

Figure 24: Ground Truth vs. BL Predictions vs. Hybrid Model Predictions.

Visually comparing the predictions against each other, as done in figure 24, confirms
the interpretation drawn from the metrics. Except for Jc for which both models’
point-clouds are almost equal, the point-clouds of the hybrid model’s predictions are
slightly broader and their orientations, especially for the parameters Jn and Jnnn, differ
more from the optimal 45-degree line.

When it comes to calibration, the over-all Cal scores suggest that the hybrid BNN is
better calibrated than the baseline BNN, with the nearest-neighbor interaction param-

41

Figure 25: Calibration Curves: BL Model vs. Hybrid Model.

eters and easy-plane anisotropy Dxy being the main contributors to the performance
gain. In contrast to the BL model, which is under-confident for most targets, the
hybrid model has a weak tendency towards being over-confident for the majority of
targets, which can be derived from figure 25.

In summary the results of the experiment, together with the overview of the train-
ing procedures tried during BHPO given in figure 26, imply that on the down-side
hybrid BNNs are very sensitive to the choice of hyperparameters and therefore re-
quire additional effort to find an architecture matching the accuracy and sharpness of
fully-Bayesian NNs.

On the up-side they provide a significant reduction of trainable parameters, e.g. in the
case of this experiment by a factor of ∼ 17, and more reliable uncertainty estimations
when compared to fully-Bayesian models.

42

Figure 26: Overview: Training procedures run by the BHPO algorithm. Each colored
line represents one hyperparameter configuration. Diverging configurations
where excluded to improve visibility. Configurations trained for more than
15 epochs represent runs executed before the number of epochs was reduced
to improve upon computation time while still reaching convergence.

43

5.5 Experiment 4: Combining All Features
5.5.1 Goal of the Experiment

This experiment was designed to empirically show how using the entire set of features
during training affects the performance of the resulting model compared to the baseline.

5.5.2 Training

All other things equal the baseline model was trained from scratch using all seven cuts,
padded to the same dimensions and concatenated channel-wise, as inputs.

5.5.3 Evaluation

Metric Per Target Values Over-all
Jn Jnn Jnnn Jc Dxy Dinplane

MSE BL 0.00328 0.00475 0.00346 0.01182 0.00035 0.00711 0.00513
MSE AC 0.00128 0.00117 0.00068 0.00017 0.00011 0.00022 0.00060
Cal BL 0.00249 0.00130 0.00419 0.00076 0.05040 0.00021 0.05934
Cal AC 0.02365 0.01995 0.06231 0.00376 0.07299 0.05153 0.23418

Cal AC-RC 0.00060 0.00056 0.00084 0.00044 0.00092 0.00068 0.00405
Sha BL 0.00458 0.00688 0.00547 0.01277 0.00063 0.00873 0.03906
Sha AC 0.00224 0.00203 0.00084 0.00031 0.00044 0.00070 0.00655

Table 4: Performance Summary of the BL model vs. All-Cuts model (AC). All values
are rounded to five decimals. AC-RC denotes the calibration scores of the
AC model after applying the recalibration algorithm suggested in subsection
5.5.4 - Recalibration

Summarizing the results presented in table 4, the AC model strongly improves upon
the BL model’s predictions w.r.t. the accuracy and sharpness on all targets in general
and especially on the inter-honeycomb-plane interaction parameter Jc.

Plotting the two models’ predictions together against the ground truth values (figure
27) further reveals that, in contrast to the BL-BNN, the AC-BNN learned a meaningful
model of the influence of Jc by leveraging the additional information encoded in the
new features, explaining the strong accuracy and sharpness gains on this target.

Another finding from table 4 is that compared to the baseline, the AC model is poorly
calibrated for all targets.

5.5.4 Recalibration

Motivated by the otherwise strong performance of the AC model, in this section a
simple algorithm to retrospectively improve the calibration of a BNN, derived from

44

Figure 27: Ground Truth vs. Mean Predictions of the Baseline model (blue) and the
All-Cuts model (orange) sorted in ascending order of ground truth yi.

the method described by V.Kuleshov et al.[25], is suggested to alleviate the observed
deterioration of the model’s calibration.

