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Abstract. This thesis explores the domain of grammarbased
fuzzing within a coverage-guided and a blackbox testing framework.
The primary focus of this study centers on the practical application of
applying grammarbased fuzzing techniques in the context of nextflow,
a well-known Groovy-based data pipeline software. The main focus
is on fuzz testing the whole execution of a data pipeline and not only
the parsing or compilation stage.
The research effort involves the implementation of two different
grammarbased generator testing strategies and one non grammar-
based mutation strategy to test the execution of data pipelines within
nextflow. Tested in a fuzzing campaign we could invetigate the cov-
erage und bug finding capabilities of both generators and look at the
ddifference of coverage-based and black-box fuzzing. The coverage re-
sults let us explore the differences between the parsing and execution
of data pipeline scripts within nextflow.
We found that malformed scripts will pass the compilation stage
and will throw exceptions during runtime of nextflows data pipline
execution.
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1 Introduction

Testing is an important part of writing software, as it ensures that the algorithms
work according to the specification and can improve the reliability. For software
testing many different approaches exists as which one of is fuzzing. Fuzzing, in
general, describes the testing of software with randomly generated input data.

Unlike traditional software tests that are written for internal functions with
fixed defined parameters, fuzzing focuses on the external interfaces of software
and tests them with a wide variety of random data. Throughout many such tests,
crashes and exceptions are logged, which can provide insights into potential
faulty implementations. This can be highly effective in discovering errors within
the software, but it is also limited by randomness, especially when applications
expecting highly structured data need to be tested [1, 2]. Such applications
include compilers and interpreters, but also internet browsers or software libraries
that expect structured files. For testing such applications, there are already
a number of so-called grammarbased fuzzers that can generate either code
fragments [3] or simple file formats [4]. Furthermore, there are projects like
CSmith, which specifically test various C compilers [5], or Superion, which can
manipulate existing input files using grammars [6].

However, all these projects only consider the generation and processing of
a single file in their experiments. In many applications, different files can be
loaded through references in data that has already been read. This includes
compilers or software linkers used in the compilation of software source code.

One specific type of software that also compiles multiple referenced input
files in a single execution are workflow engines. Workflow engines take task
descriptions in a formal description, such as a Domain Specific Language. The
description of which tasks needs to be processed is parsed, and then executed in
a corresponding workflow. Data pipeline tools are often used in bioinformatics
for example for gene sequencing which is a manifold process and uses a variety
of different existing command line tools. As most software, data pipeline tools
and compilers for the workflow definitions may contain bugs.

To test such software is a challenging task, as the correct result of a data
pipeline depends not only on the workflow engine itself but also on the used tools
within. In general testing bioinformatics software alone is a complicated task, as
they deal with large input and output data and verifying the correctness of those
is very difficult in practice [7] . And workflow engines process many different of
those tools at the same time, which makes them a quite complex system

One workflow engine that gained more interest and users over the last years
is nextflow. It can process pipelines written in the most common scripting
languages. Workflows and pipelines can be defined with a DSL (see Section 2.2)
which allows users also to deploy those on clouds and clusters [30].
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Fuzzing techniques are often apply to smaller libraries that are generally used
for very distinct purposes like image type conversion or for parsing specific data
types. If fuzzers test a bigger software a common approach in greybox fuzzing is
to test the input handling parts of them (e. g. parsing or compiling) [8, 9, 10].
But the main purpose of workflow engines is to process different inputs from the
user and execute different other applications with the input data.
This thesis will investigate if we can use grammarbased fuzzing techniques as
a sensible option to test workflow engines during pipeline execution and what a
possible test set-up can look like. Also, we will try to answer what the bug-finding
capabilities of grammarbased fuzzing in workflow engines is on the example of
nextflow.
The thesis is structured as followed: The Section 2 will provide background
information on the topic of this thesis Section 3 focuses on the implementation and
used libraries to explore the possibilities of grammarbased fuzzing on workflow
engines. Section 4 describes and evaluates the experiments performed and
Section 5 gives a brief conclusion and lays out possible future work.
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2 Background

2.1 Fuzzing

Fuzzing is testing software by feeding random data to the software under test
(SUT). This technique was first introduced by Miller et al. in 1990 as An
Empirical Study of the Reliability of UNIX Utilities [11]. The researchers tested
UNIX tools with a program called “fuzz”, which generates a stream of random
characters to be consumed by a SUT. This approach is nowadays called blackbox
fuzzing [12]. Blackbox fuzzing can be described as a random input fed to the
program without knowledge of its internal behaviour or implementation. The
SUT is then tested with many variants of the first input or completely new ones
in the hope of triggering vulnerabilities or crashes. While doing so, the fuzzing
software monitors the SUT and looks for those interesting tests, reports them
and uses this generated data as base for the next input data and test.

This simple approach has found thousands of security vulnerabilities, mainly
in code that handles binary input data. The effectiveness of blackbox fuzzing
relies heavily on a diverse corpus of well-formed input seeds, which will traverse
a variety of the program by themselves. To those seeds the fuzzing software will
add noise by for example changing byte per byte over each iteration. This idea
has been proven effective as it has found several bugs [31]. On the other hand
this technique is limited as the generation of new interesting executable inputs
has very low probability [13] as it does not take into consideration the expected
structure or syntax of the input data.

Complementary to blackbox fuzzing is whitebox fuzzing, where the test inputs
are based on knowledge of the SUT and its architecture. It extends the systematic
dynamic test generation from the scope of unit testing to the whole program [12]
Whitebox fuzzing is able to learn about the SUT while testing and therefore
need not revisit already executed paths like blackbox fuzzing [32].

With whitebox fuzzing we will start with a well-formed input seed, but use
dynamic symbolic execution of the SUT to gather constraints on inputs from
conditional branches visited along the execution. For the next execution the
collected constraints are systematically negated and solved with a constraint
solver. Those solutions are used to generate new inputs that hopefully will
trigger different program execution paths [12].

An apparent solution to the fast but naive blackbox fuzzing and the complex
computation heavy whitebox fuzzing is the combination of those approaches
called greybox fuzzing [14]. With greybox fuzzing the test generation is as fast
as with blackbox fuzzing, but to address the problem of repetitive execution of
the same program path, it will use additional feedback from the program which
parts are already executed [32].
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There are many different approaches on how to address the challenge of fuzz
testing software with random data. And as you might have guessed, there are
many different names for similar ideas. To anticipate this, Table 1 can be used
as a reference for the following chapters.

Table 1: Ideas of Different Fuzzing Techniques

Fuzzing Techniques

Name Main Idea Synonyms

whitebox symbolic execution and knowing
the software, search in program,
constraint solver, mutation or gen-
eration based

∼ automated dynamic test genera-
tion

greybox uses feedback from program for
next test, often used with coverage,
mutation or generation based

guided, feedback, coverage

blackbox tests not necessarily matching the
input format, only crashes are
logged

blind, random testing

2.1.1 Grammarbased Fuzzing

There are different approaches on how to include feedback of the target software
to perform better fuzz testing. Two research fields that has gained more interest
over the last years are grammarbased and greybox fuzzing. As explained in the
previous Section, greybox fuzzing combines the best of both previous existing
approaches: rapid execution (blackbox) while using feedback from the fuzzing
targets about which parts where already executed (whitebox).
One concept in greybox fuzzing is to use a grammar definition to produce valid
test inputs for a target software. This can be done by generating test inputs that
match a specific grammar (Section 2.1.1) or by mutating an existing test input
whithout violating the syntax. The main idea behind both strategies is to use
structured inputs for testing, because software written to handle files of a given
type will likely fail early in the execution process when given random bytes
Although grammarbased fuzzing can be applied as blackbox fuzzing, researchers
use it in combination with some sort of feedback driven approach [14, 15] One
technique that pairs well with grammarbased fuzzing is coverage-guided fuzzing [2,
6].
To understand how coverage-guided approaches in fuzzing work, we need to
know what coverage and instrumentation are.
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Coverage. Code coverage is a percentage measure in software engineering, to
which degree the source code of a program is executed while running certain tests.
If we reach a high coverage during test execution, we can suggest that we have a
lesser probability of undetected software bugs existing in the program [33].
The first published reference for software testing with all possible input com-
bination was published in 1963 by Miller and Maloney in Communications of
the ACM (Association for Computing Machinery). They described programs
and their flowcharts as logical trees and suggested, that if the tree was used
for systematically creating combinations input data that the SUT must handle
and “testing these cases and subsequently assisting the programmer in locating
mistakes in the program” [16].
In the best case scenario this approach would reach a nearly perfect condition
coverage. Condition coverage describes that every boolean expression has been
executed with the evaluation of true and false. This is also called predicate
coverage and is one of the smallest unit of coverage criteria (besides line coverage)
that you can measure[17].
The next lesser detailed coverage metric is called branch coverage where the
measure is whether each conditional statement of was executed with all possible
outcomes (for example both true and false branches of an if statement). This
is very similar to the conditional coverage but consider that not all boolean
expressions are used in a statement or sometimes such statements have multiple
parameters for true and false branch. Statement Coverage describes only that
all statements must be executed, regardless which branch was chosen. And at
last you can measure code coverage by checking if each function in a program
has been called [18, 34].

