Ensembling in Time Series Segmentation

Tobias Arndt
Supervised by: Prof. Dr. Ulf Leser, Arik Ermshaus

Humboldt-Universitat zu Berlin

April 20, 2024

Contents
I Tuction & Motivation
|2 Background & Related Work]
BT _CIaSPl . . . . o oo
2.2 FLUSS. . . o o
B Ol o e e e e e e e e e e e s e

13 Method of Implementation|

4 Method of Evaluation|




1 Introduction & Motivation

With the rise of cheap and readily available sensors in every persons lives comes
a huge amount of sensory data that is collected from those sensors. This sensory
data can be analysed in many different ways. Time series (TS) are sequences of
datapoints that are ordered by time. These can for instance be extracted from
stock price development, electrocardiograms and motion detection systems [6].

Time Series Segmentation (TSS) is the task of dividing a time series into
semantically different regions. This task is closely related to Change Point
Detection (CPD) where the goal is to find points within a time series that
bound semantically different regions whereas Time Series Segmentation focuses
on finding the intervals of those semantic regions |4} [13]. These points are called
change points because they signify a change in the underlying system, e.g. the
heartbeat of a patient that is changing from normal to abnormal behavior [13].
TSS in real-world-application is used as a preprocessing tool to partition the
amount of data from the growing amount of available sensors [7]. This makes
it easier for domain experts to analyse, evaluate and annotate data for tasks
like Time Series Classification and Anomaly Detection. A wide range of TSS
and CPD algorithms have been proposed, e.g. the state-of-the-art algorithms
ClaSP [13] and FLUSS [7]. Another recent paper [10] proposes an Ensembling
framework to use for the TSS-task.

Ensembling is a strategy that is widely used in many areas of machine learn-
ing. The core idea is to combine different methods to make the ensemble more
reliable than each of the methods on its own [12]. Ensemble learning can enhance
the base methods by reducing the effect bias and variance have on each method.
This fundamental strategy has been shown to have big success in other fields of
time series analysis. With the rise of more and better state-of-the-arts methods
an ensembling approach will likely lead to better results in TSS aswell due to
the increase in performance of the base methods used to form the ensemble.

The motivation for this bachelors thesis is to investigate how an ensembling
approach can improve the current state-of-the-arts methods in time series seg-
mentation. We will try to achieve this by exploring the current state-of-the-arts
methods, implementing the framework for ensembling T'SS-algorithms, evalu-
ating the combinations of possible ensembling strategies on test datasets and
comparing the findings against state-of-the-art competitors.

2 Background & Related Work

In this section we will formally describe the concepts related to TSS, as well as
introduce some related works.

Definition 1. A time series T is a sequence of n € N real values, T =
(t1,...,tn),t; € R. The values are also called datapoints.

Definition 2. Given a TS T, a subsequence T . of T with start offset s and
end offset e consists of the contiguous values of T' from position s to position e,



Tse = (tsy...,te) with 1 < s <e<n. The length of Ty . is Ty . =€ — s+ 1.

Definition 3. A segmentation of a TS T into C' + 1 segments is an ordered
sequence of change points (or splits) t;,,...,t;, with 1 <i; < -+ <ig <n.

Definition 4. The problem of time series segmentation (TSS) is to find a mean-
ingful segmentation of a given TS T under the assumption that T" was generated
by a process with discrete states. A segmentation is considered meaningful when
the change points between two subsequent segments correspond to state changes
in the underlying process.

A recent paper [10] in the field of time series segmentation introduced a
framework for using the ensembling approach to increase the reliability of T'SS
algorithms. Traditional TSS algorithms use a framework of applying a search
function to determine potential split points and a cost function to evaluate
the homogeneity of the predicted segmentations. The approach in [10] intro-
duces the use of multiple different cost functions, the outputs of which are then
normalized by a scaling function. The scaled outputs are combined by an ag-
gregation function to then be used by the search methods to predict the best
change points. Since we use an Ensembling approach, we will introduce the
state-of-the-art methods to be used.

2.1 ClaSP

ClaSP [13] is an unsupervised state-of-the-art TSS-algorithm. It creates a Clas-
sification Score Profile using concepts of self-supervision to annotate a given
time series. The algorithm splits a time series into subsequences of length w
and iterates over all possible splitpoints. For each possible splitpoint the subse-
quences to the left and right are annotated as 0 and 1 respectively and a binary
classifier is trained and validated using Cross Validation. A high score obtained
from Cross Validation is interpreted as low similarity between the left and the
right subsequences and recorded in the Classification Score Profile. Thus the lo-
cal maxima of the Classification Score Profile represent potential change points.