Improving the calibration can be formally framed as a minimization problem of the
over-all calibration error defined in section 5.2.5, which is a hierarchical sum consisting
of the individual errors of all points on the per target calibration curves as visualized
in figure 29. Therefore a mapping f t∗(Pi), assigning each point P ∗

i = (pi, pi) on the
optimal curve to a point on the actual calibration curve P̂i

t = (pi, p̂i
t) with minimal

squared distance between their empiric CIs —

err(P ∗
i , P̂i

t) = wi ∗ (pi − p̂i
t)2

, creates a recalibrated curve that minimizes the per-target calibration loss. Applying
such a mapping to every targets’ calibration curve then minimizes the over-all calibration
error.

Following this reasoning the optimization problem can be re-framed to finding such an
optimal set of mappings, where Fall denotes the set of all possible mappings.

45

F∗ = {f 1∗, ..., fT ∗} = arg min
{f1,...,fT }∈Fall

T∑
t=1

m∑
i=1

err(P ∗
i , f t(P̂ t

i)) (5.17)

The suggested algorithm to find F∗ is comprised of the following steps:

1. Calculate the set of calibration curves

{Ct = [(p1, p̂1
t), ..., (pm, p̂m

t)]|t ∈ {1, ..., T}}

for the uncalibrated model on a separate split of the data set, called calibration
split

2. Define a distance metric that satisfies equation 5.17, e.g.

dist(P1, P2) = (P1y − P2y)2

3. For each target variable train a nearest-neighbor classifier, using the points in
their respective calibration curve as training data, with the previously defined
metric

Applying this recalibration scheme to the AC model leads to the calibration scores given
in the AC-RC row of table 4, which underline the effectiveness of the suggested approach.
After recalibration the resulting AC-RC model outperforms or closely matches the
baseline’s calibration performance on all targets.

Figure 28 shows that, while being less smooth, the improved calibration curves are
closer to the optimal line and exhibit no clear tendency towards either of its sides.

46

Figure 28: Comparison: Per-target calibration of BL model vs. AC model vs. AC-RC
model.

cal

cal1

err(p1, p̂1
1) ... err(pm, p̂m

1)

cal2

...

cal3

...

cal4

...

cal5

...

cal6

err(p1, p̂1
6) ... err(pm, p̂m

6)

Figure 29: Composition-Tree of the over-all calibration error. Leaf nodes represent the
contribution of an individual point on the respective calibration curve to
the per target calibration loss as defined in section 5.2.5. Each parent node
is a sum of all its child nodes.

47

6 Discussion
The purpose of this section is to discuss which conclusions can be drawn by considering
all evaluation results of the previous experiments with a focus on how these results relate
to the research questions stated in section Previous Work and Addressed Challenges
and which limitations need to be considered.

The question of whether ANNs, employed in an end-to-end manner, are capable of
providing meaningful estimates of Hamiltonian parameters from the given simulated
data set is best discussed by considering the results provided by experiments Experiment
1: Baseline Bayesian CNN, Experiment 2: Influence of the Cold Posterior Effect and
Experiment 4: Combining All Features.

Taken in isolation, the results of experiment 4 show that sharp and accurate predictions
for the targets Jc, DXY and Dinplane can be obtained, with a comparably high level
of confidence, by providing the network with all defined cuts simultaneously. Getting
estimates of the same quality for the nearest-neighbor interaction parameters on the
other hand appears to be less straight forward with Jn being the parameter with the
widest spread around the ground truth.

Although other explanations can not be entirely ruled out, a reasonable hypothesis for
the performance gap between the two sets of parameters is that the cuts provided as
input to the network do not contain the information required for the network to learn
to tell apart the influence of the nearest-neighbor parameters. Besides the general
argument that the cuts only represent a small fraction of the reciprocal space and are
therefore likely to miss important information, support for this hypothesis is given by
two observations.

The first observation is that the predictions for Jnn and Jnnn are just as sharp and
accurate as those for the first set of parameters for most values and only exhibit
intervals for which the performance deteriorates. These intervals are coherent, rather
than random, and not located at the edges of the possible value ranges and are therefore
not likely to be caused by artefacts of the parameter sampling procedure. This leads
to the conclusion that there exist certain regimes of values for which isolating the
influences of the parameters is harder than for other regimes.

