

Proteins: Structure & Function

This Lecture

- Proteins
 - Structure
 - Function
 - Databases
- Predicting Protein Secondary Structure

Central Dogma of Molecular Biology

	U		c		A		G		
		Phenyl- alanine	UCU UCC	Corino	UAU UAC	Tyrosine	UGU UGC	Cysteine	U C
Ů	UUA UUG	Leucine	UCA UCG	Serme	UAA UAG	Stop codon Stop codon	UGA UGG	Stop codon Tryptophan	A G
, ,	CUU CUC	Lauciaa	CCU CCC	Proline	CAU CAC	Histidine	CGU CGC	Argiging	U C
	CUA CUG	Leucine	CCA CCG	FIQUINE	CAA CAG	Glutamine	CGA CGG	Arginnie	A G
	AUU AUC	Isoleucine	ACU ACC	Thraonina	AAU AAC	Asparagine	AGU AGC	Serine	U C
A	AUA	Methionine; initiation codon	ACA ACG	Threohine	AAA AAG	Lysine	AGA AGG	Arginine	A G
c	GUU GUC	Valias	GCU GCC	Alaning	GAU GAC	Aspartic acid	GGU GGC	Chusing	U C
G	GUA GUG	vanne	GCA GCG		GAA GAG	Glutamic acid	GGA GGG	GA GG	A G

- Alternative Splicing
 - "One gene one protein" is wrong
 - Exons may be spliced out from the mRNA
 - Human: at least 6 times more unique proteins than genes
 - Also called isoforms
- Post-translational modifications
 - (De-)Phosporylation, glycolysation, cleavage of signal peptides, ...
- Complexes: Proteins physically and permanently grouping together to perform a specific function

- Function: Breaks (mis-folded, broken, superfluous, ...) proteins into small peptides for reuse
- Very large complex present in all eukaryotes (and more species)
 - >2000 kDa, consists of dozens of individual proteins
 - Formation of the complex is a complex process only partly understood yet

Protein Structure

- Primary
 1D-Seq. of AA
- Secondary
 - 1D-Seq. of "subfolds"
- Tertiary
 - 3D-Structure
- Quaternary
 - Assembled complexes

PRIMARY

Protein Function

- Proteins perform many functions in living organisms
 - Metabolism
 - Signal processing
 - Gene regulation
 - Cell cycle

. . .

- For ~20% of all human
 gene, no function is known (2019)
- Describing function
 - Gene Ontology: 3 branches, >40.000 concepts
 - Used world-wide to describe gene/protein function

Nature Reviews | Cancer

Species

http://geneontology.org/page/current-go-statistics, June 2016

- Proteins usually have multiple functions
 - Avg. n# of GO terms assigned to a human protein: 6-10

(A)

(B)

- Functions are associated to motifs or domains
- There probably exist only 4000-5000 motifs
 - Proteins as assemblies of functional motifs
- Performing a function often requires binding to another protein or molecule
 - The binding requires a certain constellation of the protein structure
 - Major target of pharmacological research

- Measuring gene expression: RNA-Seq, microarrays, PCR, ...
- Measuring protein abundance is much harder
 - Isolating proteins is very complex
 - Sequencing a protein is very slow
- Options (next lecture)
 - Isolation: 2D-Page, chromatography, ...
 - Identification: Mass spectrometry
 - De-dovo sequencing with MS/MS
 - Quantification is very difficult

Ulf Leser: Foundations of Bioinformatics

UniProt

",redundant" sequences

- "Standard" database for protein sequences and annotation
 - Original name: SwissProt
 - Started at the Swiss Institute of Bioinformatics, now mostly EBI
 - Other: PIR, HPRD
- Continuous growth and curation
 - >30 "Scientific Database Curators"
 - Quarterly releases
 - Very rich set of annotations
- Actually two databases
 - SwissProt: Curated, high quality, versioned
 - TrEMBL: Automatic generation from (putative) coding genomic sequences, low quality, redundant, much larger

UniProt: Species [http://www.expasy.org/sprot/relnotes/relstat.html, June 2016]

- 20258 Homo sapiens (Human)
- 16327 Mus musculus (Mouse)
 - 9842 Arabidopsis thaliana (Mouse-ear cress)
 - 7560 Rattus norvegicus (Rat)
 - 6582 Saccharomyces cerevisiae (Baker's yeast)
 - 5803 Bos taurus (Bovine)

. . .