Instrumentation. To gather the coverage information during test execution
the program must be instrumented so that the test suite can observe executed
code.
Code instrumentation happens by adding code to the existing software that
will report the current executed function, statement or branch. Code for instru-
mentation can be added during development manually with, for example, logs or
with tools that automatically add to the sourcecode.
Another option is to add instrumentation code at compile time or if there
is no access to the source code it can be added to the compiled executable via
binary translation.
During runtime the instrumentation can be realised by running the program
fully supervised and adding the instrumentation directly before. For example
Java programs can be instrumented with a so-called Java Agent at runtime
while running on the Java Virtual Machine (JVM) [35](see Section 2.1.2). A
Java-Agent can be used to start and observe a given application and also run
code before the main function.
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Grammars. A grammar of a language is used to describe how symbols from
an alphabet can be used to form to valid words. Further it defines how these
words can be combined into valid sentences[36]. Just because a word or phrase
is syntactically correct does not necessarily mean that it is semantically correct,
or even has a meaningful interpretation.
For example, in English, grammar rules dictate how words should be ordered
in a sentence and how sentences should be combined into paragraphs to form a
meaningful document. An error in grammar might result in a sentence that is
technically syntactically correct but still does not make sense in the context of
the entire document.
In software engineering syntax refers to the set of rules that describe how a pro-
gram must be structured in order for it to be considered valid and understandable
by the programming languages compiler or interpreter [37].
Semantics, on the other hand, deals with the meaning and logic of the program.
It determines whether the code performs the intended operations correctly. Even
if the syntax is perfect, the code may not work as expected if there are semantic
errors.

Notation Form - BNF. To be used in software development grammars and
their rulesets themselves need to be formalized and machine readable. One useful
and widely used notation form is the Backus-Naur-Form (BNF).
BNF is a meta syntax notation that can be used for context-free grammars.
It is often applied in computer science for defining programming languages,
document formats or communication protocols.
The notation form firstly was introduced in 1960 by JohnW. Backus to describe
the syntax of ALGOL-60, an international scientific programming language. It
later was also named after Peter Nauer, who also contributed to the development
of said programming language and to the definition of the notation format [38,
39].
This is an example of a really simple grammar written in BNF that would
produce the following outputs: “Hello World!” or “Hi World!”

Listing 2-1: Simple grammar
1 <hello -world > ::= <greeting > <world >
2 <greeting > ::= "Hello" | "Hi"
3 <world > ::= " World!"
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2.1.2 Coverage-Guided Fuzzing in Java with JQF

One state-of-the-art fuzzing tool for Java libraries is JQF . It “uses the abstraction
of property-based testing, which makes it nice to write fuzz drivers as parametric
JUnit test methods.” [19]
By building it on top of junit-quickcheck1 the developers around Rohan Padhye
enabled users of this framework to apply fuzz testing with coverage-guided fuzzing
algorithms such as Zest (2.1.2) by writing junit-quickcheck style unit tests [19].
Although intentionally written for Java Code, fuzz testing with JQF can also
be applied on different JVM-based programming languages such as Groovy (see
Section JVM 2.1.2).
Initially JQF was released with one algorithm to track and to calculate branch
coverage during testing. In the first implementation the Algorithm uses JaCoCo2

for the instrumentation it collects every visited branch and uses the hash from
this branch to increment a counter at the position of the hashed ID. The coverage
ArrayList has a fixed size of 216 possible entries. When fuzzing a target it
can be possible that different branches will generate the same hashed index
and therefore would be handled as the same branch covered. So this branch
coverage logged while fuzzing only represented the filling degree of the coverage
ArrayList . This is a simplistic fast approach, that gives a good overview what
the SUT and all of it used libraries have executed. However, those numbers
can also be misleading because they do not represent the covered parts of the
software at all, but a heuristic evaluation.
In May 2023 JQF released a new version including a second algorithm for
collecting coverage information: fast non colliding coverage instrumentation.
This new branch coverage was implemented by the researchers of CONFETTI[9,
40] and it improved in their measuring the execution speed by 7-10 times. Instead
of using an ArrayList and filling only specific indices of this, the faster version
stores coverage counts in a map. The keys to be stored in the List are generated by
incrementing a plain integer for every newly visited branch in the instrumentation
code and then played this back via reflections with JaCoCo to the coverage
map[41]. So every key in the map is one unique branch, meaning there is no
collision.
But still it only presents the absolut number of visited paths in the fuzzing
target and not how much percentage of it was covered.
To compensate for blank numbers of branches visited, the developers themselves
compare the generated coverage of different fuzzing algorithms [8, 9]. Often, the
most common or naive approach is used as comparison and is called baseline.
Comparing a fuzzing approach against a baseline is a common method for
evaluation [14, 10].

1https://github.com/pholser/junit-quickcheck
2https://github.com/jacoco/jacoco
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Zest-Algorithm. JQF uses a specific algorithm called Zest to maximize the
coverage during one fuzzing run. The idea is to combine generator based testing
with the “power of fuzzing” [8]
The working principle behind coverage-guided fuzzing (CGF) is to use known
inputs and mutating them randomly with small operations like bit flips or byte
level splicing to produce new inputs.
If such mutated input has generated new coverage it is saved for further
iterations in this run. By random byte manipulation those inputs often generate
invalid inputs. Many problems found by CGF tools therefore are located in the
syntax analyzing part of the software. To overcome this and find deeper laying
bugs CGF tools often need long-running (24h) fuzz testing [20], what can be
really interfering for continuous integration.
Zest, however, focuses on the semantic analysis stage of the program. To
achieve this QuickCheck-like random input generators are converted to determin-
istic parametric generators. Parameters in this case are a sequence of untyped
bits that are used to generate a syntactically correct input. The key insight in
this approach is that bit-level mutations on this parameters will lead to structural
mutations of syntactically valid inputs.
In their paper Padhye et al. [8] showcase a simple QuickCheck-like XML
document generator as shown in Listing 2-2.

Listing 2-2: Simple XML Document Generator from the Zest-Paper[8]
1 class XMLGenerator implements Generator <XMLDocument > {
2 @Override // For Generator < XMLDocument >
3 public XMLDocument generate(Random random) {
4 XMLElement root = genElement(random , 1);
5 return new XMLDocument(root);
6 }
7
8 private XMLElement genElement(Random random , int depth) {
9 // Generate element with random name
10 String name = genString(random );
11 XMLElement node = new XMLElement(name);
12 if (depth < MAX_DEPTH) { // Ensures termination
13 // Randomly generate child nodes
14 int n = random.nextInt(MAX_CHILDREN );
15 for (int i = 0; i < n; i++) {
16 node.appendChild(genElement(random , depth + 1));
17 }
18 }
19 // Maybe insert text inside element
20 if (random.nextBool ()) {
21 node.addText(genString(random ));
22 }
23 return node;
24 }
25
26 private String genString(Random random) {
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27 // Randomly choose a length and characters
28 int len = random.nextInt(1, MAX_STRLEN );
29 String str = "";
30 for (int i = 0; i < len; i++) {
31 str += random.nextChar ();
32 }
33 return str;
34 }
35 }

By overwriting java.Random with junit.quickcheck.random.SourceOfRandomness
and saving each single bit that generator has gotten via random.nextInt () or
random.nextChar () for generating a test input the algorithm is able to generate
similar new valid inputs by just flipping single bits in the source of randomness.

For example: the function genString () in the Generator (2-2) got
nextInt () = 3 and nextChar () produced f, o, o the bits saved for this would
be s1 = 0000 0011 0110 0110 0110 1111 0110 1111 . The first eight bits
are for 3, the next eight for f, and last two sequences of eight bits for too o

When the Zest-Algorithm mutates this sequence to

s2 = 0000 0011 0110 0010 0110 1111 0110 1111 it would produce 3 and
b o o. Considering the selected three chars are used in an XML element
definition both the first definition <foo > ... </foo > and the mutated version
<boo > ... </boo > are syntactically and semantically correct.

The Zest-Algorithm will use valid inputs for mutations in the next iterations
trying to maximize the covered branches of the current target software. But
success or failure depends on the quality of the underlying generator that will
build the input structure. A generator that focuses on different aspects of the
input will cover more diverse features of the target.

Java Virtual Machine. The Java Virtual Machine (JVM) will run programs
that are compiled to Java bytecode on multiple different platform. A JVM
language can every language be called that produces a valid class file that the
JVM can host. A class file is such that contains the instructions (Java byte code)
for the JVM .

There are multiple existing languages that were ported to the JVM like Ruby
and Python, but also completely new languages where created. The most popular
newly created languages to compile to Java byte code are Kotlin, Scala and
Groovy. One great feature of JVM languages is their incompatibility with each
other, meaning within Java programs Scala or Groovy libraries can be used and
vice versa [42].
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2.1.3 American Fuzzy Lop

Another popular greybox fuzzing tool is AFL (American Fuzzy Lop). It uses a
mutation-based approach to test a program, meaning it take seed input files and
modifies them or combines different seeds. Because it uses coverage-feedback
it is neither blackbox nor whitebox fuzzing. Blackbox fuzzing would use no
program feedback for the next tests and whitebox fuzzing mostly uses complex
and expensive analysis or constraint solving. AFL uses program instrumentation
to determine if a generated input creates more coverage. If so, it is added to
the seed corpus for upcoming tests to use. The developers of AFL recommend
recompiling the source code with an own companion tool that functions just like
gcc or clang. So instead of using gcc for compiling C programs you should use
afl-gcc and afl-g++ for C++ programs [43]. For apps where the sourcecode is
not available there is an experimental support called qemu, which adds on-the-fly
instrumentation and is approximately 2,5x slower.
While testing (e.g. execution) the instrumented program AFL is able to log
the exercised branch and can count the executed times for overall and each
test [44] Mutated output that caused crashes or hangs are saved to the respective
folder for further investigation.
AFL implements different mutations strategies, which where successful in
finding bugs. Since the publication in AFL has found countless bugs and
vulnerabilities in libraries, command-line tools and even operating systems. The
tests made with AFL also contributed in making non-security improvements to
plenty of core tools [31].