Second, when compared to the results obtained in experiment 1, it can be observed that
adding more cuts improved upon the performance on all targets with the effect on the
nearest-neighbor parameters just being less pronounced. If adding more information
from the reciprocal space allows for very tight predictions on the other parameters the
same should be true for the nearest-neighbor interaction parameters.

For the reasons above it is suggested to provide additional cuts in the simulated data
set, specifically chosen to provide complementary information about Jn, Jnn and Jnnn

in increasing order of significance.

Another important take-away in this context is that it appears to be advisable to either

48

construct the training data set by sampling from a uniform, as for example done by A.
M. Samarakoon et al.[37], rather than a Gaussian distribution. Support for this claim
is given by the simple observation that across all experiments the performance of the
models significantly drops in areas where very few training samples exist.

Regarding the question of trade-offs to consider during modelling, no evidence was
found during experimentation that very deep network architectures are required to
achieve the best performance. Indeed, although models with more hidden layers have
been tried by the BHPO algorithm, the best-performing models in experiments 1 and
3 ended up being models with four to five hidden layers. Given that these networks
are rather shallow and in accordance with the previous findings that incorporating as
much information from the reciprocal space as possible seems to be key to accurately
regress the targets, it is therefore suggested to keep the full resolution of the inputs if
enough computational resources are available, instead of further increasing the depth
of the network.

To further reduce the computational requirements it has also been demonstrated
in Experiment 3: Hybrid-Frequentist-Bayesian CNN that the number of trainable
parameters can be significantly reduced by employing hybrid instead of fully-bayesian
neural networks and that these networks are capable of extracting meaningful patterns
from the data to a certain extend. However the model’s performance in experiment 3 is
not satisfactory when compared to the other models suggested in this work and should
therefore not be used on an as-is basis. A possible approach to tackle this problem
might be to train a fully-frequentist model in a first step and then, after replacing the
deterministic head by a probabilistic one and freezing all other weights, retrain the
model until convergence to disentangle the tasks of learning high level features and
uncertainty estimates in analogy to the adaptive basis regression approach used by J.
Snoek et al.[40].

Finally another trade-off has been demonstrated in experiment 2, where it was shown
how to leverage the CPE to strongly improve upon a BNN’s sharpness and accuracy
at the cost of only slightly deteriorating the calibration. Employing this method
also comes at the cost of reduced mathematical interpretability because it requires to
artificially sharpen the posterior.

Concerning the question of how uncertainty estimation, quantitative or qualitative,
is performed in hybrid approaches, the first common method is to use some kind of
quality threshold to obtain a set of likely candidate predictions for a given task. For
example in a closely related paper A. M. Samarakoon et al. use an empirically found
threshold on their defined similarity measures between the real and the simulated data
or their respective latent space projections.[37] Although easy to interpret the resulting
estimates are heavily influenced by the experience of the researchers and a suitable
method has to be found on a case-to-case basis depending on the used algorithm.

The alternative, commonly deployed method is to independently train a set of frequentist
models and use the set of their individual predictions on the same input to obtain

49

uncertainty estimates. Downsides of this approach are that one has to decide on
the total number of models and their respective architectures in the set, again on a
case-to-case basis, and train all models until convergence, leading to potentially large
training times.

BNNs, which can be understood as an infinite set of models with the same architecture
trained within a finite amount of time, are a special case of the latter approach, which
allows incorporating a stochastic model into a NN and by doing so strikes a balance
between training time and expressiveness of the resulting uncertainty estimates.

As such, BNNs also come with some of the same disadvantages, for example the need to
specify a computationally feasible stochastic model over the hard to interpret weights
of an ANN under severe computational constraints. As the results in the conducted
experiments confirm, this is not a trivial task because a misspecified stochastic model
prevents the NN from learning well calibrated uncertainty estimates. For example in
the case of the AC model, for the sake of isolating the effect of providing additional
information per sample on the model’s performance, all other aspects of the model have
been left equal in section 5.5. It is however reasonable to assume that the additional
information given by the new features and their correlations should lead to a generally
lower level of epistemic uncertainty. Consequentially it is likely that the prior picked for
this experiment is not well chosen and that a prior with lower variance might improve
upon the calibration of the AC model’s strongly under-confident predictions.

