
Exposé

Training recursive compositional models with hierarchical linguistic

information for semantic tasks in NLP

by Arne Binder

Motivation. Compositional Distributional Semantics Models (CDSMs)(Clark, Coecke,

and Sadrzadeh 2008; Grefenstette and Sadrzadeh 2011) are Vector Space Models (VSMs)

(Salton, Wong, and C.-S. Yang 1975) that produce vector representations for sequences of

tokens by composing word embeddings in a meaningful manner.

CDSMs based on gated Recurrent Neural Networks (RNNs)(Hochreiter and Schmidhu-

ber 1997) produce promising results for internal representations of short to medium length

textual input on several semantic tasks like language modeling (Sundermeyer, Schluter,

and Ney 2012), parsing (Dyer et al. 2016), image caption generation (Vinyals et al. 2014)

or machine translation (Wu et al. 2016), since RNNs are capable of contextualized token

processing. But they still fail to handle long range dependencies as they su�er from van-

ishing gradients and the memory capacity of their inner states is restricted. Furthermore,

RNNs are computational expensive because they are inherently sequential and therefore

not parallelizable.

Summation or averaging composition models such as fastText (Joulin et al. 2017)

demonstrate that avoiding any explicit structure like word order information may also

perform quite well at least for short texts. These bag-of-words models are very advan-

tageous in means of training time and memory consumption, therefore enabling for huge

amounts of training data, but fail to capture more complex semantic interactions like

negation, especially for larger documents.

However, it is up to debate which composition functions perform well for multi-sentence

documents while remaining as precise as for short input.

Idea. In this thesis, we analyze recursive neural CDSM trained with hierarchical struc-

tured linguistic information. Recursive Neural Networks (RecNNs) (Goller and Kuchler

1996; Socher et al. 2011) generalize RNNs by allowing arbitrary trees as input structure

instead of just linear sequences. The consequences of this generalization are twofold: On
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the one hand, distances of tokens that are potentially related1 may decrease with respect

to the input graph. This may lead to easier contextualization and, consequently, more pre-

cise interpretations of individual tokens. Furthermore, by using functions like averaging

or summation to compose child embeddings at the tree nodes, computation cost should

decrease. On the other hand, RecNNs introduce another degree of structural complexity

and require pre-calculated input structures.

We investigate if it is possible to combine the best of both worlds, the speed and

size of bag-of-words models and the context awareness of sequence models, by using tree

structured embedding composition. By doing so, it may be possible to enable semantic

embedding calculation for a large range of text sizes. In that sense we analyze the perfor-

mance of tree structured models and compare it with bag-of-words and sequence models

with regard to di�erent document sizes.

Implementation. To achieve these goals, we implement the following composition mod-

els: 1) a tree structured RecNN model as our candidate model, 2) a bag-of-words model,

and 3) a RNN based sequence model. We use linguistic dependency parse information and

paragraph structure to construct the tree hierarchy for the candidate model. Since the

impact of added structural information is hard to evaluate, we lend from the two competi-

tor models to construct the tree model. Considering one tree node, we use a bag-of-words

approach to combine all child embeddings to a single one (reduction) and execute a RNN

step to incorporate the current word embedding (mapping). If structure that equals one

of the edge cases (i.e. the degenerated trees: sequence or depth one tree) is fed to this tree

model, it strongly resembles one of the competitor models. Furthermore, the separation in

map and reduce functions allows to experiment if reduction should precede the mapping

or the other way around. Depending on its implementation, the former can reduce compu-

tational costs as the RNN step may be executed only once per inner tree node. The latter

should allow more precise contextualization, but results in as many RNN step executions

as for the sequence model.

Recently, the attention mechanism (Bahdanau, Cho, and Bengio 2014; Xu et al. 2015)

was successfully applied in neural Natural Language Processing (NLP) tasks (Zhuang and

Chang 2017; Vaswani et al. 2017) and gained attention due to its simplicity. We will test

whether the tree model will bene�t from using attention as reduction function leading to

a hierarchical attention model similar to Z. Yang et al. (2016), but in a dynamic fashion.

1regarding the interpretation process
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Data and Evaluation. As argued in Binder (2018) with regard to the Distributional

Hypothesis (Harris 1954) semantic relatedness (Resnik 1999; Budanitsky and Hirst 2006)

prediction is one fundamental task to evaluate semantic vector space. Although there are

well curated relatedness-labeled datasets at paraphrase and sentence level (Pavlick et al.

2015; Dolan and Brockett 2005; Marelli et al. 2014; Cer et al. 2017), there is a lack of super-

sentence relatedness corpora. As we are especially interested in scaling beyond sentence

boundaries we seek to circumvent this shortcoming by exploiting interlinking information

in Wikipedia articles. We heuristically take an article that is mentioned in the See Also

section of another one as semantically related to that article. We use this link prediction

task to train and evaluate our embedding models. Taking the English portion of Wikipedia

results in a dataset of ∼1 million documents2 that occur in at least one of these links. For

computational reasons we restrict the documents to the article abstracts. To bypass as

much preprocessing hurdles as possible we make use of the DBpedia NIF (Dojchinovski,

Hernandez, and Ackermann 2018) dataset3. It consists of cleaned, plain Wikipedia article

text, but enhanced with structural information extracted from Wikipedia HTML data

such as annotations for sections, paragraphs and titles or anchors for intra-Wikipedia

links. We will use this structural data in combination with dependency parse information

to dynamically construct the tree model.

Furthermore, we evaluate the resulting embedding models on suitable NLP tasks such

as the BioASQ Task A challenge4. This real world task requires to predict the Medical

Subject Headings (MeSH)5 assigned to a PubMed abstract. As we focus on the impact

of structure to composition, we restrict the BioASQ dataset to the subset of structured

abstracts6. These PubMed abstracts are separated into labeled paragraphs and represent

approximately one third of the total BioASQ dataset7.

Finally, we create term frequency-inverse document frequency (TF-IDF) representa-

tions as baseline embeddings and compare the performance on the individual tasks.

2of a total of ∼5 million English articles
3http://wiki.dbpedia.org/dbpedia-nif-dataset
4http://participants-area.bioasq.org/general_information/Task6a/
5https://www.nlm.nih.gov/mesh/
6https://www.nlm.nih.gov/bsd/policy/structured_abstracts.html
7The BioASQ 2018 dataset consists of ∼13.5 million documents
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List of Abbreviations

CDSM Compositional Distributional Semantics Model

NLP Natural Language Processing

RecNN Recursive Neural Network

RNN Recurrent Neural Network

TF-IDF term frequency-inverse document frequency

VSM Vector Space Model
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