2.2 Data Pipelines and Workflow Engines

Nowadays for almost every problem in data analysis there is an already existing
piece of software to solve it. In bioinformatics data analysis pipelines are one
of the main tools for researchers as they help to integrate new technologies and
computational tasks [21]. Often it can be quite tedious to write scripts that
combine those tools in a single data pipeline to execute them. This is where
data pipeline tools come into use that will execute those pipeline as so-called
workflow.
To process a given data pipeline those tools use a formal scripting language
or define an own language for this purpose. A standard that can be used as a
formal definition of data pipeline is the Common Workflow Language (see 2.2).
If a workflow is defined in a custom language it is often called a Domain Specific
Language (see 2.2). nextflow is one popular workflow engine that uses its own
DSL for running pipelines.
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Domain Specific Languages. DSLs are build on top of existing programming
languages with the aim to simplify the original syntax [22].
It can be viewed as a way to increase abstraction in software development even
further. DSLs can be used to model specific concepts from a domain directly in
to a language and design an abstraction which purpose solely supports solving
tasks out of this domain [23].
One good example of now widely used abstraction of a language that took
away a huge amount of detail and programming knowledge from the users is
HTML . For designing a web page the users do not need to know about the
complex layout algorithms that internet browsers will us to display the page [23].
Wąsowski and Berger stated the following definition:
“A domain-specific language (DSL) is a computer programming or model-
ing language of limited expressiveness focused on a particular domain or its
aspect.” [23]
So a DSL can be used for various software tools as supporting language to
facilitate task definitions highly adapted for the users needs.

Common Workflow Language. Another way of describing data pipelines is
the open standard called Common Workflow Language (CWL). It can be used
to describe how to run and connect command line tools [45].
The language specification is designed by the bioinformatics community and
focuses on reproducibility on any hardware. CWL tries to enhance principle and
standards of coding pipelines and uses YAML as notation form. As parameters
needs very explicit definitions the language is considered “verbose”[24]. But
CWL is not closed to bioinformatics and a variation of different institutions from
fields like Radio Astronomy, Geospatial information or for cross domain data
analysis use CWL to describe their workflows [45].
Known data analysis tools that use CWL as workflow definition are Galaxy
and Toil [25]. Both tools are open source and written in Python as the reference
implementation of CWL cwtool.

2.2.1 Nextflow

nextflow 3 is a workflow engine that can easily be used from the command line to
process user defined data pipelines. The developers state their software “enables
reproducible computational workflows”[25].
The tool is written in Groovy and instead of static grammar like workflow
definitions it provides the user with the object-oriented style of Java[24]. nextflow
follows the approach of creating programmable and modular structures of work-
flows.

3https://nextflow.io
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On their website Seqera Labs define their workflow engine as followed: “Nextflow
is a free and open-source software distributed under the Apache 2.0 licence, de-
veloped by Seqera Labs. The software is used by scientists and engineers to
write, deploy and share data-intensive, highly scalable, workflows on any infras-
tructure.”[30]
nextflow uses workflows to run a user specified data pipeline. Users can define
processes with inputs and outputs that will run either Groovy code or another
nextflow or any other script (e.g. shell or Python). Workflow definitions contain
processes that will be executed. Processes can be joined via pipes in a shell script
style. For input data nextflow uses channels as stream-like objects. Channels
can contain different data types, such as numbers, strings and file paths.
A simple workflow written in the nextflow DSL 2 that uses a shell script for
writing to a text file and reading it again could look like presented in Listing 2-3.

Listing 2-3: Example nextflow Workflow Script
1 #!/usr/bin/env nextflow
2 nextflow.enable.dsl=2
3 process foo {
4 input: val cheers
5 output: path ’../../../ foo.txt’
6 shell:
7 ’’’
8 # nextflow will create working directories for
9 # each task where this file would go
10 echo !{ cheers} >> ../../../ foo.txt
11 ’’’
12 }
13 process bar {
14 input: path x
15 exec:
16 x.eachLine{ line -> println line }
17 }
18 workflow {
19 channel.of(’Hello world!’, ’Hi!’, ’Bonjour!’) | foo | bar
20 }

The above example emits three greetings via a channel and passes them to
the first process foo. The foo process uses basic shell functionality to write
one greeting at a time to the file foo.txt which also defines as the output of
the process. Outputs are equivalent to return values except processes can have
multiple. By using the pipe operator the output declaration of foo can be used
as the input of process bar because the types match.
The bar process will take the input file x and prints all file lines via Groovy
code. Both processes will be invoked for each entry but the second process bar
will not start before all three foo processes are finished Channels do not have
to pick the items in the same order of the declaration as seen in the output in
Listing 2-4
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Listing 2-4: Command Line Output from hello.nf
1
2 alena@lenovo :~/ source$ nextflow run hello.nf
3 N E X T F L O W ~ version 23.04.3
4 Launching test.nf [extravagant_cuvier] DSL2 - revision: eee7e769a5
5 executor > local (6)
6 [99/ dd4cc7] process > foo (2) [100%] 3 of 3
7 [ba/d42f91] process > bar (1) [100%] 3 of 3
8 Bonjour!
9 Hello world!
10 Hi!
11 # ... 3 times

As stated previously the channel took the items in different order and emitted
them to the foo process which written them in this order to the output file.
On the other hand of the differing execution order, nextflow enables you to
continue with the work by writing checkpoints during the execution which can
be reused or resumed if an error occurs.
Nextflow can run tasks parallel out of the box on different platforms like
Amazon AWS, Kubernetes, Google Cloud without the need of modifying the
scripts.
Today, plenty of researchers at sequencing facilities use nextflow for their
workflow system [46]. To make the individual workflows from different people
shareable and curated the project nf-core started. The goal of nf-core is to
share portable and reproducible pipelines that will work regardless the operating
systems, hardware or nextflow versions [46]. As of 2023 there are 86 predefined
curated pipelines for data analysis available as part of nf-core [47].

2.3 Literature Review

In the research field of grammarbased and coverage guided fuzzing there are
different studies and projects that use structured input files for testing.
In this research field there are mainly two different approaches to create new
test inputs for the SUT. Inputs can be created by mutating existing files or
data or new test can be created from scratch which is generally referred to as
generational approach.
The following sections presents a selection of projects and researches focusing
either the field of fuzzing in Java or using grammar aware strategies or combination
of both.

Csmith. A test generation tool used to test C compilers is Csmith, develop by
researchers of the University of Utah. Yang et al. created Csmith to improve the
quality of C compilers [5]. The test cases generated by CSmith follow a specific
standard for C programs, the C99 standard.
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The tests were run randomly without using a guided fuzzing approach, however
the researchers measured the coverage their tests have reached on the tested
compilers. The researchers have found that their random generated test files
did not improve branch, function or line coverage of the source code of GCC
and LLVM when added to existing test suites.[5] Over three years of testing the
developers have found more than 325 bugs with those test cases.

Tribble. One fuzzer that is capable of coverage guided fuzzing JVM-based
application is Tribble [48]. This research is the result of the dissertation of
Nikolas Havrikov about Grammar-based Fuzzing Using Input Features [26].
He defined the grammar coverage metric k-path coverage. By combining
this metric with a graph representation of a grammar, it can be used to make
judgements about the variety of a single input or even a set of inputs.
This measure can be used in an algorithm to maximize this coverage. To
evaluate this approach a blackbox fuzzer was written and compared to the closest
blackbox fuzzing approach in terms of code coverage.
Tribble is written in Java and Scala. To collect coverage information, Tribble
uses the widely used Java Code Coverage library JaCoCo. Users can use tribble
to test different Java based applications by writing a grammar in BNF (see
Section 2.1.1) or Scala DSL (see Section 2.2) format.
While Havrikov shows that his approach has found different bugs than his
compared baseline and measured “impressive ” code coverage [26], yet this
interesting approach has not found any application in other studies yet.

OSS-Fuzz. A continuous fuzzing project for open source software is hosted
by Google and will run fuzzing campaigns on tests for the projects provided
by maintainers. OSS-Fuzz will build and run the tests in Google Cloud Ser-
vice buckets with the distributed fuzzing infrastructure ClusterFuzz[49]. The
developers of OSS-Fuzz claim that the project has helped to identify over 10000
vulnerabilities in 1000 different projects. [49]
OSS-Fuzz provides a platform for continuous coverage guided fuzzing for
different applications written in a variety of languages such as C/C++, Rust,
Go and Java/JVM. But whether the tests are truly grammarbased relies on the
test cases provided by the developers of the open source software.
OSS-Fuzz was used as a source for benchmark programs in a wide set study
On the Reliability of Coverage-Based Fuzzer Benchmarking by Böhme et al. [27]
and tested those on a different fuzzer evaluation platform called FuzzBench. The
researchers explored the interrelationships and level of agreement on coverage
guided und bug finding guided fuzzing techniques over campaign length and
retries. The came to the conclusion tha it does not seem to have any benefit
of running a fuzzer program combination more than 20 times and that rather
shorter fuzzing campaigns may not strongly agree with the results from longer
campaigns.
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jsfunfuzz. Jsfunfuzz is a grammarbased blackbox fuzzer for testing JavaScript
engines. When it was first introduced in 2007 it had a large impact [3] as it found
about 280 bugs and over 1000 vulnerabilities in th Mozilla JavScript engine [50].
The JavaScript generator was highly adapted for the Mozilla JavaScript engine
but can be used to test other script engines. For example Superion [6] used
it as baseline when testing WebKit, ChakraCore and JerryScript. Holler et al.
used it 2012 for LangFuzz [3] as comparison. Today an updated version of Jesse
Rudermans tool is maintained by Mozilla and public available on GitHub.

Langfuzz. LangFuzz works by combining generation and mutation when cre-
ating test inputs. The research result of two researchers from the Saarland
University and one developer from Mozilla is published under the title Fuzzing
with Code Fragments [3].
By using a given language grammar different code fragments can be learned by
parsing tests from a given test suite or sample code base [3]. The test generation
is based on replacing different statements in one of the beforehand learned
examples.
As LangFuzz is only a proof of concept it will need a simplified version of the
language grammar because the used subsystem ANTLR parser will only support
a subset of the ANTLR syntax. But the tests run on the Mozilla JavaScript
engine have found 105 vulnerabilities.
The approach can be adapted to use another grammar as long as it is weakly
typed, such as PHP. LangFuzz has found 18 defects in the PHP interpreter [3].