To provide a more generally applicable approach, in section 5.5.4 - Recalibration an
algorithm has been suggested to recalibrate a BNN model. On the upside it has been
demonstrated that, using this algorithm, close-to-optimal calibration can be achieved,
meaning that the resulting uncertainty estimates of the model are very reliable, without
the need to retrain the BNN or adapt its stochastic model. Although effective and
simple to implement, a downside of this approach is that, in contrast to an arguably
harder to obtain well-specified stochastic model, it does not a have a meaningful
probabilistic interpretation.

Answering the last open question, regarding which measures effectively reduce uncer-
tainty of predictions, in sections 5.2.6 - Influence of Training-Split Size on Performance
and 5.5 - Experiment 4: Combining All Features it has been empirically confirmed that,
in accordance with theory, the model’s epistemic uncertainty can be reduced, with
diminishing returns, by increasing the number of training samples and by including
more information about the phenomenon to be modelled.

50

7 Conclusion and Future Work
The first contribution of this work to the current efforts of using INS data to estimate
the parameters of a given Hamiltonian lies in the deployment of Bayesian methods to
incorporate the concept of epistemic uncertainty into NN-based approaches. Having
reliable estimations of uncertainty in the model’s parameters provides researchers with
valuable information to avoid common pitfalls occurring when working with standard
neural networks.

For example in the case of a frequentist NN, that was successfully trained on simulated
data and then presented with a sample of a real measurement, a frequentist network
will confidently output a single prediction of the target parameters. Given that real
measurements, due to noise and artefacts, can look very different from simulated
ones and might therefore lie outside of the distribution the model was trained on, the
trustworthiness of these predictions is questionable. In contrast to this behaviour,
when presented with an out-of-distribution sample or a sample that does not contain
the information required to infer the target variable, a Bayesian neural network model
will output predictions with a certain degree of variance, indicating how confident the
model is about its predictions as it was shown in the Evaluation section of Experiment
1: Baseline Bayesian CNN.

Furthermore through the experiments conducted in sections Experiment 1: Baseline
Bayesian CNN, Experiment 2: Influence of the Cold Posterior Effect and Experiment
4: Combining All Features it has been shown that a shallow convolutional neural net-
work, optimized using Bayesian hyperparameter optimization, is capable of accurately
regressing the target variables from a collection of cuts through the reciprocal space at
full resolution and that the cold posterior effect can be leveraged to further improve
the performance of a BNN model at the cost of reducing mathematical interpretability.

Finally in section Experiment 3: Hybrid-Frequentist-Bayesian CNN a method has
been suggested to reduce the number of trainable parameters required for modelling
epistemic uncertainty at the cost of accuracy and a more extensive hyperparameter
search.

Regarding areas for further improvement of the model, the question of how to deal
with noise and artefacts found in real experimental data is of special importance, since,
as already mentioned above, NN models in general do not perform well on samples
that differ too much from their training data. Therefore to be able to gain meaningful
predictions from real experimental data two broad categories of approaches can be
identified:

1. Adapting the Simulation: All methods that intend to close the gap between
real and simulated data by incorporating more experimental details into the
training data. Examples of this method include the usage of masks to cover
areas of the reciprocal space that are not observed during the experiment and
the incorporation of instrument specifications into the simulation such as spatial

51

and energetic resolution.

2. Adapting the Experimental Data: All methods that intend to close the gap
between real and simulated data by removing noise and artefacts from a specific
sample of real experimental data. Among others this method includes using
expert knowledge to manually identify and remove distortions.

Whether a single approach or a combination of both should be used can not be answered
in general and depends on the specifics of the use case.

Another area of interest is concerned with the question of how to obtain calibrated
models without resorting to retrospective recalibration algorithms. This aspect is of
importance because models that learn reliable uncertainties from the data possess a
stochastic model that is in better agreement with the true distribution of the data and
for this reason can be considered as being more trustworthy.

Lastly investigating how to close the performance gap between fully and hybrid BNNs
has the potential to further drive progress in the field, because the comparatively low
number of trainable parameters per layer would make deeper and more complicated
architectures more feasible.

