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1 Introduction 

One real-world example of critical and highly interesting time series data are 

electrocardiograms. Considering the quite common scenario of a long-term or 24-hour cardiac 

monitoring, the diagnostic process of analyzing the monitored data can be very time consuming. 

Without any technical support the attending physician will have to review the whole series 

regarding the presence of any conspicuous event whereby missing one of those events may 

cause serious consequences for the patient. Especially cardiac events during sportive or high 

emotional activity can be hard to discover. The task of Time Series Segmentation can provide 

a reliable solution for this particular real-world example by preprocessing the monitored data 

such that physicians can be provided with already segmented series or a list of exact points 

where the monitored heartbeat pattern changes. By being provided these so-called Change 

Points the physicians tasks reduce from recognizing each possible event or change to analyzing 

only the beginning of each segment to evaluate if it represents a conspicuous event.   

However, similar to many other machine learning tasks high accuracy time series segmentation 

algorithms degenerate in scalability regarding runtime and memory usage for large input time 

series. Especially for image data preprocessing steps, such as compression and downsampling, 

methods are used to reduce the memory consumption of data whilst keeping only important 

features to allow the respective machine learning task to still perform well regarding accuracy. 

In the field of time series downsampling is by now primarily used for visualization purposes. 

The time series segmentation tool ClaSP [1] works provenly well on its task in terms of 

accuracy but is in need of improvement in terms of runtime and memory usage. Exactly as for 

image data these two aspects can for example be improved by processing smaller data samples, 

which can be obtained using downsampling tools. Downsampling tools for visualization aim to 

provide a representation that visually still shows all important information of the original data 

like characteristic structure and significant peaks in the time series by selecting or aggregating 

significant data points. The motivation of this thesis is based on the assumption that visually 

characterizing information are similar to features needed for machine learning tasks. Practically 

spoken, if the reduced data visually still provides all characteristic information of the time series 

it also could be used for machine learning tasks like segmentation without trading too much 

performance regarding the accuracy of the model. 

The main goals of this thesis are to first provide an overview of downsampling methods for 

time series visualization that potentially can be used as preprocessing step for the segmentation 

task. Using a selection of these methods it shall be analyzed and evaluated, if they are capable 

of solving the known issues of the segmentation tasks whilst keeping an accuracy not 

significantly lower, equal to or even higher than the accuracy performance achieved beforehand 

using the downsampling. For the evaluation purpose the time series segmentation tool ClaSP 

[1] will be used.  



3 

 

2 Background 

2.1 Time Series Segmentation 

To represent the general idea and process of segmentation, a time series can be defined as 

follows. 

DEFINITION 2.1.1: A Time Series 𝑇 is an ordered sequence of 𝑛 ∈ ℕ tuples consisting of an uni- 

or multivariate value 𝑣 and a time component 𝑡, i.e., 𝑇 = {(𝑣1, 𝑡1), (𝑣2, 𝑡2), … , (𝑣𝑛, 𝑡𝑛)} [7].  

A value-time pair (𝑣𝑖 , 𝑡𝑖) of a time series can also be referred to as datapoint 𝑑. The above 

formal definition of a time series can be used to define a subsequence of a time series. 

DEFINITION 2.1.2: A Subsequence 𝑇𝑖,𝑗 is a part of a time series of length 𝑗 − 𝑖 + 1 consisting of 

one or multiple consecutive value-time-pairs, i.e., 𝑇𝑖,𝑗 = {(𝑣𝑖 , 𝑡𝑖), . . . , (𝑣𝑗 , 𝑡𝑗)}, where 1 ≤ 𝑖 ≤

𝑗 ≤ 𝑛 [1], [7]. 

In the context of the time series segmentation tool ClaSP (see section 3.1) subsequences of a 

fixed length are also referred to as windows. The length of these windows as defined in 

Definition 2.1.2 is called window size. 

Assuming the time series was generated from a certain underlying process it maybe visually 

reflects state changes in this process. When a subsequence of a time series represents the exact 

period in between two state changes of the underlying process it is also called Segment in the 

context of time series segmentation. 