Grammarinator. Written in Python Grammarinator creates test files for fuzzing
using an ANTLR v4 grammar. Grammarinator can be installed and used as a
command line tool via pip. In their research paper the developers evaluated their
generational approach with the Fuzzinator framework. Fuzzinator is a blackbox
fuzzing tool for Python libraries.
The researchers present 89 issues by using the generated test files in the
JavaScript engine JerryScript.[28]

Superion. Superion is a project that uses grammar-aware greybox fuzzing
to also test different JavaScript engines like JerryScript, WebKit, libplist and
ChakraCore. Additionally, in their case study the developers evaluated their ap-
proach on XML engines. The strategy for generating test inputs is to manipulate
and trim existing input files using grammars[6]. The project is written in C++
and will use ANTLR as a parser for manipulating inputs by replacing subtrees
For the mutation the developers compared two different strategies: dictionary
based and tree based. The developers compared their approach with AFL and
found that the valid inputs improved code coverage and bug finding capabilities.
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QuickFuzz. QuickFuzz is a blackbox fuzzer for testing software and libraries
handling common image and media file formats [4]. Written in Haskell it uses
MegaDeTh to derive information about all nested types to create a working
instance. With this tool QuickFuzz is able to create and mutate filetypes like
Gifs, Jpegs or HTML and PDF documents. The variety of different file formats
is created by using existing libraries for those types.
QuickFuzz uses existing fuzzers for execution and can fuzz software written in
any language. In their published research from 2016 the developers present 14
different security issues they have found in different libraries and browsers that
handle different file formats [4].

MoFuzz. MoFuzz is a project that applies fuzz testing to Model Driven Soft-
ware Engineering (MDSE) tools [15]. Using three different approaches for test
generation one idea is to use coverage-guided mutations on models and was eval-
uated with two different variants. The third strategy was to use grammarbased
fuzzing with automated model generation.
The researchers have applied their strategy to real world applications and
have found that using a model based approach covers more code of the analyzed
software and triggers more crashes than other coverage guided fuzzers [15].
MoFuzz is written in Java based on JQF and can be applied to MDSE tools that
build upon the EclipseModelingFramework.
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3 Implementation

This Section will describe the used libraries and required modifications for the
implementation. Further we will take a look at the defined generators and
grammar to produce input data.
As described before the target software of the fuzzing campaign is written the
JVM-based language Groovy so the implementation for the tests is also written
in Groovy.
As grammarbased fuzzing with coverage guided fuzzing techniques has achieved
good results in finding vulnerabilities in JVM based applications [15, 40, 8, 29,
10] the implementation to test nextflow follows this approach.

3.1 Used Libraries

The project is build upon Java 11 and the used Groovy version is 3.0.15 to be
compatible with nextflow 23.04.2. Besides those two necessary libraries we also
need a fuzzing framework: in this set up we will use a clone of JQF 2.0. All
mentioned repositories and clones can be found online4.

3.1.1 JQF

The whole implementation is set up to use JQF as a fuzzing driver. To be a
suitable driver during testing the implementation contains a main method which
will start the fuzzing campaign. This allows us to add own methods to analyse
occurred events.
To have faster access to test files and the exceptions that the SUT might have
thrown during processing, we can add to JQFs handleResult method. Besides
JQF saving the generated input used to generate the current script file, we will
log the file name and exception. If the tested inputs have not raised any error,
they are deleted from the hard drive.

3.1.2 GramTest

To create syntactically correct testcases we need a suitable generator. One open
source Java based project published under Apache License 2.0 is GramTest
written by Dr. Asankhaya Sharma 5.
GramTest enables users to create test inputs based on a given grammar
definition written in BNF. It is build on top of ANTLRs parse tree visitor and
will generate test strings by traversing the tree and making random choices on
which path to use.

4https://github.com/schemmea
5https://github.com/codelion/gramtest
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To make this a suitable generator for JQF to use during fuzzing some slight
adjustments are needed. As mentioned in Section 2.1.2 JQF needs to be
able to reproduce the inputs. To achieve this, the test generation in the
GeneratorVisitor class has to use the junit.quickcheck.random.SourceOfRandomness
when shuffling paths or deciding which option to take (see Listing 2-2).
The main benefit of using GramTest is the easy adaption of the ruleset to
generate new test scripts, meaning no implementation is needed.

3.2 Generators

For the fuzzing campaign two generators were implemented to measure how
worthwhile it is to ensure that the tests are semantically correct and executable.
In the following Sections we will call this approach which favors semantic cor-
rectness “semantic generator”. We will compare this to the “syntactic generator”
which will generate simpler and not necessarily executable tests files.

3.2.1 Semantic Generator

The semantic generator is the main investigation of this thesis and the other
proposed generators and tests are used to evaluate the quality of it. The generator
will use GramTest with an especially designed grammar and some postprocessing
to produce a workflow which calls the defined processes with suitable scripts.

Grammar for Semantic Generator. The grammar used for GramTest to gen-
erate individual test inputs is only a small representation of the nextflow DSL2.
It is quite simplistic compared to the capabilities of nextflow to sort, convert
and manipulate input data for different tools or even execute tests in containers
in a user specified cloud tool. The grammar is kept simple due to the fact that
GramTest will use many bytes from the SourceOfRandomness during one gener-
ation. Also by increasing the complexity and depth in the grammar definition
the time for each generation will increase exponential.
To redeem more generation speed constant strings are written inline in each
rule. Declaring rules with constant string values to use in other rules would
otherwise create a larger syntax tree that has to be traversed. Additionally,
GramTest uses the rule count to determine how many paths on the tree will be
visited to create a test string, to ensure every rule can be visited on average.
In the used definition in one generated document takes about 5430 KiloBytes
from the source of randomness to be generated. Most of them are used for
generating names for processes and channel items.
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Following grammar (Listing 3-5) was used to generate the test inputs .

Listing 3-5: Grammar Used in Semantic Test Input Generator - shortened for
readability

1 <nextflow > ::= "#!/ usr/bin/env nextflow" <processes > <workflow >
2 <processes > ::= <process > <process > | <process > <processes >
3 <process > ::= <process1 > | <process2 >
4 <process1 > ::= "process " <identifier > " {" <body > "}"
5 <identifier > ::= <char > | <char > <identifier >
6 <body > ::= "input: val variable output: val variable" <content >
7 <content > ::= <templatescript > | <script >
8 <templatescript > ::= "script:" " template ’scriptname ’"
9 <quotes > ::= ’"""’ #constant to prevent regex misinterpreting
10 <script > ::= "script:" <quotes > "scriptplaceholder" <quotes >
11 <process2 > ::= #analogue to <process1> but with two inputs and outputs
12 #...
13 <workflow > ::= "workflow " <workflowbody >
14 <workflowbody > ::= "{" <channel1 > <channel2 > "}"
15 <channel1 > ::= <channel > ".set{ch1}" "ch1 placeholder1"
16 <channel2 > ::= <branched > ".set{ch2}" "ch2 placeholder2"
17 <channel > ::= "Channel.of" <open > <channellist > <close >
18 <branched > ::= <channel > ".multiMap { it -> one: two: it }"
19 <channellist > ::= <item > "," <item > | <item > "," <channellist >
20 <item > ::= <number > | ’"’ <identifier > ’"’ | <uint > ".." <uint >
21 #...
22 <char > ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
23 <uint > ::= 0|1|2|3|4|5|6|7|8|9
24 <open > ::= "(" #constant to prevent regex misinterpreting
25 <close > ::= ")" #constant to prevent regex misinterpreting

In this grammar definition there are two possibilities for the scripts to be
inserted. Firstly via the template keyword which refers to a predefined script
file in the templates-directory of the current working directory. The second
option is to read a random script file and write the content in the script block
wrapped with """.
A test case generated by GramTest with this grammar will look like presented
in Listing 3-6 (formatted for readability):

Listing 3-6: Test Case Generated by Grammar in Semantic Generator Before
Postprocessing

1 #!/usr/bin/env nextflow
2 process x {
3 input: val variable
4 output: val variable
5 script:
6 """
7 scriptplaceholder
8 """
9 }
10 process yz_twovars{
11 input:

19



12 val variable
13 val variable2
14 output:
15 val variable
16 val variable2
17 script:
18 template ’scriptname ’
19 }
20 workflow {
21 Channel.of("x" ,0..5,"j".."o").set{ch1}
22 ch1 | placeholder1
23 Channel.of("m".."x" ,8..5)
24 .multiMap { it -> one: two: it }.set{ch2}
25 ch2 | placeholder2
26 }

This script is not executable by nextflow because of the placed placeholders
in line 7, 18, 22 and 25. This need to be replaced with real script contents or
script names and in the workflow component we need to call the two generated
processes x and yz_twovars from above.

Ensuring the Executability. After generating the string via GramTest with
the grammar presented in Listing 3-5 the next step is to make sure the processes
have linked actual executable scripts.

The semantic generator will search for the script name placeholder and from a
pool of prepared files replace it with a random file name. For the other script
placeholders between """ from the same pool one random file will be picked and
the content written to the placeholder. While replacing the script placeholders a
distinction is made between processes with one or two inputs so that the selected
script will have the same amount of inputs.

The used template scripts are basic bash scripts with operation like df, ps aux,
echo or simple calculation with the given inputs from the process. The provided
set of template files includes 28 files. Inputs and outputs are have a constant
name called variable to ensure that the defined inputs are usable in the scripts
and processes can be joined.

After the processes are executable tasks for nextflow, they need to be called
from the workflow-block in script. Via regular expressions all randomly created
process names are collected and sorted by one and two inputs. Processes with
one input replace palceholder1 joined via pipes (|) and those with two inputs
replace palceholder2 and joined in the same way. In the given example in
Listing 3-6 there is only one process with one input and one process with two
inputs. So in the finished workflow body will the process call looks like this:
ch1 | x and ch2 | yz_twovars.
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When more than two processes with one input where generated, we also can
join them in the workflow with a two inputs process with a method like notation:
twovars(a(ch2.one), b(ch2.two)). Channel a and b will each use the data
of one branch of the channel ch2.
Although at first sight it looks like all inputs generated by this generator will
be executed with no error, due to the nature of random generating tests not
every run will succeed. With that said the test input is ready for fuzzing.