52

8 Bibliography

References
[1] Laurence Aitchison. A statistical theory of cold posteriors in deep neural networks.

2020. doi: 10.48550/ARXIV.2008.05912. url: https://arxiv.org/abs/
2008.05912.

[2] Christopher M Bishop. Pattern Recognition and Machine Learning. Ed. by
M Jordan, J Kleinberg, and B Schölkopf. Vol. 4. Information science and
statistics 4. Springer, 2006. Chap. Graphical, p. 738. isbn: 9780387310732.
doi: 10.1117/1.2819119. arXiv: 0- 387- 31073- 8. url: http://www.
library.wisc.edu/selectedtocs/bg0137.pdf.

[3] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference: A
Review for Statisticians”. In: Journal of the American Statistical Association
112.518 (Apr. 2017), pp. 859–877. doi: 10.1080/01621459.2017.1285773.
url: https://doi.org/10.1080%2F01621459.2017.1285773.

[4] Charles Blundell et al. Weight Uncertainty in Neural Networks. 2015. doi:
10.48550/ARXIV.1505.05424. url: https://arxiv.org/abs/1505.05424.

[5] D Changwoo, W-R Chen, and S Lee. “Small angle scattering data analysis
assisted by machine learning methods”. In: MRS Adv. 5 (2020), pp. 1577–84. doi:
10.1557/adv.2020.130. url: https://doi.org/10.1557/adv.2020.130.

[6] François Chollet et al. Keras. https://keras.io. 2015.
[7] Beau Coker, Weiwei Pan, and Finale Doshi-Velez. Wide Mean-Field Variational

Bayesian Neural Networks Ignore the Data. 2021. doi: 10.48550/ARXIV.2106.
07052. url: https://arxiv.org/abs/2106.07052.

[8] Crystallography edited by Walter Borchardt-Ott. eng. 2nd ed. 1995. Berlin,
Heidelberg, 1995. isbn: 9783642577543.

[9] Joshua V. Dillon et al. TensorFlow Distributions. 2017. doi: 10.48550/ARXIV.
1711.10604. url: https://arxiv.org/abs/1711.10604.

[10] Mathieu Doucet et al. “Machine learning for neutron scattering at ORNL *”.
In: Machine Learning: Science and Technology 2 (2 June 2021), p. 023001. doi:
10.1088/2632-2153/abcf88.

[11] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. “Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning”. In: Neural
Networks 107 (2018). Special issue on deep reinforcement learning, pp. 3–
11. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.
12.012. url: https://www.sciencedirect.com/science/article/pii/
S0893608017302976.

53

https://doi.org/10.48550/ARXIV.2008.05912
https://arxiv.org/abs/2008.05912
https://arxiv.org/abs/2008.05912
https://doi.org/10.1117/1.2819119
https://arxiv.org/abs/0-387-31073-8
http://www.library.wisc.edu/selectedtocs/bg0137.pdf
http://www.library.wisc.edu/selectedtocs/bg0137.pdf
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080%2F01621459.2017.1285773
https://doi.org/10.48550/ARXIV.1505.05424
https://arxiv.org/abs/1505.05424
https://doi.org/10.1557/adv.2020.130
https://doi.org/10.1557/adv.2020.130
https://keras.io
https://doi.org/10.48550/ARXIV.2106.07052
https://doi.org/10.48550/ARXIV.2106.07052
https://arxiv.org/abs/2106.07052
https://doi.org/10.48550/ARXIV.1711.10604
https://doi.org/10.48550/ARXIV.1711.10604
https://arxiv.org/abs/1711.10604
https://doi.org/10.1088/2632-2153/abcf88
https://doi.org/https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/https://doi.org/10.1016/j.neunet.2017.12.012
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976

[12] Sebastian Farquhar, Lewis Smith, and Yarin Gal. Liberty or Depth: Deep
Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations.
2020. doi: 10.48550/ARXIV.2002.03704. url: https://arxiv.org/abs/
2002.03704.

