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This Lecture

e Proteins
— Structure
— Function
— Databases

e Predicting Protein Secondary Structure
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Central Dogma of Molecular Biology
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Details DNA e T —

(A) transcription
and splicing

MRNA 5 GRS A UER S ————— >

(B) translation l

protein N gmino ggid sequence C

e Alternative Splicing

— "One gene — one protein” is wrong

— Exons may be spliced out from the mRNA

— Human: at least 6 times more unique proteins than genes

e Also called isoforms

e Post-translational modifications

— (De-)Phosporylation, glycolysation, cleavage of signal peptides, ...
e Complexes: Proteins physically and permanently grouping

together to perform a specific function
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Example Complex: Proteasome

e Function: Breaks (mis-folded, broken,
superfluous, ...) proteins into small
peptides for reuse

e Very large complex present in all
eukaryotes (and more species)

— >2000 kDa, consists of dozens of individual
proteins

— Formation of the complex is a complex
process only partly understood yet

Ry
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Protein Structure

PRIMARY

® P ri m a ry N terminus—...MYCATISEATINGFISHANDMEATANDWATER...—C terminus
_ 1 D—Seq . Of AA SECONDARY 1
|
e Secondary

— 1D-Seq. of
“subfolds”

e Tertiary
— 3D-Structure
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e Quaternary &
— Assembled
complexes
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Protein Function

e Proteins perform many functions in living organisms

— Metabolism
0 O~

— Signal processing
— Gene regulation O *:.g

Biological process
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e For ~20% of all human e, @
gene, no function is known (2019) -

e Describing function * s
— Gene Ontology: 3 branches, >40.000 concepts
— Used world-wide to describe gene/protein function
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,Known" Protein Functions

Annotations by Species
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http://geneontology.org/page/current-go-statistics, June 2016
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Function and Motifs

T/
==
B

e Proteins usually have multiple functions
— Avg. n# of GO terms assigned to a human protein: 6-10

e Functions are associated to motifs or domains
e There probably exist only 4000-5000 motifs

— Proteins as assemblies of functional motifs

e Performing a function often requires binding to another
protein or molecule
— The binding requires a certain constellation of the protein structure
— Major target of pharmacological research

"3
:
3
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Proteomics — Large Scale Protein Identification

e Measuring gene expression: RNA-Seq, microarrays, PCR, ...

e Measuring protein abundance is much harder
— Isolating proteins is very complex
— Sequencing a protein is very slow

o Options (next lecture) i i
— Isolation: 2D-Page, chromatography, ... t 4*'“ 4
— Identification: Mass spectrometry |
— De-dovo sequencing with MS/MS g m— @«m‘_
— Quantification is very difficult f';r :
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UniProt Prot

e "Standard” database for protein sequences and annotation
— QOriginal name: SwissProt

— Started at the Swiss Institute of Bioinformatics, now mostly EBI
— Other: PIR, HPRD

e Continuous growth and curation = ===
— >30 ,Scientific Database Curators® =
— Quarterly releases .
— Very rich set of annotations X
e Actually two databases o

Lredundant" sequences

— SwissProt: Curated, high quality, versioned

— TrEMBL: Automatic generation from (putative) coding genomic
sequences, low quality, redundant, much larger
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Un|PrOt. SpeC|eS [http://www.expasy.org/sprot/relnotes/relstat.html, June 2016]

e Mamimdia [25%)

e Varlaiarata {10%)

Hoima §11%]

Archasa [4%)

Vinases {3%)
T {B%)
Virdiplainaa {21%])

MNeimatoda {3%)]

lirimeda {5%)

Evtearyoila { 35%] Furgi { 15%)

20258 Homo sapiens (Human)

16327 Mus musculus (Mouse)
9842 Arabidopsis thaliana (Mouse-ear cress)
7560 Rattus norvegicus (Rat)
6582 Saccharomyces cerevisiae (Baker's yeast)
5803 Bos taurus (Bovine)
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PDB — Protein Structure Database CEFP LB

