

Algorithms and Data Structures

Sorting:
Simple Methods and a Lower Bound

Ulf Leser

Large-Scale Sorting

- Imagine you are the IT head of a telco-company
- You have 30.000 .000 customers each performing ~100 telephone calls per months, each call creating 200 bytes
- That's $30 \mathrm{M}^{*} 100 * 12 * 200=7.200 .000 .000 .000$ bytes per year
- Somewhere in the 200 bytes is information on revenue per call
- Imagine the data is in one file, one line per call
- At the end of the year, management wants a list of all customers with aggregated revenue per day (for one year)
- That's ~30M*12*30 ~ 10.000.000.000 real numbers
- Problem: How can we compute these 10E9 numbers?

Approach 0a: Load into Memory and Scan

- This won't work
- Data is too big to be loaded into main memory

Approach 0b: Load into a DBMS and use SQL

- This will work
- Not topic of our lecture
- [Will be slow - inserting is costly]
- [Better to already keep the data in a RDBMS - no loading]
- [DBMS will use the same trick we present right now]

Approach 1: Scan and Keep Intermediate Results

- Eventually, we need 10E9 real numbers
- Scan the file from start to end
- Build table (list! how?) of every combination of customer and day
- When reading a record, look-up combination in table and update
- That's fast (if the table-look-up is fast)
- But we need $\sim 64 G B$
- What if want the sum for each day over 10 years?
- This won't scale

Approach 2: Partition Data, Multiple Reads

- Assume we can keep $30 \mathrm{M} * 30 \sim 1 \mathrm{E} 9$ numbers in memory
- Solve the problem month-by-month (1 month ~ 30 days)
- Read the call-file 12 times, each time computing aggregates for all customers and the days of one month
- This will be slow

Approach 3: Sorting

- Alternative?
- Sort the file by customer and day
- Read sorted file once and compute aggregates on the fly
- Whenever a pair (day, customer) is finished (i.e., new values appear), sum can be written out and next day/customer starts
- This will be very fast
- Needs virtually no memory during counting
- But: Can we sort ~3 billion records using less than 12 reads?

Content of this Lecture

- Sorting
- Simple Methods
- Lower Bound

Sorting

- Assumptions
- We have n values (integer, called keys) that should be sorted
- Values are stored in an array S (i.e., O(1) access to i'th element)
- Sorting in other list implementations is very different
- Comparing two values costs $\mathrm{O}(1)$
- We usually count \# of comparisons; sometimes also \# of swaps
- Values are not interpreted
- We do not know what a "big" value is or how many percent of all values are smaller than a given value or ...
- All we can do is compare two values
- We seek a permutation π of the indexes of S such that $\forall \mathrm{i}, \mathrm{j} \leq \mathrm{n}$ with $\pi(\mathrm{i})<\pi(\mathrm{j}): \mathrm{S}[\pi(\mathrm{i})] \leq \mathrm{S}[\pi(\mathrm{j})]$

Variations

- External versus internal sorting
- Internal sorting: S fits into main memory
- External sorting: There are too many records to fit in memory
- We only look at internal sorting (see DB lecture)
- In-place or with additional memory
- In-place sorting only requires a constant (independent of n) amount of additional memory (on top of S)
- We will look at both
- Pre-Sorting
- Some algorithms can take advantage of an existing (incomplete, erroneous) order in the data, some not
- We will not exploit pre-sorting

Applications

- Sorting is a ubiquitous task in computer science
- [OW93] claims that 25\% of all computing time is spent in sorting
- Second example: Information Retrieval
- Imagine you want to build $\mathrm{g}^{* * * * *++}$
- Fundamental operation: In a very large set of documents, find those that contain a given set of keywords
- [Note: That's not what a search engine does in reality!]
- Popular way of doing this: Build an inverted index

Inverted Index

ID	Text
1	Baseball is played during summer months.
2	Summer is the time for picnics here.
3	Months later we found out why.
4	Why is summer so hot here?

Term	Freq	Document ids
baseball	1	$[1]$
during	1	$[1]$
found	1	$[3]$
here	2	$[2],[4]$
hot	1	$[4]$
is	3	$[1],[2],[4]$
months	2	$[1],[3]$
summer	3	$[1],[2],[4]$
the	1	$[2]$
why	2	$[3],[4]$

Answering a IR-style Query

- A query is a set of keywords
- Finding the answer
- For each keyword k_{i} of the query, find list d_{i} of docs containing k_{i} from inverted index
- Build intersection of all d_{i}
- Docs in this list are your answer
- Imagine the query "the man eats a bread" on the Web
- Doc-list for "the" and "a" will contain >10 billion documents
- How do we compute the intersection of two sets of 10 billion IDs?