3.2.2 Syntactic Generator

The syntactic generator uses a similar grammar definition as the semantic
generator (Section 3.2.1). The main difference is that the grammar (Listing 3-7)
does not contain any placeholders for scripts or process calls. We will use this
as comparison to the semantic generator as there no comparable generator for
script files in the nextflow DSL2.
If the grammar used the same identifier-rule as the semantic generator
it would produce scripts that are not executable most of the time. Generated
process names would have an extremely low chance being generated a second
time in the workflows process calls. To make up for this only the first five letters
of the alphabet are used with one char in the rule so that the probability of
calling a generated process is increased drastically.
The third difference compared to first described grammar lays in the script-
rule where just a set of possible template scripts are presented.

Listing 3-7: Grammar Used in Syntactic Test Input Generator - shortened for
readability

1 <nextflow > ::= "#!/ usr/bin/env nextflow" <processes > <workflow >
2 <processes > ::= <process > | <process > <processes >
3 <process > ::= "process" <char > "{" <input > <output > <script > "}"
4 <input > ::= "input: val variable"
5 <output > ::= "output: val variable"
6 <script > ::= "script: template " <tick > <magicstring > <tick >
7 <magicstring > ::= "script1" | "script2.sh" |
8 "script3" | "script4.txt" | "script5"
9 <workflow > ::= " workflow " <workflowbody >
10 <workflowbody > ::= "{" <channel > <pipe > <calls > "}"
11 <channel > ::= "Channel.of" <open > <channellist > <close >
12 <channellist > ::= <item > "," <item > | <item > "," <channellist >
13 <item > ::= <uint > | ’"’ <identifier > ’"’
14 <calls > ::= <char > <pipe > <char > | <char > <pipe > <calls >
15 <char > ::= a|b|c|d|e
16 <uint > ::= 1|2|3|4|5|6|7|8|9
17 <open > ::= "(" #constant to prevent regex misinterpreting
18 <close > ::= ")" #constant to prevent regex misinterpreting
19 <pipe > ::= "|" #constant to prevent regex misinterpreting
20 <tick > ::= "’" #constant to prevent regex misinterpreting
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Besides not containing any placeholders there is no rule in the grammar that
considers processes with to input variables.
This grammar handed to GramTest will generate finished test inputs right
away and will look like Lsiting 3-8.

Listing 3-8: Test generated by syntactic grammar
1 #!/usr/bin/env nextflow
2 process a{
3 input: val variable
4 output: val variable
5 script: template ’script4.txt’
6 }
7 process c{
8 input: val variable
9 output: val variable
10 script: template ’script5 ’
11 }
12 workflow {
13 Channel.of("a","b" ,7) | a | b
14 }

While this script follows the nextflow syntax it will not be a valid input during
fuzzing because the process called in the workflow section does not exist.
One substantial benefit of using this smaller grammar is that it will only use
about 26 KiloBytes to generated one test input. In the evaluation (see Section 4)
we will see if this approach is superior or inferior to the semantic generator.

3.2.3 Wrapping Command Generator

As described nextflow is a command line tool which has additional options for
maintaining projects. To include those in the fuzzing campaign both grammar
generators are wrapped in a CommandGenerator which chooses from a given list
of nextflow commands. The main idea behind this setup is to test the whole
workflow engine and not only its script parsing capabilities.
The used commands also include parameters:

• run < script > (−with−docker|−with−report|−with− trace|−with−
timeline)

• clean [a− z]
• secrets (list|delete[a− z]|get[a− z]|put[a− z]|set[a− z])
• . . .

When the run-command gets selected a test script will be generated and saved
to a dedicated output directory. In this directory the mentioned template files
are also stored in a subdirectory called “templates”. The run command will also
be started with an additional parameter -cache false to decrease the memory
usage by nextflow.
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All commands with their options are passed to the nextflow main launcher in
the fuzz unit tests. Possible commands that this generator will return are stored
in an array of strings. The run command will look like this:
["run", "scriptname.nf", "-with -timeline", "-cache", "false"]

3.2.4 AFL Fuzzing in Java with JQF

Another way of evaluate the semantic generator is to compare the results to
basic grey-box fuzzing from AFL. For fuzzing a JVM based program with AFL
the developers of JQF have written an adapter for AFL to use their own code
for instrumentation during tests.
This driver defines a two proxies over files to AFL. In the output proxy the
driver saves the status for a mutated input as a feedback for AFL. From the
input proxy is read, if AFL ready for the next test. With this driver setup, a
target program can be fuzzed in a JQF like environment via unit tests.
For this fuzzing tests a separate JAR is used which will not contain the source
code from the grammar generators. JQF-AFL fuzzing will take a set of random
seed files and mutate these files by changing bits in the content and pass this as
a stream to the unit test.
This tests will focus on executing those mutated script files because we want to
ensure that more than the command parser will be executed. If these tests also
mutated commands via byte manipulations probably only random utf8 characters
would be passed to nextflow which would not trigger a deeper execution of source
code.
If a test has triggered something interesting (an exception or more coverage)
for AFL the current input stream is saved in the queue directory for further
iterations.
Additional to the grammar based test with the proposed generators the AFL
tests have the parameter -ps 1. This tells nextflow to use only one thread in
the thread pool while running scripts because the instrumentation does not work
well with multiple threads running[43, 51].
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4 Experiments and Evaluation

In this section we want to evaluate the proposed implementation from Section 3.
To do this, we want to primarily answer the following research questions:

RQ1 How does the proposed technique of the semantic generator performs in
terms of generated valid inputs?

RQ2 How does the proposed technique of the semantic generator performs in
terms of code coverage?

RQ3 Can the described techniques discover bugs behind the parsing and com-
piling stage of nextflow?

RQ4 Do we observe a better performance regarding RQ1-RQ3 by using a
coverage-guided fuzzing technique?

To answer RQ1, RQ2 and RQ3 we will use a fuzzing-campaign run with JQF.
Due to the nature of random testing one single run with different input data the
test results are not necessarily reliable. To overcome this varying performance,
we follow Klees et al. [20] recommend guided lines and also considered the results
presented by Böhme et. al in their study on the reliability on coverage-guided
fuzzing [27]. For all experiments the configuration described in Section 4.1.1
and Section 4.1.2 was used.
With both presented generators the two different configurations ran 20 times
on the virtual machine for one hour each. The test set-up ran on a linux virtual
machine with an AMD Epyc Processor (version 23.1.2, 8 cores), 32GB memory
running Ubuntu 22.04.3 LTS.

4.1 Experimental Set Up

4.1.1 JQF Configuration

Although JQF is a tool that can be used as is, to be used with the implemented
generators and the selected target, some configuration are needed.
The tests will use a JAR with all necessary libraries included built via Gradle.
The main class starts the fuzzing run with theZestGuidance (see 2.1.2) to
control the mutation of the random input stream for the generators.
The maximum of bytes prepared for the random input stream is set to at least
5,5 MegaByte (see 3.2.1) via -Djqf.ei.MAX_INPUT_SIZE .
The maximum memory for the JVM was set to 7 GigaBytes via the -Xmx option.
For coverage calculation theZestGuidance uses the FastNonCollidingCoverage
described in Section 2.1.2.
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Which classes should be instrumented or excluded by the JavaAgent can be
defined in a separate configuration file. Publications ([9, 8]) in the Java based
fuzzing research set up the configuration is set up for the fuzzer to use coverage
information about the SUT and its used libraries, to decide which input to save
for next tests. The idea behind this is that an input that covers new external
library code will more likely also cover more code of the SUT [9] when paired
with a coverage-guided fuzzing algorithm.
However, this observation could not be made in beforehand made tests with
the described set-up for this thesis. The tests included 20 runs with the same
set-up and a configuration to instrument all libraries. The difference between
coverage-guided (Zest-Algorithm) and non-guided (blackbox) where about 0.5%
and without any statistical significance.
The used configuration in this campaign will exclude all calsses, modules and
libaries except from nextflow. This should improve execution speed and allow us
to have better insights on the fuzzing target nextflow.
As we want to use the ReproGuidance (see Section 4.1.3) we need to exlude
some static classes from nextflow that will cause errors from JQF when it tries
to instrument them: HistoryFile, ProcessConfig, TaskTemplateEngine,
ScriptRunner , AssetManager and three different exception classes from nextflow.
One addition that is made to the configuration as well are the generated scripts
themselves. nextflow -scripts are compiled as Groovy class and would be count as
new covered branches during testing. Also, nextflow will generate and compile
config and dummy files for each script in the current session. Those were also
excluded from being instrumented.

4.1.2 Setup for Generator Comparison

To evaluate the implemented generators run in a setup similar to the one described
in the paper Semantic Fuzzing with Zest [8].
The generators where both tested with the ZestGuidance and with no guidance
at all. When running JQF with no guidance coverage is still calculated but not
used as feedback for generating the next test inputs. No guidance means this is
not a guided fuzzing test, that will not apply algorithms on maximizing a specifi
metric like coverage or bugs.
Both generators where used with the same unit test and ran guided by the
ZestGuidance and in comparison with no guidance. The used unit test is set
up as shown in Listing 4-9.