PROTEIN DATA BANEK

e Oldest protein database, evolved from a book

o Experimentally determined protein 3D-structures
— Plus some DNA, protein-ligand, complexes, ...
— X-Ray (~75%), NMR (nuclear magnetic resonance, ~23%)

e Costly and rather slow techniques

— Growth much smaller than that
of sequence-related DBs

e Many problems with legacy
data and data formats

http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total, June 2016
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This Lecture

e Introduction

e Predicting Protein Secondary Structure
— Secondary structure elements
— Chou-Fasman
— GOR IV
— Other methods
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Amino Acids (AA)

e Amino acids: Common core and specific residue
— Core
e Amino group — NH,
e Central C, - Carbon — CH
e Carboxyl group — COOH

— Residue: AA-specific

T
II:_.-'I

e Core: Chaining AA to protein sequences

o Residues (side chains): Specific properties of a AA
— Vary greatly between AA
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BASIC SIDE CHAINS
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NONPOLAR SIDE CHAINS

alanine

(Ala, or A)

leucine
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methionine
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Structure of a Protein

e Concatenation of cores: Backbone of AA chain (= protein)

— Covalent peptide bonds between carboxyl and amino group
— Loss of a H,0O

(A)

T
& N - Peptide Bond Formation
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5!-1 H H
Peptide Bond
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Flexibility

e In principle, every chemical bond can rotate freely
— Would allow arbitrary backbone structures

e In real proteins, observed angels are strongly constrained
— Peptide bound (B) is “flat” — almost no torsion possible
— Flexibility only in the C_-flanking bonds ¢ and
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Ramachandran Plots

e Combinations of ¢ and  are highly constrained
e Due to chemical properties of the backbone / side chains

e Two combinations are favored: a-helixes and p-sheets

— More detailed classifications exist

— Secondary structure

— Angels lead to specific 3D structures el




o~-Helix

(A)

e Sequence of angles forming
a regularly structured helix

e Additional bonds between
amino and carboxyl groups
— Very stable structure

e May have two orientations
— Most are right-handed

e 3.4 AA per twist

e Often short, sometimes very
long

(B)

UIf Leser: Foundations of Bioinformatics 24




B-Sheet

e Two linear and parallel stretches (pB-strands)
e Strands are bound together by hydrogen bounds
e (Can be parallel or anti-parallel (wrt. N/C terminus)

ES ﬂt A

Quelle: Wikipedia
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Other Substructures

e o-helixes and 3-sheets cover 50-80% of most proteins

e Other parts are called loops or coils
— Usually less important for the structure of the protein
— But very important for its function
— Often exposed on the surface
— Determine binding to other molecules
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Importance of Secondary Structure Prediction (SSP)

e Secondary structure elements (SSE) are vital for the overall
structure of a protein

e (Often evolutionary well conserved

e SSE can be used to classify proteins
— Mostly alpha, mostly beta, ...
— Such classes are highly correlated with function

e SSE gives important clues to protein structure

e SSP much simpler than 3D structure prediction
— And 3D structure prediction can benefit a lot from a good SSP
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Predicting Secondary Structure

e SSP: Given a protein sequence, assign each AA in the
sequence to one of the three classes Helix (H), Strand (E),
or Coil (-)

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD
GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK
KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL

4

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD

————— HHHHHHHHH-------------EEEEE------HHHHHHHH- -
GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK
- ---EEEEEEEEEEEEEEEEEEE-———-—————————————— HHHHHH

KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL
HHH------- EEE-——————————- EEEE----
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Classification

o (lassification: Classify each AA into one of three classes

o (Classification is a fundamental problem
— Classify the readout of a microarray as diseased / healthy
— Classify a subsequence of a genome as coding / non-coding
— Classify an email as spam / no spam

e Many different techniques: Naive Bayes, Regression,
Decision Trees, SVMs, Neural Networks, ...
— Classification function learned from properties of known objects

— Often use same representation (feature vectors) of objects —
methods exchangeable

e The following is a heuristic approach
— Simple to explain, classical, no ML required, not too bad
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This Lecture

e Introduction

e Predicting Protein Secondary Structure
— Secondary structure elements
— Chou-Fasman
— Other methods
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Chou-Fasmann Algorithm