[13] Randy S. Fishman. Spin-wave theory and its applications to neutron scattering
and THz spectroscopy / Randy S. Fishman, Jaime A. Fernandez-Baca, Toomas
Rõõm. eng. IOP (Series). Release 5. San Rafael [California] 40 Oak Drive, San
Rafael, CA, 94903, USA, 2018. isbn: 9781643271149.

[14] Vincent Fortuin et al. Bayesian Neural Network Priors Revisited. 2021. doi:
10.48550/ARXIV.2102.06571. url: https://arxiv.org/abs/2102.06571.

[15] C Garcia-Cardona et al. “Learning to predict material structure from neutron
scattering data”. In: 2019 IEEE Int. Conf. Big Data (Big Data). 2019, pp
4490–7.

[16] Ethan Goan and Clinton Fookes. “Bayesian Neural Networks: An Introduction
and Survey”. In: Case Studies in Applied Bayesian Data Science. Springer
International Publishing, 2020, pp. 45–87. doi: 10.1007/978-3-030-42553-
1_3. url: https://doi.org/10.1007%2F978-3-030-42553-1_3.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[18] David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics.
3rd ed. Cambridge University Press, 2018. doi: 10.1017/9781316995433.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–
366. issn: 0893-6080. doi: https://doi.org/10.1016/0893- 6080(89)
90020-8. url: https://www.sciencedirect.com/science/article/pii/
0893608089900208.

[20] Christian Janiesch, Patrick Zschech, and Kai Heinrich. “Machine Learning
and Deep Learning”. In: Electronic Markets 31.3 (2021), pp. 685–695. doi:
10.1007/s12525-021-00475-2.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/abs/
1412.6980.

[22] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational Dropout and
the Local Reparameterization Trick. 2015. doi: 10.48550/ARXIV.1506.02557.
url: https://arxiv.org/abs/1506.02557.

[23] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014. arXiv:
http://arxiv.org/abs/1312.6114v10 [stat.ML].

54

https://doi.org/10.48550/ARXIV.2002.03704
https://arxiv.org/abs/2002.03704
https://arxiv.org/abs/2002.03704
https://doi.org/10.48550/ARXIV.2102.06571
https://arxiv.org/abs/2102.06571
https://doi.org/10.1007/978-3-030-42553-1_3
https://doi.org/10.1007/978-3-030-42553-1_3
https://doi.org/10.1007%2F978-3-030-42553-1_3
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1017/9781316995433
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1506.02557
https://arxiv.org/abs/1506.02557
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10

[24] E. S. Klyushina et al. “Investigation of the spin-1 honeycomb antiferromagnet
BaNi2V2O8 with easy-plane anisotropy”. In: Physical Review B 96.21 (Dec.
2017). issn: 2469-9969. doi: 10.1103/physrevb.96.214428. url: http:
//dx.doi.org/10.1103/PhysRevB.96.214428.

[25] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate Uncertainties
for Deep Learning Using Calibrated Regression. 2018. doi: 10.48550/ARXIV.
1807.00263. url: https://arxiv.org/abs/1807.00263.

[26] Yann Lecun, Patrick Haffner, and Y. Bengio. “Object Recognition with Gradient-
Based Learning”. In: (Aug. 2000).

[27] Chia-Hao Liu et al. “Using a machine learning approach to determine the space
group of a structure from the atomic pair distribution function”. In: Acta
Crystallographica Section A 75.4 (July 2019), pp. 633–643. doi: 10.1107/
S2053273319005606. url: https://doi.org/10.1107/S2053273319005606.

[28] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. url: https://www.
tensorflow.org/.

[29] Martín Martínez-Ripoll. Crystallography-Cristalografia. 2014. url: https:
//www.xtal.iqfr.csic.es/Cristalografia/index- en.html (visited on
03/08/2022).

[30] Kevin P. Murphy. Machine learning : a probabilistic perspective. Cambridge,
Mass. [u.a.]: MIT Press, 2012. isbn: 978-0-262-01802-9.

[31] Neutron and X-ray Spectroscopy edited by Françoise Hippert, Erik Geissler, Jean
Louis Hodeau, Eddy Lelièvre-Berna, Jean-René Regnard. eng. Dordrecht, 2006.
isbn: 9781402033377.