Listing 4-9: Unit Test Used in Fuzzing Campaign with JQF for Both Generators
1 @Fuzz
2 public void testNFCommand(@From(CommandGenerator.class)
3 String [] command) {
4 if (command [0] == "run") {
5 //avoid try catch (Throwable) in Launcher
6 Launcher launcher = new Launcher (). command(command)
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7
8 CmdRun myRunner = new CmdRun ();
9 myRunner.setArgs(command.tail (). toList ());
10 myRunner.setLauncher(launcher );
11
12 myRunner.run();
13 } else {
14 int status = new Launcher (). command(command ).run();
15 Assume.assumeTrue(status == 0)
16 } }
17 @After
18 public void cleanUp () {
19 //session is not destroyed after exception
20 def sess = (Session) nextflow.Global.getSession ()
21 if (sess != null) {
22 sess.cleanup ()
23 sess.destroy ()
24 }
25 nextflow.Global.cleanUp ()
26 nextflow.Plugins.stop()
27 }

As we want to test the whole workflow engine and not only the parsing
capabilities we use the main entry point of nextflow. The Launcher (Line 6) is
also executed when nextflow is used via commandline.
In order for JQF to observe triggered failures in the target program, the script
execution is not launched via the main entry point of nextflow. We use the CmdRun
class instead, that is also executed under normal conditions. The Launcher
would catch any java.lang.Throwable during execution of any command.
In the whole source code of nextflow are 23 Try-Catch-Clauses in 14 classes
that will do so and will not necessarily rethrow their caught exception. Some of
them are deeper nested that a workaround would be unreasonable. Therefore,
we do not expect to see many unique crashes or exceptions during testing.
To tell JQF if the input was valid, the test will use org.junit.Assume (Line 15)
on the returned launcher status. After every test, the cleanUp-method is called
to ensure that no artefacts of unsuccessful runs are still up in the current JVM.
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AFL Test Set Up. The described AFL setup (see Section 3.2.4) also run
on the same machine twenty times for one hour. The used unit test in these
runs is different from the plain JQF-setup (Listing 4-9). AFL did not start
fuzzing if an exception occurs in pilot run, so the whole test is wrapped with a
Try-Catch-Clause and feedback on the validity is also via org.junit.Assume.

Listing 4-10: Unit Test Used in Fuzzing Campaign with AFL
1 @Fuzz
2 public void testAFL(@From(InputStreamGenerator.class)
3 InputStream inputStream) throws IOException {
4
5 String filename = getFileName ();
6 Launcher launcher = new Launcher ();
7 try {
8 serializeInputStream(inputStream , filename );
9 String [] args = new String []{"run", filename ,
10 "-cache", "false",
11 "-ps" , "1"};
12 int launched = launcher.command(args).run();
13 Assume.assumeTrue(launched == 0);
14 } catch (IOException e) {
15 throw new RuntimeException(e);
16 } catch (Exception e) {
17 Assume.assumeNoException(e);
18 } finally {
19 //instead of @After
20 Plugins.stop ();
21 Files.delete(Paths.get(filename ));
22 def sess = (Session) Global.getSession ()
23 if (sess != null) {
24 sess.cleanup ()
25 sess.destroy ()
26 }
27 nextflow.Global.cleanUp ()
28 }}

The tested input is taken from an InputStreamGenerator which is in this test
case the raw by AFL mutated seed script files that will be written to the disk
with a unique name. Afterward, the mutated script can be tested by starting
the execution via the Launcher.

In this setup the cleanup methods are called in the finally-block (Line 18) the
test. Test files are not needed after testing, so they are deleted.

The JQF-AFL driver uses a different coverage metric, so the interesting
artefacts from this experiments will be the total covered branches from JQF‘s
ReproGuidance (see next Section 4.1.3).
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4.1.3 Reproducing Runs

The reproducing algorithm from JQF can be used to rerun specific test inputs
on a defined testcase to examine thrown exceptions or methods called during
tests [51]. In this case it will be used to compare called classes and branches
within nextflow.
Reproducing JQF tests works by setting up theReproGuidance to replay the
used InputStreams whether they were used for the generator as random source
or directly as input for the AFL test. This is a suggested method by Rohan
Padhye [51], the main developer of JQF, to further investigate produced crashes.
The tests are also run with instrumentation via Java Agent for collecting called
branches.
As we want to measure the coverage within nextflow we will configure the
instrumentation to only collect information about branches executed on nextflow
classes. TheReproGuidance still uses the first described coverage calculation
(see Section 2.1.2).
Normally, as stated in the JQF documentation [51] we would run the ReproGuidance
on failures and hangs, which we could not observe in this test setup. When
running the ReproGuidance we can adjust if all internal made calls should be
logged or only from tests which had a valid results. After rerunning all inputs in
a given set the calls can be saved for further evaluation.
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4.2 Results

The analysis uses the beforehand mentioned in total 20 tests for each generator
run with ZestGuidance and without (noguidance in the following) and 20 tests
with the AFL set-up. Also, we will use JQFs RepropGuidance on saved inputs
for AFL and generator tests to analyze coverage within the source of nextflow.

4.2.1 Analyzing Generated Inputs

To gain a better understanding of the measured coverage we first inspect the num-
ber of tests run and the overall execution speed for each parameter combination
(see Figure 1 and Figure 2).

The number of inputs represent the inputs produced by the source of random-
ness that were used in the generator (meaning the other nextflow commands
like list, clean are also included in the number of inputs). Solid lines are the
mean for every combination of guidance and generator, shaded areas represent a
95% confidence interval. This applies to all following graphs as well if not stated
otherwise.
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Figure 1: Inputs Generated Over Time
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Figure 2: Execution Speed Over Time

Depending on which generator was used with which guidance the number tests
executed over one hour varies (see Figure 2). For both tested generators, tests
without guidance run faster than the experiments guided by the Zest-Algorithm.
So reached the blackbox test with the syntactic generator 18550 executions on
average, but with the semantic generator only 4091 (see Figure 1 and detailed
information in Table 2). Guided by the Zest-Algorithm both generators have low
slope of total inputs over time. In both tested scenarios the syntactic generator
produced more inputs than the semantic generator.
The test set-up with JQF-AFL connector measures tested inputs and coverage
differently so there is no data about the executions over time, but the absolute
numbers of tests done by AFL (see Table 2).
Although the syntactic generator run at much higher speed at the beginning it
slowed down to below 5 executions per seconds after half an hour with no guidance.
The tests run with ZestGuidance with the syntactic generator executed about
one test per second. The blackbox tests of the semantic generator executed
between 0.5 and 8 tests per second. In the coverage-guided execution the
execution speed was less than one execution per second.
To further investigate if the faster and more frequent executions of the syntactic
generator have any benefits we take a look at the ratio of valid to invalid test
inputs (see Figure 3). Valid tests mean that the return value of the Launcher
had no error value nor have the generated scripts raised an exception.
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Figure 3: Valid Inputs in Percent Over Time

Figure 3 shows the percentage of valid inputs for each combination. For the
blackbox tests (noguidance) the percentage of valid created tests is the same
over the whole duration. And for both generators the percentage raises over
time as the ZestGuidance will generate more of those inputs. In Table 2 the
average final values of total and valid inputs over all 20 runs are presented.

Table 2: Average Inputs Tested Over All Runs

Test Total Inputs Valid Inputs Relative Valid Inputs

semantic-zest 1225 (38.76%) 922 (33.62%) 78.22% (14.54%)

syntactic-zest 4619 (27.26%) 2947 (20.52%) 64.78% (7.89%)

semantic-noguidance 4091 (31.87%) 2532 (32.03%) 61.84% (1.07%)

syntactic-noguidance 18550 (14.28%) 9307 (14.41%) 50.17% (0.81%)

afl 4086 (1.48%) not measured not measured

Values in brackets represent the Relative Standard Derivation for the final
results of all runs
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In Table 2 we can see that the syntactic generator produced as much invalid
inputs as valid inputs over time when running without any guidance to increase
coverage or executability. When guided with the Zest-Algorithm about 64.78%
of the inputs generated by the syntactic generator where valid.
Without any guidance the semantic generator generated also about 61.84%
valid inputs but in total number there much fewer executions. The ZestGuidance
executed also much fewer tests with semantic generator than both tests with the
syntactic, but about 78.22% of those inputs were considered valid.
The semantic generator had an overall 11.67% better rate of valid inputs than
the syntactic generator without any guidance that would maximize the execution
success like Zest. We can assess statistical significance in the measured difference
by using th Mann-Whitney U test over all final valid-total ratios of each run
without guidance with p < 10−8.
As for the semantic generator fewer tests were executed, we see a higher
derivation in the valid-total ratio in Table 2.

Answer to RQ1. By making sure the generated nextflow script files could
actually be executed we achieved a significant improvement in the ratio of
valid and invalid inputs compared to the simpler syntactic generator approach.
However, this improvement has the downside that only about 22% of the syntactic
test are executed with a higher variation.
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4.2.2 Analyzing Coverage

To answer RQ2 and to evaluate if the increased data consumption in test input
generation has any advantage over the faster execution, we need to analyze the
coverage that both generators reached over the tests.

Although the syntactic generator run more tests with both guidance set-ups,
the semantic generator reached more coverage faster during testing (Figure 4).
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Figure 4: Valid Coverage Over Time

In Figure 4 we can see that for all tested combinations the coverage converges
within the tested timeout. This is a common picture of coverage measurements
in fuzzing studies that uses JQF as a fuzzing framework or as baseline [10, 40].

While the syntactic generator converged at approximately 16100 covered
branches the semantic generator reached 18300 branches with no guidance on
average. So we can say for certainty that the semantic approach covers more of
the chosen target than the syntactic approach. To proof statistical significance
we use the Mann-Whitney U with p < 0.001 test for maximum number of valid
covered probes over the 20 experiments for the semantic and syntactic generator.
The Zest-Algorithm reached 18500 covered branches with the semantic generator
and only 15400 covered branches on average with the syntactic generator.
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To finally answer RQ2, we compare the branches executed (tracked by the
JQF ReproGuidance) for the saved inputs for all used generators and AFL. The
information about the branches that AFL has covered was recorded by using
the ReproGuidance on the queue of AFLs prepared inputs, as we could not
measure any crashes directly with the presented set-up.
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Figure 5: Average Number of Covered Branches

In Figure 5 the bars represent the average number of branches covered in
all runs and the black lines represent the confidence interval. This data was
gathered by using the first introduced coverage measurement algorithm by JQF
(see Section 2.1.2). Therefore, the range does not match the coverage measured
in Figure 4. This is here used to compare the difference between successful
execution of workflows (generator based tested) and only compilation (AFL
mutation based test). Comparing the coverage results of AFL and JQF, AFL
only reaches about 10% of valid coverage of what JQF has gained over the same
time. The coverage of AFL reaches 36% of JQFs coverage when also the invalid
tests are considered.
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Figure 6: Classes Executed in All Tests

To understand where the difference in the covered branches is in particular,
we compare the absolute number of calls of each class in nextflow (see Figure 6).