Chou & Fasman (1974). Prediction of protein conformation. Biochemistry 13

o Observation: Different AA favor different folds
— Different AA are more or less often in H, E, C
— Different AA are more or less often within, starting, or ending a
stretch of H, E, C
e Chou-Fasman algorithm (rough idea)

— Compute a score for the probability of any AAtobe E/ H

e When both are improbable: Assign C
— Basis: Relative frequencies in a set of sequences with known SSE
— First assign each AA its most frequent class

— Then perform several heuristic tricks to change classes
e E.g. minimal length of stretches
e Example: CCEEEEEEECCECE, not CCEEECEEECCECE
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Details [sketch, some heuristics omitted]

e Letf;, be the relative frequency of observing AA j in class k
 Letf, be the average over all 20 f;, values
e Compute the propensity P;, of AA j to be part of class k as

Pj,k=fj,k/fk

— This is not a probability, rather an odds-score

e Using P, , classify each AA j for every class k into
— Strong, normal, weak builder (H,, h,, L,, Hg, hg, I5)
e Tendency to build a SS-element
— Strong, weak breaker (B, b,, B, b)
e Tendency to stop a SS-element
— Indifferent (i, i;)
— Thus, we actually have 12 (13) classes

UIf Leser: Foundations of Bioinformatics 32




Concrete Values

Klasse

e Originally computed
on only 15 proteins (1974)

e Read

— Glu(tamate) often is at the start of
a helix and often at the end of a
strand

— Met(hionine) often starts strands
and regularly starts helices
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Algorithm for Helices

e Score each AAwith1(H, h,), 0.5(, i, or-1(B, b,)

— Heuristic discretization — don't trust your counts too much

e Find helix cores: subsequences of length 6 with an
aggregated AA score = 4

e Starting from the middle of each core, shift a window of
length 4 to the left, then to the right

— Compute aggregated score A using original P; , values inside each
window

— If A > 4, continue the helix; otherwise stop
o Similar method for strands

e Conflicts (regions assigned both H and E) are resolved
based on higher aggregated score
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Example [Source: O. Kohlbacher, “Strukturvorhersage”]

W TSPTAELMRSTG..
i, ia.iaH H, h, H, i, i, ia.
0.5 0.5 . 0.5 1 1 1 1 0.5 0.5 05 .

A TISIPITAELMRSTG..

0.5 0.5.0.5 1 1 1 1 0.5 0.5 0.5.

3=5

Helixstart

.TSIPTAELMRSTG..

0.8 0.8.0.8 1.4 1.5 1.2 1.5 1.0 0.8 0.8.
- ~ A

4.3/4>1.0
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Performance

e Accuracy app. 50-60%

— Measured on per-AA correctness
e Prediction is more accurate in helices than in strands

e General problem of Chou-Fasman
— Secondary structure is not only a local problem

— Looking only at single AAs is not enough

* Note: Scores are based on individual AA; aggregation by summation
assumes statistical independence of pairs, triples ... in a class

e One needs to include the context of an AA
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This Lecture

e Introduction

e Predicting Protein Secondary Structure
— Secondary structure elements
— Chou-Fasman
— Other methods
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Classes of Methods

e First generation: Properties of single AA only
— Accuracy: 50-60%, e.g. Chou-Fasman (1974)

e Second generation: Include info. about neighborhood
— Accuracy: ~65%, e.g. GOR (1974 — 1987)

e Third generation: Include info. from homologous seq’s
— Accuracy: ~70-75%, w.g. PHD (1994)

e Forth generation: Build ensembles of good methods
— Accuracy: ~80%, e.g. Jpred (1998)

e Current performance

— Jpred 4 (2015): 82% overall, ~90% for certain other properties
— Spine-X (2012): 84% overall
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Further Reading

e Gerhard Steger (2003). “Bioinformatik — Methoden zur
Vorhersage von RNA- und Proteinstrukturen”, Birkhauser,
chapter §8,10,11,13

e Many figures from Zvelebil, M. and Baum, J. O. (2008).
"Understanding Bioinformatics", Garland Science, Taylor &
Francis Group, chapter 2, 11, 12 (partly)

e Many examples from O. Kohlbacher, Vorlesung
Strukturvorhersage, WS 2004/2005, Universitat Tubingen
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