DEFINITION 2.1.3: A Segment 𝑆 is a disjunctive subsequence of a time series which includes all 

data points from one state change of the underlying process to the next one. 

The offsets at which the state of the process changes in the time series and a segment begins or 

ends is also referred to as Change Point.  

DEFINITION 2.1.4: A Change Point 𝐶 is an annotation of the starting or ending point of a 

segment 𝑆 and therefore represents a state change in the underlying process that generated the 

time series [8].  

DEFINITION 2.1.5: A Segmentation 𝑇𝑆 of a time series in the context of change points into 𝑘 ∈

ℕ segments is an ordered sequence of 𝑘 − 1 change points [1] such that 𝑇𝑆 = {𝐶1, 𝐶2, … , 𝐶𝑘−1} 

where 1 ≤ 𝑘 < 𝑛. 

DEFINITION 2.1.6: Time Series Segmentation is the machine learning task of finding a 

meaningful segmentation 𝑇𝑆 of a time series 𝑇. A segmentation in the context of Definition 

2.2.5 is meaningful when each change point represents a state change in the underlying process 

that generated the time series [1]. 
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2.2 Downsampling 

Downsampling is a data processing method, that aims to reduce the data points of some given 

original data by selection or aggregation of data points [2].  

DEFINITION 2.2.1: Downsampling algortihms will be categorized into two groups in context of 

this thesis. Algorithms that use a selection of data points to reduce the resolution of the original 

data are referred to as Selective Downsampling. Algorithms using any kind of aggregation of 

data will be referred to as Aggregative Downsampling.  

Downsampling algortihms therefore return a subset of the original data points that still represent 

the data as good as possible. Measures for the latter differ in the different application areas of 

downsampling. When used for visualization purposes, as often applied to time series, one 

common measure is a human visual comparison of the downsampled and the original data [3], 

[4]. In contrast, a measure called Visual Representativeness can be assessed, to achieve a 

metric-based evaluation. 

DEFINITION 2.2.2: The Visual Representativeness of a downsampled time series is measured by 

their visual approximation to the original data, which can be measured using image-based 

metrics [2]. 

The reduction of the original data to the output resolution of a downsampling algorithm can be 

described using a factor, which in this thesis we will call Compression Ratio. 

DEFINITION 2.2.3: The ratio by which the given input data points are reduced is called 

Compression Ratio. The compression ratio 𝐶𝑅 is calculated using the original number of data 

points #𝑂𝐷 and the target resolution #𝑇𝐷 of the downsampling algorithm, i.e., 𝐶𝑅 =  
#𝑇𝐷

#𝑂𝐷
. 

Generally, four major algorithms exist that downsample time series for visualization, which are 

used as base for extensions, improvements or merges. 

EveryNth / The intuitive algorithm: A rather intuitive algorithm for selective downsampling 

is the EveryNth algorithm. As the name indicates the EveryNth algorithm selects every 𝑛𝑡ℎ  

datapoint from the original data. For this approach the parameter 𝑛, more precisely 
1

𝑛
 equals the 

compression ratio as defined previously [2]. 

MinMax: The MinMax algorithm separates the time series into multiple buckets or sub-

sequences. For each bucket only the datapoints with minimum value 𝑣𝑚𝑖𝑛 and maximum value 

𝑣𝑚𝑎𝑥 are preserved. Considering the bucket size 𝐵 a time series of length 𝑛 would be separated 

into 
𝑛

𝐵
 buckets. After downsampling each bucket consist of only two datapoints 𝑑𝑚𝑖𝑛 =

(𝑣𝑚𝑖𝑛, 𝑡𝑣𝑚𝑖𝑛) and 𝑑𝑚𝑎𝑥 = (𝑣𝑚𝑎𝑥, 𝑡𝑣𝑚𝑎𝑥), one of them containing the minimum and the other 

the maximum value of the original bucket together with their corresponding time component. 

The order of these datapoints is defined by the order of them in the original time series, i.e. 
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𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 can also be defined as 𝑑1 and 𝑑2, where depending on their index in the original 

time series 𝑑1 may include the minimum or the maximum and 𝑑2 the corresponding opposite. 