Figure 6 shows that the four generator based tests with JQF (semantic and
syntactic with ZestGuidance and no guidance) have all a similar distribution
over the classes, while the tests with AFL miss the center of the distribution
in the plot. Classes located there in the distribution are responsible for exe-
cuting scripts. The most calls of the scripts from the generators where made
on nextflow.processor.TaskProcessor and nextflow.executor.Executor.
The tests that were handed to nextflow by AFL during testing where not valid
script files and could be executed.

The presented branches covered are in 185 out of 532 classes in the source
code repository of nextflow for the semantic generator and for the syntactic
generator there were 180 classes called. AFL executed 95 classes of which are
all also executed by the syntactic and semantic generators. This distribution of
different classes called we also see in Figure 6.
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Beside not successfully executing a script, the tests with AFL also made fewer
calls on the classes and therefore probably lesser executions overall, although the
log files of AFl count 85828 tests in total and about 2496 (see Table 2) executions
on average per run which is are more tests than the tests with ZestGuidance
and without guidance has executed with the semantic generator.
In this tested set-up the grammarbased fuzzing approach covered in all tested
combinations more branches and approxiamtely double amount of classes than
the random byte mutation of file content by AFL.

Answer to RQ2. The grammarbased approach reached more coverage and
wider class distribution than the mutation based approach with AFL. In terms
of code coverage we reached within the blackbox tests higher values with the
semantic generator than with the syntactic generator.
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4.2.3 Analyzing Crashes

To answer RQ3 we will analyze the crashes logged during testing. As described
in the setup (4.1.2) the source code of nextflow includes Try-Catch-Clauses that
causes problems in finding deeper issues in the code.
Table 3 shows that most of the exceptions where thrown while testing with
the syntactic generator. Comparing this with the unique crashes JQF has found
(Figure 7), we can make the assumption that almost every exception was rated
as unique crash. Unique crashes in JQF are exceptions which stack traces that
have not occurred yet, because the nextflow scripts are compiled as classes the
crash happens to be at a before unseen position and is logged.
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Figure 7: Unique Crashes Logged Over Time by JQF

Commands that did not run a script where wrapped with the main entry point
of nextflow (the Launcher) and therefore any exception was caught there and
only the invalid status was evaluated by JQF . Most of the invalid test inputs in
the semantic generator have been those invalid list or drop commands so less
unique crashes where found here.
Only four different types of exceptions have been logged during testing with the
generator Set-Up with JQF and one different exception while fuzzing with AFL
(see Table 3). Typical fuzzing exceptions like NullPointer or IndexOutOfBound
could not be observed.
The exceptions thrown during the tests with AFL are collected from log files
that jqf has written during testing. JQF writes all output to a log file, and so
we can search for error messages nextflow has printed while trying to execute a
script.
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Table 3: Exceptions Logged by JQF in All Tests

Exception afl semantic
noguidance

semantic
zest

syntactic
noguidance

syntactic
zest

groovy.lang.MissingMethod 82 - - - -
groovy.lang.MissingProperty 1462 5 - 32189 3391
nextflow.AbortRun - 20 19 20 20
nextflow.Duplicate-
ProcessInvocation

- - - 2513 354

nextflow.ScriptCompilation 76792 410 38 10471 1065

As explained the count of unique exceptions with the syntactic generator
relates heavily to the number of executed tests (see Table 2). Two of those
exceptions occur because of the limited process name generation in the syntactic
generator (5 different in total - see Section 3.2.2). When a process is called that
is not present in the current script a MissingPropertyException is thrown. If
an existing process was invoked more than once in thw workflow definition a
DuplicateProcessInvocationException is thrown. Both of these exceptions
were triggered when nextflow tried to execute the script. So after it was parsed
and compiled to a Java class Script_XYZ, where XYZ is a unique identifier for the
current Script like b6cf8a04. In the systems temporary directory /tmp we will
find in the nextflow directory, matching the unique identifier, the corresponding
class file.

The AbortRunException is thrown by nextflow when an invoked script termi-
nated with an error. The used scripts in the tests are all valid executable scripts,
but in some combination with the processed values from the random generated
input channels, not all used bash command line tools are executable. Also, if a
grep command did not match, the return value from the shell is 1 and nextflow
will count this as unsuccessful execution. All tested combination have almost the
same amount of unique the AbortRunException is triggered, as they occurred
one single time in each 20 runs, and only in one runs with the ZestGuidance
not.

ScriptCompilationException is thrown if a process name was already used
or if a channel was build in a false way (e. g. Channel items of numbers must
not start wit a leading 0).

The ScriptCompilationException will also be thrown if process names
equal other reserved words of the Groovy language. The semantic generator
found that process names should not be do. Also tested via normal execution the
error message for the user is Unexpected input: ’{’. This exception occurs
during the compilation process.
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The MissingPropertyException is thrown during testing with the semantic
generator where further investigated as this exception should not occur by the
proposed design. When investigating the error messages raised by those scripts
the exception states that the property process for class Script_XYZ is missing.
On expectation of the generated script files that produced this error, we find that
all the thrown MissingPropertyException by the semantic generator correlate
with process names that are a reserved word in Groovy: in.
When executing these scripts via nextflows normal command line interface,
users will get the following error: no such variable: process. On checking
the log files from nextflow for running such a workflow the stack trace shows,
that this exception will be thrown after the script was compiled successfully.
Again, in the systems temporary directory we will find the corresponding class
files in the nextflow folder for this run.
Inspecting the errors thrown during the AFL test set up we also see the
MissingPropertyException , those were thrown after successful compilation as
well. The mutation strategy of AFL also triggered a MissingMethodException,
on executing a successfully compiled script. We find this information also in the
log files of jqf, the log files that nextflow writes during execution. As the test
scripts where deleted in the unit test, we can not say for certainty how those
test scripts where structured. Using the ReproGuidance on prepared inputs
of those runs that caused both exceptions we can assume that the test script
looked like random unicode characters with linebreaks and brackets. Otherwise,
the tests with AFL hve triggered more than seven times the amount of the
ScriptCompilationException than the syntactic generator without guidance
and about 180 times of the blackbox semantic generator test.

Answer to RQ3. In all test cases we have triggered exceptions during execution,
meaning after compilation.
The proposed technique of generating semantically correct test inputs has
found one bug in the workflow execution phase of nextflow as the script with
the process name in was beforehand successfully compiled.
The tests with the syntactic generator revealed that process definitions and
process calls are not evaluated before compilation, but at runtime when the
corresponding class is started. Additionally, we found that other reserved words
will throw an exception during compilation when they are used as process names
like do.
The tests with AFL have also triggered exceptions in nextflow after the
compilation of the test scripts, although the inputs did not look like any real
scripts.
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4.2.4 Comparing Coverage-Guided and Random Tests

To answer RQ4 we look back at the analysis of RQ1-RQ3.

Regarding the generation of valid inputs (RQ1 - Section 4.2.1) we do see an
improvement of valid inputs generated over time in Figure 3 when the generation
of new inputs is guided by the Zest-Algorithm. We can confirm this observation
also by using Mann-Whitney U test on the final percentage of valid inputs for
each run between the ZestGuidance and the blackbox (no guidance). For the
syntactic generator we can confirm the statistical significance in the difference
of relative valid inputs between Zest-Algorithm and no guidance with p < 10−7.
For the semantic generator we also can confirm statistical significance for this
improvement with p < 10−5.

Comparing the coverage measured (RQ2 - Section 4.2.2) during the campaign
(see Figure 4), we can not see any valid improvement in coverage for both
tested generators when using the ZestGuidance. Using the semantic generator
we achieved with the Zest-Algorithm branch coverage of 18546 (9.82% RSD6)
branches on average and wit no guidance 18322 (10.05% RSD) branches. This
improvement of coverage is so small that it is not of any statistical relevance.

The tests with the syntactic generator reached with Zest-Algorithm a coverage
of 15476 (4.10% RSD) branches and with the blackbox approach 16118 (7.00%
RSD) This not even an improvement of coverage, but it is also not of any
statistical relevance neither.

Regarding the exceptions thrown in the fuzzing campaign (RQ3 - Section 4.2.3)
for both generators the ZestGuidance has triggered less than the blackbox
testing. This can be explained with the lesser executions of the tests in both
set-ups (see Table 2). Regarding the MissingPropertyException that occurs
during execution of a script when a process name is a Groovy language key word,
both the blackbox and the test with the Zest-Algorithm found the exception
with the semantic generator.

As the Zest-Algorithm prefers valid inputs during tests with the syntactic
generator more of the MissingPropertyException and
DuplicateProcessInvocationException where thrown during the blackbox
test. But both fuzzing set-ups triggered those with the same cause.

The AFL tests are also coverage guided, here the tests revealed that this
non grammarbased approach triggered similar exceptions as the test with the
generators. The campaign was set up to test and compare grammarbased fuzzing,
so there is no baseline to compare the AFL test against a truly blackbox non-
guided approach. Therefore, we can not make a statement about the effectiveness
of coverage-guided mutation based fuzzing over blackbox fuzzing for nextflow.