Intersection of Two Sets

With non-sorted sets:
 O(m*n)

With sorted sets: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Content of this Lecture

- Sorting
- Simple Methods
- Selection sort
- Insertion sort
- Bubble sort
- Lower Bound

Recall: Selection Sort

```
S: array_of_names;
n := |S|
for i = 1..n-1 do
    for j = i+1..n do
        if S[i]>S[j] then
            tmp := S[j];
            S[j] := S[i];
            S[i] := tmp;
        end if;
    end for;
end for;
```

- Analysis showed that selection sort is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- It is easy to see that selection sort also is in $\Omega\left(\mathrm{n}^{2}\right)$
- How often do we swap values?
- That depends a lot on the pre-sorted'ness of the array
- But actually we can do a bit better

Selection Sort Improved

```
S: array_of_names;
n := |S|
for i = 1..n-1 do
    min_pos := i;
    for j = i+1..n do
        if S[min pos]>S[j] then
            min_pos := j;
        end if;
    end for;
    if min_pos != i then
        tmp := S[i];
        S[i] := S[min_pos];
        S[min_pos] := tmp;
    end if;
end for;
```

- How often do we swap values?
- Once for every position
- Thus: O(n) swaps
- But more (cheap) assignments

Analogy

- Let's assume you keep your cards sorted
- How to get this order?
- Selection sort: Take up all cards at once and build sorted prefixes of increasing length
- Insertion sort: Take up cards one by one and sort every new card into the sorted subset in your hand
- Bubble sort: Take up all cards at once and swap neighbors until everything is fine

Insertion Sort

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>key) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- After each loop of i, the prefix $\mathrm{S}[1 . . \mathrm{i}]$ of S is sorted
- While-loop runs backwards from current position (to be inserted) until value gets smaller than $\mathrm{S}[\mathrm{j}]$
- Example: 54816
- One problem is the required movement of many values until correct place is found
- Could be implemented much better with a double-linked list

Complexity (Worst Case)

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>key) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- Comparisons
- Outer loop: n times
- Inner-loop: i times
- Thus, O(n²)
- How many swaps?
- (We move and don't swap, but both are in $\mathrm{O}(1)$)
- In worst-case, every comparison incurs a swap
- Thus: O(n²)
- We got worse?

Complexity (Best Case)

```
S: array_of_names;
n := |S|
for i = 2..n do
    j := i;
    key := S[j];
    while (S[j-1]>key) and (j>1) do
        S[j] := S[j-1];
        j := j-1;
    end while;
    S[j] := key;
end for;
```

- Assume the best case: S is already sorted
- Comparisons
- Outer loop: n times
- Inner-loop: 1 time
- Thus, O(n)
- Swaps
- None
- We might be better!

Bubble Sort

Source: HKI, Köln

- Go through array again and again
- Compare all direct neighbors
- Swap if in wrong order
- Repeat until a loop finishes without a single swaps
- Analysis: About as good/bad as the others (so far)
- Worst case $\mathrm{O}\left(\mathrm{n}^{2}\right)$ comparisons and O(n²) swaps
- Best case O(n) comparisons and 0 moves / swaps

Summary

	Comparisons worst case	Comparisons best case	Additional space	Swaps/moves worst/best
Selection Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$
Insertion Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right) / \mathrm{O}(\mathrm{n})$
Bubble Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right) / \mathrm{O}(1)$

Summary

	Comparisons worst case	Comparisons best case	Additional space	Swaps/moves worst/best
Selection Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$
Insertion Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right) / \mathrm{O}(\mathrm{n})$
Bubble Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right) / \mathrm{O}(1)$
Merge Sort	$\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$	$\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$

Summary

	Comparisons worst case	Comparisons best case	Additional space	Moves worst/best
Selection Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})^{*}$
Insertion Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right) / \mathrm{O}(\mathrm{n})$
Bubble Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right) / \mathrm{O}(1)$
Merge Sort	$\mathrm{O}(\mathrm{n} * \log (\mathrm{n}))$	$\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$
Magic Sort $(?)$	$\mathrm{O}(\mathrm{n})$			$\mathrm{O}(\mathrm{n})$

Content of this Lecture

- Sorting
- Simple Methods
- Lower Bound

Lower Bound

- We found three algorithms with WC-complexity $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Maybe there is no better algorithm?
- There are some in $O(n * \log (n))$
- Maybe there are even better algorithms?
- Is there a lower bound on the number of comparisons?

