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1 Introduction

Information Retrieval (IR) is the process of retrieving relevant information
or documents from a collection of data based on a user’s query. It consists
of processing the given queries and storing, representing, ranking and
finally retrieving the relevant data[Ibrihich et al., 2022]. Domain-specific
applications, such as in the biomedical domain, cover a range of tasks,
including literature search [Lu, 2011], question answering [Jin et al., 2022],
and the recommendation of citations [Jin et al., 2023], related articles [Lin
and Wilbur, 2007] and related sentences [Allot et al., 2019]. Information
retrieval systems are of particular interest for the biomedical field, due to
various reasons. For instance, they play a crucial role in efficiently accessing
the vast biomedical literature in databases like PubMed R©1, ensuring that
healthcare professionals and researchers can keep up with the rapidly
evolving field[Nadkarni, 2002]. PubMed contains more than 36M citations
and abstracts from biomedical literature. For approximately 8M of the
abstracts and citations, their full-text articles are accessible via PubMed
Central R©2 (PMC). From 2021 to 2022 alone, PMC increased by over 1M
articles, demonstrating the substantial growth of accessible biomedical
literature. Moreover, IR systems should help to alleviate the challenges
associated with specific medical vocabulary and synonyms, helping users
navigate the complex and heterogeneous terminology used in biomedical
research[Sankhavara and Majumder, 2017].

1https://pubmed.ncbi.nlm.nih.gov/about/
2https://www.ncbi.nlm.nih.gov/pmc/about/intro/
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To handle these challenges, a powerful method seems necessary. Previous
retrieval models, such as BM25 [Robertson and Zaragoza, 2009], solely
capture the lexical features of queries and documents. State-of-the-art
systems incorporate transformers[Vaswani et al., 2017] to acquire and use
semantic meanings of queries and documents when solving IR tasks[Ni
et al., 2021, Neelakantan et al., 2022, Jin et al., 2023].

2 Goals of the Study Project

The main goals of this study project are to train a retriever for citation
recommendation using the retriever-part of the MedCPT[Jin et al., 2023]
framework, training it on a self-generated dataset from PubMed Central
full-text references and to evaluate it on the BEIR[Thakur et al., 2021] dataset
for comparison with the original MedCPT model.

3 Background and Related Work

Lexical (Sparse) Retrievers. Sparse retrievers use lexical characteristics
of documents to compute relevance scores between queries and documents.
An early approach considered term frequencies (TF) in a single document
and inverse document frequencies (IDF) in the corpus to determine suitable
documents. In this model, terms are weighted higher if they occur frequently
in a document and rarely in the corpus[Salton et al., 1975]. Best Matching
25 (BM25) is an extension of the TF-IDF model that further takes into
account the saturation of a term in a document and the length of the
document[Robertson and Zaragoza, 2009].

Dense Retrievers. Dense retrievers use neural networks to encode and
match queries and documents in low-dimensional semantic space, which
have been shown to outperform sparse retrievers like BM25 in natural
language processing (NLP) tasks, such as question answering[Karpukhin
et al., 2020b] and citation recommendation[Nogueira and Cho, 2019, Khattab
and Zaharia, 2020, Lin et al., 2020, Jin et al., 2023].

In our work, we follow the bioMedical Contrastive P re-trained T ransformers
(MedCPT) framework of Jin et al. [2023]. In this approach, a retriever
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efficiently retrieves thousands of candidates from millions of documents
and a re-ranker further refines the relevance of the candidates. They use
a 255M query-article pairs data set generated from PubMed click logs for
training. The retriever consists of two 12-layer Transformers (Trm)[Vaswani
et al., 2017]: a query encoder QEnc and a document encoder DEnc, which
are initialized with PubMedBERT[Gu et al., 2020]. The relevance of a query
q and a document d is modeled by the dot product of their [CLS] encoder
embeddings E(q) ∈ Rh and E(d) ∈ Rh where h = 768. The re-ranker is a 12-
layer transformer cross-encoder that is also initialized with PubMedBERT.
For this part, the relevance of queries and documents is calculated by
passing them into the same cross-encoder. Jin et al. achieved state-of-the-
art performances for query-article relevance on the BEIR[Thakur et al.,
2021] benchmark dataset, article similarity task on the RELISH[Brown et al.,
2019] dataset and sentence similarity task on the BIOSSES[Sogancioglu
et al., 2017] without any task-specific training or fine-tuning.

4 Approach

Our model. We use the implementation of the MedCPT retriever3 as
the starting point and follow the framework of Jin et al. [2023]. To train
our retriever, we extract query-article pairs from PMC and use the same
parameter configuration as described in the original paper. Finally, we
evaluate our model on the BEIR data set and compare it against the model
of Jin et al. [2023] and their competitors in their original paper. The adapted
workflow for the retriever-only framework of Jin et al. [2023] is shown in
Figure 1.

Figure 1: A high-level overview of our retriever-only model. Adapted from
Jin et al. [2023].

3https://github.com/ncbi/MedCPT/tree/main/retriever
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Motivation. We argue that MedCPT’s success is largely due to the fact
that they have extracted training data from the click logs of knowledgeable
PubMed users, thus ensuring high quality of the data. We plan on extracting
high quality query-article pairs from existing journal articles and preprints.
Sentences within the articles can be viewed as potential queries, with the
accompanying citations serving as recommended articles.

PMC Open Access Subset. The PMC Open Access Subset includes more
than 3M journal articles and preprints from PubMed Central R©. Documents
from that subset are made available under Creative Commons or similar
licenses to allow a more liberal use and we download them in XML-format
using their FTP download service4.

Extraction of Query-Article Pairs from PMC. For each full-text article
in the PMC Open Access Subset, we filter out sentences that contain at
least one citation. For each citation in a sentence, we interpret the sentence
leading up to that citation as the corresponding query to generate our
query-article pairs. E.g., the sentence in Figure 2 results in the query-article
pair ("The majority [...] drug targets", "McFadden and Roos 1999"). It is also

The majority [...] excellent drug targets (McFadden and Roos 1999).

Figure 2: Sentence with one citation extracted from Bozdech et al. [2003].

Periodicity in [...] human cells (Spellman et al. 1998; Whitfield et al. 2002).

Figure 3: Sentence with two citations extracted from Bozdech et al. [2003].

possible for query-article pairs to share the same query if the citations are
in the same group, as can be seen in Figure 3. Here, we generate the two
query-article pairs:

1. ("Periodicity in [...] human cells", "Spellman et al. 1998") and

2. ("Periodicity in [...] human cells", "Whitfield et al. 2002").

Other citation variants exist, but can be reduced to the above cases. Analogous
to Jin et al. [2023], we omit pairs containing articles that do not have a title
or abstract in PubMed. We note that we only use the full-texts from PMC
to extract the queries. When training the retriever, we only use the title and
abstract to compute the corresponding document embeddings.

4https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/#bulk
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