[32] Lorenzo Noci et al. “Disentangling the Roles of Curation, Data-Augmentation
and the Prior in the Cold Posterior Effect”. In: (2021). doi: 10.48550/ARXIV.
2106.06596. url: https://arxiv.org/abs/2106.06596.

[33] Tom O’Malley et al. KerasTuner. https://github.com/keras-team/keras-
tuner. 2019.

[34] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation
Functions. 2017. doi: 10.48550/ARXIV.1710.05941. url: https://arxiv.
org/abs/1710.05941.

[35] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005. isbn: 026218253X.

[36] O Ronneberger, P Fischer, and T Brox. “U-net: convolutional networks for
biomedical image segmentation”. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015. Ed. by N Navab et al. Springer Int.
Publishing, 2015, pp. 234–41.

55

https://doi.org/10.1103/physrevb.96.214428
http://dx.doi.org/10.1103/PhysRevB.96.214428
http://dx.doi.org/10.1103/PhysRevB.96.214428
https://doi.org/10.48550/ARXIV.1807.00263
https://doi.org/10.48550/ARXIV.1807.00263
https://arxiv.org/abs/1807.00263
https://doi.org/10.1107/S2053273319005606
https://doi.org/10.1107/S2053273319005606
https://doi.org/10.1107/S2053273319005606
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.xtal.iqfr.csic.es/Cristalografia/index-en.html
https://www.xtal.iqfr.csic.es/Cristalografia/index-en.html
https://doi.org/10.48550/ARXIV.2106.06596
https://doi.org/10.48550/ARXIV.2106.06596
https://arxiv.org/abs/2106.06596
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/10.48550/ARXIV.1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941

[37] Anjana M. Samarakoon et al. “Machine-learning-assisted insight into spin ice
Dy2Ti2O7”. In: Nature Communications 11.1 (Feb. 2020). issn: 2041-1723.
doi: 10.1038/s41467-020-14660-y. url: http://dx.doi.org/10.1038/
s41467-020-14660-y.

[38] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and
Tree Search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. doi: 10.1038/
nature16961.

[39] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimiza-
tion of Machine Learning Algorithms. 2012. doi: 10.48550/ARXIV.1206.2944.
url: https://arxiv.org/abs/1206.2944.

[40] Jasper Snoek et al. Scalable Bayesian Optimization Using Deep Neural Networks.
2015. doi: 10.48550/ARXIV.1502.05700. url: https://arxiv.org/abs/
1502.05700.

[41] Artur Souza et al. DeepFreak: Learning Crystallography Diffraction Patterns
with Automated Machine Learning. 2019. doi: 10.48550/ARXIV.1904.11834.
url: https://arxiv.org/abs/1904.11834.

[42] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting.” In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.
url: http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.

[43] B Sullivan et al. “BraggNet: integrating Bragg peaks using neural networks”. In:
J. Appl. Crystallogr. 52 (2019), pp. 854–63. doi: 10.1107/S1600576719008665.
url: https://doi.org/10.1107/S1600576719008665.

[44] S Toth and B Lake. “Linear spin wave theory for single-Q incommensurate
magnetic structures”. In: Journal of Physics: Condensed Matter 27.16 (Mar.
2015), p. 166002. doi: 10.1088/0953-8984/27/16/166002. url: https:
//doi.org/10.1088/0953-8984/27/16/166002.

[45] Yeming Wen et al. Flipout: Efficient Pseudo-Independent Weight Perturbations
on Mini-Batches. 2018. doi: 10.48550/ARXIV.1803.04386. url: https:
//arxiv.org/abs/1803.04386.

[46] Florian Wenzel et al. How Good is the Bayes Posterior in Deep Neural Networks
Really? 2020. doi: 10.48550/ARXIV.2002.02405. url: https://arxiv.org/
abs/2002.02405.

[47] Robert M White. Quantum Theory of Magnetism Magnetic Properties of Mate-
rials / by Robert M. White. eng. Springer Series in SOLID-STATE SCIENCES,
32. Berlin, Heidelberg, 2007. isbn: 9783540690252.

[48] Jiaming Zeng, Adam Lesnikowski, and Jose M. Alvarez. The Relevance of
Bayesian Layer Positioning to Model Uncertainty in Deep Bayesian Active Learn-
ing. 2018. arXiv: 1811.12535 [cs.LG].