The resulting downsampled time series 𝑇′ then consists of the datapoints of all downsampled 

buckets such that  𝑇′ = {𝑑11 , 𝑑21, … , 𝑑1𝑏 , 𝑑2𝑏} where 𝑏 ∈ ℕ equals the bucket index with 1 ≤

𝑏 ≤  
𝑛

𝐵
. While having a good memory complexity this method may fail on alternating behavior 

in the time series [2].  As for each bucket two values are preserved the target resolution of 

MinMax equals 2
𝑛

𝐵
. The compression ratio of this algorithm therefore can be calculated using 

the formula 𝐶𝑅 =
2

𝐵
, where 1 < 𝐵 ≤ 𝑛, depending only on the bucket size. 

M4: One major issue of MinMax can be found in the visualization of the downsampled time 

series. As this approach only preserved the minimum and maximum value of each bucket 

connecting lines of each two consecutive buckets may get lost in the process and need to be 

approximated. This approximation may lead to errors in the final visualization of the 

downsampled data. In 2014 Jugel et al. proposed a solution approach for this issue with the M4 

[5]. In addition to the datapoints with the minimum and maximum value M4 preserves the 

starting and ending point of each bucket 𝑑𝑠𝑡𝑎𝑟𝑡,𝑏 = (𝑣𝑡𝑚𝑖𝑛,𝑏 , 𝑡𝑚𝑖𝑛,𝑏) and 𝑑𝑒𝑛𝑑,𝑏 =

(𝑣𝑡𝑚𝑎𝑥,𝑏 , 𝑡𝑚𝑎𝑥,𝑏), resulting in four aggregates per bucket such that 𝑇′ =

{𝑑𝑠𝑡𝑎𝑟𝑡,1, 𝑑11, 𝑑21, 𝑑𝑒𝑛𝑑,1, … , 𝑑𝑠𝑡𝑎𝑟𝑡,𝑏 , 𝑑1𝑏 , 𝑑2𝑏 , 𝑑𝑒𝑛𝑑,𝑏} considering the same index and value 

definitions as previously defined for MinMax. This approach shall preserve connections 

between buckets and therefor provide an improved visualization of the downsampled time 

series. For a bucket size 𝐵 ≥ 4 the compression ratio for M4 equals 𝐶𝑅 =  
4

𝐵
. 

Largest Triangle: The general idea of the largest triangle algorithms is to assess the effective 

area of each data point in a time series and use it as the aggregation instead of minimum and 

maximum. The calculation of this effective area depends on the variation of the algorithm. 

For the Largest Triangle One Bucket (LTOB) variant the effective area of each point equals the 

area size of the triangle that is formed with the two neighboring points. Afterwards as in 

MinMax and M4 the time series is split into a certain number of equally sized buckets [6]. 

Another variant is the Largest Triangle Three Buckets (LTTB) approach. LTTB addresses the 

question of LTOB, if the effective area of a data point can be restricted to its neighboring points. 

Instead of using only single neighboring points LTTB calculates the effective area using the 

previous and following bucket. The very first and last point are associated to the first and last 

bucket. For each bucket the point resulting in the highest effective area considering the selected 

point in the previous and next bucket shall be selected. The first point of the triangle, e.g. the 

point selected in the first bucket is always fixed, as it was calculated before. The second point 

is the one to be selected, the question arises how to determine the point to use of the third 

bucket. The intuitive approach is to brute force calculate the effective area for all possible 
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combinations, which would be inefficient. A better approach is to fix a temporary point in the 

third bucket and use it for the calculation [6].   

Finally, in both variants only one point per bucket having the highest effective area is selected. 