2.2 FLUSS

FLUSS [7] is another state-of-the-art TSS-algorithm. It creates a so called Arc
Curve (AC) which annotates the raw time series about the likelihood of a state
change at each point. It outputs an AC vector where the index 4 contains the
number of "arcs” that cross over the respective point 7; of the time series. An
arc is a pair (4, j) where j is the starting location of the subsequence that is the 1-
NN of the subsequence starting at location ¢. This can be represented visually
as an arrow pointing from index ¢ of the time series to index j. The central
idea is that if an underlying state change of the producing system occured that
subsequences of the time series that are after the state change will have mostly
1-NN that are also after the state change. Thus if only a small number of arcs
cross an index of the time series a change point is predicted to be there.



2.3 BinSeg

Binary segmentation [9] (BinSeg) is a low complexity algorithm as it aims to find
the change point that reduces the sum of the cost functions the most. The time
series is consequently split into two subsections at that point and the algorithm
is then repeated on each subsection until a stopping criterion is met. The low
complexity of the algorithm comes with the drawback that the solution it finds
is only an approximation of the optimal solution because it employs a greedy
strategy in each step. A variation of BinSeg is Wild Binary Segmentation |3, 9]
where a single change point detection is employed on multiple intervals where
start and endpoints are drawn uniformly. After weighting the found points only
the change points are considered which minimizes the sum of costs.

3 Method of Implementation

As our goal is to use an ensembling approach we will use the ensembling frame-
work provided in [10]. We will implement, evaluate and compare the impact of
multiple different parts of the ensembling framework, namely the cost fuctions,
the scaling functions, the aggregation functions and the search methods. Due
to simultaneously calculating each of the cost functions seperately, our method
results in an N x M-dimensional array of scores where N is the number of cost
functions and M is the length of each cost fuctions results. Those scores are
then scaled independently across the Nth dimensions and finally aggregated
into a single result of with dimension 1 x M. We will use the following cost
functions:

e Median-Shift through Least Absolute Deviation - I1

e Mean-Shift through Least Squared Deviation - (2

e Mahalanobis-Type Metric - Mahalanobis

e Piecewise Autoregressive Model - ar

e (lassification Score Profile - ClaSP

e Fast Low-cost Unipotent Semantic Segmentation - FLUSS

For the scaling functions we will compare:
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where S, is a result of the nth cost function, as a 1-dimensional array of M
elements. p{S,} is the mean of S,, and o{S,} is the standard deviation. The
argsort() function transforms the input into a set of ranks of values in ascending
order. For the aggregation functions we will compare:
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where p is the mean of the sample. As for the search methods we will use the
following methods:

e Greedy Extraction |7 - GreExt

e Binary Segmentation - BinSeg

4 Method of Evaluation

The datasets used for this benchmark will be the UTSA [5] and the TSSB [13]
dataset. UTSA contains TS that capture biological and synthetic processes with
only few unique segments. The TS are groupable into a wide variety of use-cases
which inhibit real changes aswell as both semi- and fully-synthetic changes. The
datasets in TSSB are semi-synthetically created from real-world datasets from
the UCR Archive [6]. The metric by which we compare the performance of the
algorithms is the Covering Score metric [11].

This metric focuses on dividing a TS into segments and reporting a measure
for the overlap of the predicted vs the ground truth labels.
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where segst and segsprcq are the ground truth and predicted segmentations re-
spectively. This reports the best-scoring weighted overlap between the ground
truth and predicted segmentations as a normed value between 0 and 1 with
higher being better. We will compare the our algorithm against six state-of-the-
art competitors, namely FLUSS [7], ClaSP [13], BinSeg [9], BOCD [1], PELT
[2] and ESPRESSO |[8]. The results of this comparison will be ranked and then
averaged, this will be displayed with the help of a critical difference diagram to
compare ranks between all methods. In addition we will conduct an ablation
study on each part of the Ensembling framework, a) the cost function, b) the
scaling functions, c) the aggregation functions and d) the search functions. Be-
cause of the increased complexity of ensembling approaches we will also conduct
a runtime comparison and evaluate how scalable the approach is.
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