[49] Daniel Zhang et al. The AI Index 2021 Annual Report. 2021. doi: 10.48550/
ARXIV.2103.06312. url: https://arxiv.org/abs/2103.06312.

56

https://doi.org/10.1038/s41467-020-14660-y
http://dx.doi.org/10.1038/s41467-020-14660-y
http://dx.doi.org/10.1038/s41467-020-14660-y
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/ARXIV.1206.2944
https://arxiv.org/abs/1206.2944
https://doi.org/10.48550/ARXIV.1502.05700
https://arxiv.org/abs/1502.05700
https://arxiv.org/abs/1502.05700
https://doi.org/10.48550/ARXIV.1904.11834
https://arxiv.org/abs/1904.11834
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://doi.org/10.1107/S1600576719008665
https://doi.org/10.1107/S1600576719008665
https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.48550/ARXIV.1803.04386
https://arxiv.org/abs/1803.04386
https://arxiv.org/abs/1803.04386
https://doi.org/10.48550/ARXIV.2002.02405
https://arxiv.org/abs/2002.02405
https://arxiv.org/abs/2002.02405
https://arxiv.org/abs/1811.12535
https://doi.org/10.48550/ARXIV.2103.06312
https://doi.org/10.48550/ARXIV.2103.06312
https://arxiv.org/abs/2103.06312

9 Appendix
9.1 Table of Abbreviations

Abbreviation Meaning
AC All-Cuts

ANN Artificial Neural Network
BHPO Bayesian Hyperparameter Optimization

BL Baseline
BNN Bayesian Neural Network

CI Confidence Interval
CNN Convolutional Neural Network

CP Cold Posterior
CPE Cold Posterior Effect
DSF Dynamical Structure Factor

ELBO Evidence Lower Bound
FC Fully Connected

GMFVI Gaussian Mean Field Variational Inference
GP Gaussian Process
INS Inelastic Neutron Scattering
IQR Interquartile Range
KL Kullback-Leibler

LCB Lower Confidence Bound
MFVI Mean Field Variational Inference

ML Machine Learning
MLE Maximum-Likelihood Estimation
MLP Multilayer Perceptron
MSE Mean Squared Error

NN Neural Network
RC Recalibrated

RMSE Root Mean Squared Error
ReLU Rectified Linear Unit

SAS Small-Angle-Scattering
SGD Stochastic Gradient Descent

SGVB Stochastic Gradient Variational Bayes
SLD Scattering Length Density
SiLU Sigmoid-Weighted Linear Unit

TP Tempered Posterior
VAE Variational Auto Encoder
VFE Variational Free Energy

VI Variational Inference

57

Selbständigkeitserklärung
Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht
für andere Prüfungen eingereicht habe. Sämtliche Quellen einschließlich Internetquellen,
die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs
bzw. Täuschung eingeleitet wird.

Berlin, den 08.10.2022

59

	Introduction
	Previous Work and Addressed Challenges
	ML-Assisted Approaches
	End-to-End Approaches

	Artificial Neural Networks and Variational Inference
	Fundamentals of Artificial Neural Networks
	Convolutional Neural Networks
	Variational Inference and Bayesian Neural Networks

	The Data Set
	Data Generation
	Feature Engineering
	Pre-Processing

	Experiments on Undistorted Simulation Data
	Research Methods
	Motivation
	General Experiment Structure
	Evaluation
	Hyperparameter Optimization

	Experiment 1: Baseline Bayesian CNN
	Goal of the Experiment
	Architecture / Functional Model
	Stochastic Model
	Training
	Evaluation
	Influence of Training-Split Size on Performance

	Experiment 2: Influence of the Cold Posterior Effect
	Goal of the Experiment
	Training
	Evaluation

	Experiment 3: Hybrid-Frequentist-Bayesian CNN
	Goal of the Experiment
	Architecture / Functional Model
	Training
	Evaluation

	Experiment 4: Combining All Features
	Goal of the Experiment
	Training
	Evaluation
	Recalibration

	Discussion
	Conclusion and Future Work
	Bibliography
	Appendix
	Table of Abbreviations