6Relative Standard Deviration

40



Answer to RQ4. In the campaign we could measure an improvement of valid
files generated over time for each generator while using the coverage-guided JQF
driver (Zest-Algorithm).
However, we could not measure any coverage improvements in using coverage-
guided fuzzing (Zest-Algorithm) over blackbox fuzzing for both generators.
For bugs found, the coverage guided approach and the blackbox approach
has both triggered the same exceptions when using the generators, but the
coverage-guided tests with AFL have triggered one exception more.
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4.2.5 Findings

We take a look at what vulnerabilities have been found. One of them is already
mentioned while answering RQ3 (see Section 4.2.3): reserved words in process
names are a problem.
On investigating this further, the ScriptCompilationException is thrown
for process names like if, new, native or def. Other reserved words like super
or long will throw a MissingProcessException. But scripts containing process
names equal as, which is also a reserved word in Groovy [52], are executed
successfully.
For process names equal in the error message states no such variable: process.
This is a misleading error message to the user as it was obviously defined. A
distinct error message about reserved words or a ScriptCompilationException
would be a clearer information.
Also, it is noticeable that in every single test run the AbortRunException was
thrown only one single time. Only in one out of 80 tests a second AbortRunException
was thrown. This could indicate, that the clean-up method was not comprehensive
enough.
While testing several setups some observations where made that influenced
the final test set-up presented in the evaluation.

• After one Exception (ScriptCompilation, MissingProperty), nextflow will
throw an exceptions about the Plugins being already setup when trying to
run another script in the same JVM.

• After some unsuccessful script executions nextflow will not start a script
anymore without any error message. This behaviour was also observed
during tests with the described AFL set-up.

• If an error occurred during compiling and executing of a script the user
must clean up the current session by hand, to be able to start a new
script in the current JVM. The cleanup methods would normally be called
in nextflow.script.ScriptRunner after the execution of a terminated
successfully.

• The combination of Java 11, Groovy, ASM, JaCoCo and nextflow seems
to be unstable, as the measuring of code coverage was sometime simply
not possible running the AFLDriver or theReproGuidance on beforehand
coverage creating test inputs.

Also, during the beginning of the implementation a bug in JQF 1.9 was found.
The coverage calculation would sometimes throw a DivisionByZero-Exception.
This did not need to be reported as it already was fixed in the 2.0 version
published in May 2023.
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4.3 Discussion and Threats to Validity

In this thesis we wanted to evaluate if grammarbased fuzzing can be applied to
test workflow engines and what we need to set up to get a working example. To
answer this we used a custom generator for creating nextflow specific workflow
scripts and tested this with a state -of-the-art fuzzing driver JQF and took a look
at the difference of random testing and coverage-guided fuzzing. We also did a
comparison to the greybox fuzzing tool AFL to investigate what the differences
would be.

We could confirm that a grammarbased fuzzing is suitable to be applied at
workflow engines, as the coverage measurements match other observations ([9, 8,
15, 14]) on this metric in this research field. Also, we have seen that the proposed
implementation can be applied with blackbox and coverage-guided techniques.

The research question regarding the bug finding capabilities within the exe-
cution phase of data pipeline could be answered with a yes, as we found one
exception that was raised after compilation. The fuzzing campaign also found
some irregularities in the handling of syntax errors while compiling scripts, as
there is no distinct warning about reserved words. One could argue that this is
common behaviour for a compiler, but we can imagine it would be a better user
experience if a checking for reserved names was done beforehand. The answer to
the question if it is really a bug how reserved words are processed is probably a
matter of opinion.

For the sake of performance compromises had to be made regarding the
complexity of the generated test files. While a grammar written in BNF is
easy to read and understand for a human-being the generator which used the
defined grammar to generate test scripts expanded this complexity by taking
many iterations and bytes from the SourceOfRandomness to produce one test
file. However, the used implementation (GramTest) provided valid inputs easily
at low development cost.

We have observed that we did not make any coverage improvement while
testing both presented generator with the coverage-guided Zest-Algorithm. One
possible explanation for this behaviour could be that the scripts generated with
the BNF grammar are too limited and uniform to explore more of the source
code responsible for the execution. It is also possible that the sheer amount of
data both generators used to create the test was too much for the Zest-Algorithm
to optimize for.

The execution speeds observed (Figure 4) are really slow compared to other
fuzzing campaigns run over 10 million tests [9] per hour (what would be about
2777 executions per second). Our test are besides the speed of the use generator
this slow because nextflow itself is also slow when processing and running a
script. We can make this assumption as the tests with AFL also show about
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2500 executions over one hour, without any test script generation. The small
nextflow script in Section 2.2.1 takes 300ms on average to be executed when
repeatedly started in one JVM and the first execution in the current JVm can
even take three seconds.
Also, to set up working test, a cleanup method was needed to make a next
execution in the current run possible. It is not certain that this clean up was
sufficient in resetting the current state of nextflow or if this had another impact on
the execution. The only one time in every JVM triggered AbortRunException
indicates that the clean-up method was not complete. But without adding such
a clean-up functionality the fuzz testing would have been meaningless as no
execution was made after one error.
One main difference between this thesis and other publications regarding
fuzzing in Java that the implementation and testing set-up focused on executing
scripts rather than only parsing or compiling them. Different presented algorithms
( [9, 10, 29]) compare their coverage maximizing or bug finding capabilities with
the benchmark used in the evaluation of the Zest-Algorithm [8]. This included
tests for parsing Apache maven models, Java classes or compiling Rhino and
Closure files. We tested in this thesis if we can use fuzz testing for an application
that will also process a given input. We can confirm, that the JQF fuzzing
framework with it intended use of writing generators and using the results of
them in Unit-Tests is also suitable for this application scenario.
For further research all used tests, described grammars, log files and data
analysis is publicly available.

Internal Validity. To counteract with the non-deterministic behaviour of fuzzing [9]
and to prevent systematic errors, the experiments where designed as proposed by
Klees et al. [20] and also followed the guidelines provided by Böhme et al. [27]. All
experiments ran 20 times for the same duration. The evaluation of the gathered
data was done as described in other publications [9, 8, 15, 14] regarding this
field. Another threat to internal validity is the duration for the tested campaign
since both Klees et al. [20] and Böhme et al. [27] state that longer runs (24
hours) should be used for bug finding evaluations for their reliability. As we
were interested in testing whether we can apply grammarbased fuzzing to test
workflow engines in execution and not wanted not proof a new fuzzing algorithm,
the shorter runs in the fuzzing campaign can be considered valid.

External Validity. The presented approach is highly adapted to fuzz the given
target nextflow which could be a threat to external validity. We believe that the
presented approach could be adapted and applied to other JVM based pipeline
tools that use either the CWL or an own DSL. As of September 2023 the
assortment of JVM based workflow tools that use scripts for definition and
processing is quite small.

6https://github.com/schemmea
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One suitable candidate that would fit to test this approach is another project
written in Groovy: Bpipe7. It uses also an own scripting language to execute
different shell scripts. The proposed grammars in Section 3.2 could be altered
to fit this language definition and tested against Bpipe. But this would have
exceeded this thesis as Bpipes workflow notation differs from the used one for
nextflow by a considerable amount. As nextflow is a popular workflow engine it
seems to be a valid representative to test grammarbased fuzzing on workflow
engines in the JVM world. With manageable alterations the proposed approach
could be applied to similar applications.

Construct Validity. Another concern for the empirical study is the construct
validity. In this thesis we were interested whether we could use grammarbased
fuzzing techniques to test workflow engines deeper in the execution phase and after
the compiling stage. We did this by guiding the evaluation of the fuzzing campaign
to focus on two main points often used in validation of fuzzing techniques:
Examining the exceptions logged during the campaign and the analysis of the
coverage measured by JQF. We compared our measured results with other
publications in this research field. Also, we compared our results with a non
grammarbased approach to see where exactly the differences between executed
and only compiled scripts for the selected SUT are.

7https://github.com/ssadedin/bpipe
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5 Conclusion

In this thesis we took a look at grammarbased fuzzing by using generators with
a black-box and coverage-guided approach. Further we tested how we can apply
the technique to a Groovy based data pipeline software, in particular nextflow.
For this purpose two different generators were written and set-up to run with JQF
as the fuzzing driver. One generator that mainly focused on creating executable
workflow scripts (semantic generator) and one more lightweight generator that
would produce simpler workflow scripts faster but without ensuring that those
are really executable. We also implemented tests to run with AFL in the same
configuration as comparison to a non grammarbased fuzzing technique. In
the evaluation we focused on input files generated over time, what coverage
we reached and what bugs the different combinations of generator and fuzzing
strategy have found.
The results have shown that grammarbased fuzzing can be used to test nextflows
workflow execution. And by replaying saved inputs and could also determine
which classes are involved. For this comparison we used the prepared inputs
from AFL. In our study grammarbased fuzzing was better for testing a workflow
engine, as AFL successfully managed to compile scripts and start them, but no
workflow was actually executed (Figure 6).
In terms of coverage and valid files created by the two implemented generators
we did see an improvement in using the semantic approach. Along the investi-
gation of occurred exceptions and the logfiles we have found some interesting
behaviour from nextflows compilation strategy, as some errors in the workflow
script only were noticed and raised at runtime.
In retrospective, we have leaned two things by using two different grammars
in our tests. First, a simpler grammar with a smaller range of characters to
build identifiers from will trigger fault inducing behaviour. And second, a wider
grammar with the whole alphabet to build identifiers from will trigger other
exceptions, in our particular case on reserved words.
nextflow is released as command line tool but the developers published their
project as maven dependency, so anyone could use it in a JVM-based application.
But it seems that the current implementation of nextflow relies heavily on
terminating and the JVM being destroyed after every call over the command
line.
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5.1 Future Work

In the evaluation of the used generators we have observed that a coverage-guided
approach with JQFs Zest-Algorithm did not statistically significant improve the
coverage measured over time. One explanation could be the restricted and fairly
uniform scripts produced by the generators And also concerning the generator,
it will consume an astronomical high number of random bytes to generate one
script. The used grammar in all tests only represents a small excerpt of the
capability of the nextflow DSL2. But the evaluation has shown that a slightly
complexer grammar reaches more coverage and triggers different exceptions. An
interesting question for further research would be, if we can improve the coverage
and enable the Zest-Algorithm to maximize this if an extensive grammar was
used in a generator that uses less random bytes.
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