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Abstract

As large-scale, complex network modeling projects are flourishing in the field of computational
neuroscience [1], it is more and more important to design single-neuron models that capture
qualitative features of real neurons and are quantitatively accurate in silico representations of those.
Recent years have seen substantial effort being put into the development of algorithms for the
systematic evaluation and optimization of biophysical neuron models with respect to
electrophysiological data [2,3]. In this bachelor thesis, we will train a Recurrent Neural Net (RNN) on
neuron recordings using methods such as Sparse Teacher Forcing and compare its predictive power to
that of other neuron models provided by the community of the single-neuron modeling
competition[4]. We will use the benchmarks to try to outperform the given best performing methods
of the biological neuron models.



1. Motivation

1.1 Subject of the study

Recent years have seen many large-scale network modeling projects in computational neuroscience
[1]. These projects require the design of single-neuron models that can accurately capture real neuron
activity. Single-neuron models can be divided into two categories: detailed biophysical models
(Hodgkin and Huxley 1952, HH-type models and variants thereof [5]), and simple phenomenological
models [26]. The Quantitative Single-Neuron Modeling Competition [4] focuses on constructing and
studying biophysically realistic models of single-neuron electrical activity, which can be used to
reproduce a variety of neuronal behaviors.

This year’s competition focuses on developing and studying biophysically realistic models of
single-neuron electrical activity, which can be used to reproduce a variety of neuronal behaviors. The
competition is divided into four individual challenges, focusing on single-compartment and
multi-compartmental models, where each challenge has its own dataset and evaluation criteria. The
competition allows for the evaluation of models on a standardized set of tests, giving insight into how
well these models can predict neuron behavior. We focus on the first Challenge A, which will be to
predict the timing of somatic action potentials or to predict the neuronal response upon stimulation by
ramp and step currents [16].

Spikes or action potentials are prominent features in most brain neurons, through which neural
information can be efficiently processed and reliably transmitted, and eventually form the basis
underlying how the brain works [19]. Previous studies have proposed many computational models to
characterize the firing dynamics of neurons, among which HH-type models are the most famous [25].
To ensure the accuracy of spike timing calculation, the step size on which one numerically iterate has
to be very small, such as 0.01 ms. Therefore, the simulation cost of the HH-type model is very high,
especially when modeling large-scale brain networks.

Time series prediction problems are a difficult type of predictive modeling problem. In contrast to
high dimensional data, time series add the complexity of the temporal sequence of dependence among
the input variable. Due to the good mapping ability of
an artificial neural network (ANN), we want to propose an ANN-based method.
To predict the occurrence of spikes and their times by using only the data provided by the
competition, we use a type of neural network designed to handle sequence dependence called
recurrent neural network (RNN) [33].
We hope to drastically reduce the simulation cost and compare those results with the given best model
at the current time.

As of our knowledge, the approach of using an ANN instead of a biophysical model with real neuron
data is rather new and is knowingly used for parameter fitting in the Macke Lab[3].
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1.2 Goals of this study

In this thesis, we want to know if we can get a better fit to neuron data as a biophysical model, and
thus better spike time prediction. We want to abandon the physical assumptions which are in the
biophysical model equations, and use an agnostic model instead i.e an ANN. An ANN is
parameterized by weights, biases, structure and the activation functions. The question to be resolved
will be whether a fitted ANN architecture can match or outperform a fitted biophysical neuron model
in terms of spike time prediction.

To achieve this, we want to compare and modify different methods on the challenge data, which are
already used for reconstructing nonlinear dynamical systems. Methods such as an RNN model using
tractable dendritic RNNs for reconstructing nonlinear dynamical systems (dendPLRNN) [28]. An
RNN model using data-driven forecasting (DDF), which are reduced-dimension models relative to
HH models as they are built on and forecast only observables [35].
Then compare them against the benchmarks of the winner of the Quantitative Single-Neuron
Modeling Competition which were the adaptive exponential integrate-and-fire model (AdEx) and the
Autoregressive exogenous model (ARX) [12].