Lemma

- Lemma

To sort a list of n distinct keys using only key comparisons, every algorithm needs $\Omega\left(n^{*} \log (n)\right)$ comp's in worst case

- Implications
- We cannot sort with less than $\mathrm{O}\left(\mathrm{n}^{*} \log (\mathrm{n})\right)$ comparisons in worst case
- Still, different algorithms with $\mathrm{O}(\mathrm{n} * \log (\mathrm{n}))$ may exhibit different real runtimes
- We can be better, when other operations than comparisons are allowed - see radix sort

Proof Structure

- We find the best safe way to find the right permutation π
- There are n! different permutations
- Each could be the right one
- And there is only one "right one"
- To find the right one, we may only compare two keys
- Every comparison splits the group of all permutations into two disjoint partitions
- One with all permutations where the result of the test is TRUE
- One with all permutations where the result of the test is FALSE
- How often do we need to compare at least until every partition has size 1
- At least: In the best of all worlds

Decision Tree

$$
\begin{array}{lllllllll}
\hline 1 & 8 & 6 & 3 & 5 & 9 & 3 & 1 & 7 \\
5 & 3 & 7 & 1 & 8 & 3 & 6 & 7 & 1 \\
9 & 6 & 1 & 5 & 3 & 2 & 4 & 8 & 6 \\
4 & 4 & 3 & 6 & 1 & 6 & 8 & 3 & 2 \\
7 & 2 & 5 & 8 & 4 & 5 & 9 & 2 & 5 \\
2 & 7 & 4 & 9 & 9 & 8 & 2 & 9 & 9 \\
3 & 1 & 8 & 4 & 7 & 7 & 1 & 5 & 4 \\
6 & 5 & 9 & 1 & 1 & 4 & 7 & 4 & 5 \\
8 & 9 & 5 & 2 & 6 & 1 & 5 & 3 & 3
\end{array}
$$

Some exemplary permutations (columns) of an arbitrary list S with $|S|=9$

Example

General Case

All permutations of S where the value at position i_{1} is smaller than the value at position j_{1}

All permutations of S where the value at position i_{1} is larger than the value at position j_{1}

Decision Tree

Decision Tree

Full Decision Tree

Optimal Sequence of Comparisons

- We have no clue about which concrete series of comparisons is optimal for a given list
- But: Here we are looking for a lower bound: We may always assume to take the best choice
- Best choice: Creating only 1-partitions with as few comparisons as possible
- If we always magically take the best choice - how long can we still need?
- Thus, we want to know the length of the longest path through the optimal (lowest) decision tree
- Even in the best of all worlds we may need to make this number of comparisons to find the correct permutation
- The optimal tree is the one with the shortest longest path

Intuition

Shortest Longest Path

- Definition

The height of a binary tree is the length of its longest path.

- Lemma

A binary tree with k leaves has at least height log(k).

- Proof
- Every inner node has at most two children
- To cover as many leaves as possible in the level above the leaves, we need ceil(k/2) nodes
- In the second-last level, we need ceil(k/2/2) nodes
- Etc.
- After $\log (\mathrm{k})$ levels, only one node remains (root)
- qed.

Putting it all together

- Our decision tree has n ! leaves
- The height of a binary tree with n ! leaves is at least $\log (\mathrm{n}!)$
- Thus, the longest path in the optimal tree has at least $\log (\mathrm{n}!)$ comparisons
- Since $n!\geq(n / 2)^{n / 2}: \log (n!) \geq \log \left((n / 2)^{n / 2}\right)=n / 2 * \log (n / 2)$
- This gives the overall lower bound $\Omega(\mathrm{n} * \log (\mathrm{n}))$
- qed.

Stop: Why not test in $\mathrm{O}(\mathrm{n})$?

- This is the best case - not the best worst case
- In general, the solution will not be in this partition
- We need a strategy that is always fast, not "faster" in some cases

Exemplary Exam Questions

- Give best case and worst case instances for the following algorithms: insertion sort, bubble sort. Explain your examples
- Proof that bubble sort is in $\mathrm{O}(\mathrm{n} 2)$ and $\Omega\left(\mathrm{n}^{2}\right)$ worst case (comparisons)
- Image a list S consisting of k sorted subarrays of arbitrary size (example for $k=4$: $<1,6,7,8,2,5,1,5,7,9,3,5>$). Find an algorithm for sorting S which runs in $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{k}\right)$