- Oldest protein database, evolved from a book
- Experimentally determined protein 3D-structures
 - Plus some DNA, protein-ligand, complexes, ...
 - X-Ray (~75%), NMR (nuclear magnetic resonance, ~23%)
- Costly and rather slow techniques
 - Growth much smaller than that of sequence-related DBs
- Many problems with legacy data and data formats

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - GOR IV
 - Other methods

Amino Acids (AA)

- Amino acids: Common core and specific residue
 - Core
 - Amino group NH₂
 - Central C_{α} Carbon CH
 - Carboxyl group COOH
 - Residue: AA-specific

- Core: Chaining AA to protein sequences
- Residues (side chains): Specific properties of a AA
 - Vary greatly between AA

Side Chains

Structure of a Protein

- Concatenation of cores: Backbone of AA chain (= protein)
 - Covalent peptide bonds between carboxyl and amino group
 - Loss of a H_2O

Flexibility

- In principle, every chemical bond can rotate freely
 - Would allow arbitrary backbone structures
- In real proteins, observed angels are strongly constrained
 - Peptide bound (B) is "flat" almost no torsion possible
 - Flexibility only in the C_{\!\alpha}\text{-flanking bonds }\phi and ψ

- Combinations of ϕ and ψ are highly constrained
 - Due to chemical properties of the backbone / side chains
- Two combinations are favored: α -helixes and β -sheets
 - More detailed classifications exist
 - Angels lead to specific 3D structures
 - Secondary structure

α -Helix

- Sequence of angles forming a regularly structured helix
- Additional bonds between amino and carboxyl groups
 Vory stable structure
 - Very stable structure
- May have two orientations
 - Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long

- Two linear and parallel stretches (β-strands)
- Strands are bound together by hydrogen bounds
- Can be parallel or anti-parallel (wrt. N/C terminus)

Quelle: Wikipedia

Other Substructures

- α -helixes and β -sheets cover 50-80% of most proteins
- Other parts are called loops or coils
 - Usually less important for the structure of the protein
 - But very important for its function
 - Often exposed on the surface
 - Determine binding to other molecules

- Secondary structure elements (SSE) are vital for the overall structure of a protein
- Often evolutionary well conserved
- SSE can be used to classify proteins
 - Mostly alpha, mostly beta, ...
 - Such classes are highly correlated with function
- SSE gives important clues to protein structure
- SSP much simpler than 3D structure prediction
 - And 3D structure prediction can benefit a lot from a good SSP

Predicting Secondary Structure

 SSP: Given a protein sequence, assign each AA in the sequence to one of the three classes Helix (H), Strand (E), or Coil (-)

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD ----HHHHHHHHH----EEEEE----HHHHHHHHH--GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK ---EEEEEEEEEEEEEEEEE KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL HHH-----EEE-----EEE----

Classification

- Classification: Classify each AA into one of three classes
- Classification is a fundamental problem
 - Classify the readout of a microarray as diseased / healthy
 - Classify a subsequence of a genome as coding / non-coding
 - Classify an email as spam / no spam
- Many different techniques: Naïve Bayes, Regression, Decision Trees, SVMs, Neural Networks, ...
 - Classification function learned from properties of known objects
 - Often use same representation (feature vectors) of objects methods exchangeable
- The following is a heuristic approach
 - Simple to explain, classical, no ML required, not too bad

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Chou-Fasmann Algorithm

Chou & Fasman (1974). Prediction of protein conformation. Biochemistry 13

- Observation: Different AA favor different folds
 - Different AA are more or less often in H, E, C
 - Different AA are more or less often within, starting, or ending a stretch of H, E, C
- Chou-Fasman algorithm (rough idea)
 - Compute a score for the probability of any AA to be E / H
 - When both are improbable: Assign C
 - Basis: Relative frequencies in a set of sequences with known SSE
 - First assign each AA its most frequent class
 - Then perform several heuristic tricks to change classes
 - E.g. minimal length of stretches
 - Example: CCEEEEEEECCECE, not CCEEECEEECCECE

- Let $f_{j,k}$ be the relative frequency of observing AA j in class k
- Let f_k be the average over all 20 $f_{i,k}$ values
- Compute the propensity $P_{j,k}$ of AA j to be part of class k as

$$P_{j,k} = f_{j,k}/f_k$$

- This is not a probability, rather an odds-score
- Using $P_{i,k}$, classify each AA j for every class k into
 - Strong, normal, weak builder (H_{α} , h_{α} , I_{α} , H_{β} , h_{β} , I_{β})
 - Tendency to build a SS-element
 - Strong, weak breaker (B_{α} , b_{α} , B_{β} , b_{β})
 - Tendency to stop a SS-element
 - Indifferent (i_{α} , i_{β})
 - Thus, we actually have 12 (13) classes

- Originally computed on only 15 proteins (1974)
- Read

. . .