2. Background

Artificial Neural Networks (ANNs) are inspired by the biological neurons found in the brain as they
process information and generate output in response to input [27]. However, there are distinct
differences between the two types of neurons. Biological neurons usually have dendrites that receive
input from other neurons, a cell body that processes the input, and an axon that carries the processed
information to other neurons. In contrast, ANNs are composed of neurons with no dendrites and no
axons, and instead, receive input through weighted connections and generate output through an
activation function. Additionally, biological neurons transmit information by firing action potentials,
which allows for spike-rate and spike-time encodings, while single units in ANNs usually do not
spike, but have an output analogous to the firing rate of a real neuron allowing only for spike-rate
encoding.

Single-neuron recordings are recordings of the electrical signals of a single neuron. This allows
scientists to measure the electrical activity of a neuron and learn more about its function and behavior.
By measuring the action potentials of a single neuron and analyzing its characteristics, we can gain
insight into how neurons communicate with each other, how they operate under different conditions,
and how they may be involved in certain diseases [34].

The Quantitative Single-Neuron Modeling Competition has been created to benchmark the
performance of single neuron models, and the results of this benchmarking suggest that models
combining features of standard leaky integrate-and-fire models with a second variable reflecting
adaptation, refractoriness, or a dynamic threshold are the best performers [11].
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In Fig. 1a, we show a cortical pyramidal neuron which was simulated by injection of randomly
fluctuating currents of various amplitudes. The fluctuating currents were injected and voltage
responses were recorded at the soma.

Fig 1. Challenge A. The goal of the challenge is to predict the timing of somatic action potentials with +-2ms precision,
given the injected current as a function of time. The data were low-pass filtered at 2.5 kHz with sampling frequency twice
the filter frequency[23].

In Fig 1b, we show a sample of injected current (the top) and waveforms in order to evaluate the
intrinsic reliability of the cell in terms of the timing of output spikes. The neuron membrane
depolarizes and fires action potentials or 'spikes' as a response to this current input.

To predict the occurrence of spikes and their times by using only the data provided by the
competition, we want to use methods that already are providing different approaches to the estimation
of parameters of the underlying dynamical systems.
To achieve this we want to use a specific algorithm used in the dendritic, piecewise linear recurrent
neural network (dendPLRNN) approach, called sparsely forced backpropagation through time (BPTT)
[30].
Another approach for comparison is data-driven forecasting (DDF) on neurons [35]. DDF is to be
viewed as a way to capture observed aspects of neurobiological data in contrast to the usual method of
creating a detailed biophysical model, often of the Hodgkin-Huxley (HH) type.

2.1 What is the approach of this thesis?

All code is written in Python using Pytorch as the main deep learning framework.

All backpropagation in Pytorch is implemented by automatically differentiating the operations in the
forward pass of the network, and adding explicit operations for computing the gradient at each point
in the network [29].
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The data consists of 13 repetitions of a 60s-stimulation protocol. The training set is the first 39
seconds, the test set is the last 21 seconds. In the challenge, we have to predict the spike timing of a
regular spiking L5 pyramidal cell responding to in-vivo-like current injection and compare the
predicted output spike times to the outputs of the competitors.

The input of our RNN approach using the DDF model and the dendPLRNN model will be the same as
the competition. We input the injected current waveform in pA (peak amplitude) for both the training
and test phases. For training, we use the voltage trace of each repetition for the first 39s in mV
(millivolts). For testing, we predict the spike times of the remaining 21s in each repetition (both the
training and test sets are using the same current and voltage trace input managed in a time points file).
The spike time is defined as the time at which the voltage recording is crossing 0 mV.

The measure of the performance is based on the Gamma coincidence factor [31]. To evaluate this
quantity, we calculate the number of coincidences between the spikes in the data spike train (the
binary waveform) one at a time (the gold standard) and the spike train of our LSTM model. This
number is calculated by counting the number of target spikes for which we can find at least one model
spike within 4ms. We subtract the expected number of coincidences that a Poisson spike train with the
same average frequency would give and divide it by the number of spikes in the data and model spike
trains. The coincidence factor, which is calculated through the overlapping of spikes from our model
and the data subtracted by the number of coincidences, will be our prediction identifier [32]. We will
calculate the gamma coincidence factor for each repetition between the predicted spike train and the
observed spike train. The performance is the averaged coincidence factor. Furthermore, the standard
error of the mean is computed with the bootstrapping method.

As described in the Challenge, our model will outperform the competitor models if the performance is
one standard deviation above the performance of all other competitors.
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