- Glu(tamate) often is at the start of a helix and often at the end of a strand
- Met(hionine) often starts strands and regularly starts helices

	AJ	Ρα	Klasse	15	Ρ _β	Klasse	
(Glu	.53		Met	1 67		
	ALD	1.45	H_{α}	Val	1.65	H_{β}	
_	Leu	1.34		lle	1.60		
		1.24		Cys	1.30		
(Met	.20		Tyr	1.29		
	Glp	1.17	h	Phe	1.28		
	Trp	1.14	Πα	Gln	1.23	h_{β}	
	Val Phe	1.14		Leu	1.22		
		1.12		Thr	1.20		
	Lys	1.07	I_{α}	Trp	1.19		
	AS	Ρα	Klasse	AS	P _β	Klasse	
	AS Ile	<i>Ρ</i> _α 1.00	Klasse Ι _α	AS Ala	Ρ _β 0.93	Klasse	
	AS Ile Asp	<i>P</i> _α 1.00 0.98	Klasse Ι _α	AS Ala Arg	<i>P_β</i> 0.93 0.90	Klasse	
	AS Ile Asp Thr	<i>P</i> _α 1.00 0.98 0.82	Klasse	AS Ala Arg Gly	<i>P_β</i> 0.93 0.90 0.81	Klasse Ι _β ἰ _β	
	AS Ile Asp Thr Ser	 <i>P_α</i> 1.00 0.98 0.82 0.79 	Klasse I_{α}	AS Ala Arg Gly Asp	<i>P_β</i> 0.93 0.90 0.81 0.80	Klasse I_{β}	
	AS Ile Asp Thr Ser Arg	P _α 1.00 0.98 0.82 0.79 0.79	Klasse Ι _α	AS Ala Arg Gly Asp Lys	<i>P_β</i> 0.93 0.90 0.81 0.80 0.74	Klasse I_{β}	
	AS Ile Asp Thr Ser Arg Cys	P _α 1.00 0.98 0.82 0.79 0.79	Klasse Ι _α	AS Ala Arg Gly Asp Lys Ser	P _β 0.93 0.90 0.81 0.80 0.74	Klasse Ι _β ι _β	
	AS Ile Asp Thr Ser Arg Cys Asn	P _α 1.00 0.98 0.82 0.79 0.79 0.77 0.73	Klasse Ι _α	AS Ala Arg Gly Asp Lys Ser His	P _β 0.93 0.90 0.81 0.80 0.74 0.72	Klasse Ι _β ἰ _β	
	AS Ile Asp Thr Ser Arg Cys Asn Tyr	P _α 1.00 0.98 0.79 0.79 0.77 0.73 0.61	Klasse Ι _α ί _α	AS Ala Arg Gly Asp Lys Ser His Asn	P _β 0.93 0.90 0.81 0.80 0.74 0.72 0.71 0.65	Klasse Ι _β ι _β	
	AS Ile Asp Thr Ser Arg Cys Asn Tyr Pro	P _α 1.00 0.98 0.79 0.79 0.77 0.73 0.61 0.59	Klasse I_{α} i_{α} b_{α}	AS Ala Arg Gly Asp Lys Ser His Asn Pro	P _β 0.93 0.90 0.81 0.80 0.74 0.72 0.71 0.65 0.62	Klasse Ι _β ι _β	

- Score each AA with 1 (H_{α} , h_{α}), 0.5 (I_{α} , i_{α}), or -1 (B_{α} , b_{α})
 - Heuristic discretization don't trust your counts too much
- Find helix cores: subsequences of length 6 with an aggregated AA score ≥ 4
- Starting from the middle of each core, shift a window of length 4 to the left, then to the right
 - Compute aggregated score A using original $\mathsf{P}_{j,k}$ values inside each window
 - If $A \ge 4$, continue the helix; otherwise stop
- Similar method for strands
- Conflicts (regions assigned both H and E) are resolved based on higher aggregated score

Example [Source: O. Kohlbacher, "Strukturvorhersage"]

- Accuracy app. 50-60%
 - Measured on per-AA correctness
- Prediction is more accurate in helices than in strands
- General problem of Chou-Fasman
 - Secondary structure is not only a local problem
 - Looking only at single AAs is not enough
 - Note: Scores are based on individual AA; aggregation by summation assumes statistical independence of pairs, triples ... in a class
- One needs to include the context of an AA

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

- First generation: Properties of single AA only
 - Accuracy: 50-60%, e.g. Chou-Fasman (1974)
- Second generation: Include info. about neighborhood
 - Accuracy: ~65%, e.g. GOR (1974 1987)
- Third generation: Include info. from homologous seq's
 - Accuracy: ~70-75%, w.g. PHD (1994)
- Forth generation: Build ensembles of good methods
 - Accuracy: ~80%, e.g. Jpred (1998)
- Current performance
 - Jpred 4 (2015): 82% overall, ~90% for certain other properties
 - Spine-X (2012): 84% overall

- Gerhard Steger (2003). "Bioinformatik Methoden zur Vorhersage von RNA- und Proteinstrukturen", Birkhäuser, chapter 8,10,11,13
- Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group, chapter 2, 11, 12 (partly)
- Many examples from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 2004/2005, Universität Tübingen