As for LTOB one point per bucket is selected the compression ratio equals 𝐶𝑅 =  
1

𝐵
. For LTTB 

also one point per bucket is selected, but additionally the first and last point of the time series 

are preserved. The splitting into buckets is done for the datapoints excluding the first and last 

one, resulting in a target resolution of #𝑇𝐷 =
𝑛−2

𝐵
+ 2. The compression rate for LTTB equals 

accordingly 𝐶𝑅 =
𝑛−2

𝐵𝑛
+

2

𝑛
 and therefore is, in contrast to the compression rate of the algorithms 

presented before, depending on the length 𝑛 of the original time series.  
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3 Related Work 

Although not much research has been done on applying downsampling algorithms as a 

preprocessing step on time series, there is related research on subtopics available. The 

subsections in this chapter include a time series segmentation tool called “ClaSP”, some 

existing downsampling algorithms for time series visualization as well as already existing 

benchmarks for time series segmentation. 

3.1 ClaSP 

In 2021 Schäfer et al. introduced a self-supervised method for time series segmentation called 

Classification Score Profile (ClaSP) [1]. The classification score profile is a function, where 

each local maximum represents an optimal position for a change point. To obtain this profile 

first the time series is split into virtual change points. Each of these splits is transformed into a 

binary classification problem by labelling all windows (as defined in section 2.1) extracted on 

the left side from the split with 0 and right from the split with 1. On certain extracted features 

of the windows the unsupervised k-Nearest-Neighbor classifier is trained to output a cross 

validation score. A high score is interpreted as high dissimilarity between the windows on the 

left and right of each split. All scores obtained for each split result in the final classification 

score profile, where each highest score, e.g. each maximum, indicates a change point. From the 

obtained change points by the classification score profile a segmentation of the time series can 

be provided as per Definition 2.1.5. 

3.2 Downsampling algorithms 

In section 2.2 a general categorization of downsampling algorithms for visualization of time 

series has been provided. Steinarsson [6] provided an overview of current and state of the art 

downsampling algorithms for visualization purposes in 2013 which is used as a starting point 

for the focus on downsampling algorithms. Several implementations of these algorithms 

already have been published, which will be used for the master thesis main objective. Van der 

Donckt et al. [9] published the Python library tsdownsample in 2023 which includes several 

optimized algorithms. A TypeScript library called downsample [10] including some state of the 

art downsampling algorithms for visualization can be found on Git.  

Additionally, some extensions of the basic algorithms introduced in section 2.2 and novel 

approaches have been proposed. In 2017 Xu et al. [4] introduced a large-scale downsampling 

algorithm based on map-reduce programming. The idea of this implementation was to improve 

runtime issues of downsampling methods for large-scale time series. Franco et al. [3] addressed 

the issue of M4 to be only applicable to univariate time series. In 2022 they proposed an 

extension that made M4 available for multivariate data. Lastly, Donckt et al. [11] proposed a 

two-step hybrid implementation of the LTTB and MinMax approach (see section 2.2) in 2023 

that extends the classic LTTB algorithm with improved scalability.  
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3.3 Benchmarks 

The time series segmentation benchmark (TSSB) [12] has been constructed using datasets from 

the UEA & UCR time series classification repository and is provided via a Python library on 

GitHub. TSSB has already successfully been used with the time series segmentation tool ClaSP 

(see section 3.1). The benchmark currently contains 75 time series, each created by 

concatenating grouped time series by label. This benchmark therefore can be considered semi- 

synthetic [1]. Each time series in the concatenated group represents a segment of the complete 

time series. The offsets at which the complete time series has been concatenated are annotated 

as change points (see section 2.1). 

Another more natural benchmark resulted out of the human activity segmentation challenge 

[13]. In a collaboration with students this benchmark was created by collecting and annotating 

human motion sensor data from the real world. The benchmark consists of 250 multivariate 

natural time series with activity segments and annotated change points. 

Both benchmarks have annotated change points. They have already been successfully used for 

the experimental evaluation of the time series segmentation tool ClaSP [1]. 

  



9 

 

4 Objectives 

The overall main objective of this thesis is to evaluate the general possibility of using 

downsampling methods for time series visualization as a preprocessing step for the time series 

segmentation tool ClaSP and to evaluate the sense of purpose for the very same regarding 

runtime and memory usage whilst keeping improved or not significantly lower accuracy. From 

this main objective multiple categories of sub-objectives derive. 

Overview of downsampling methods for time series: As a first step to evaluating 

downsampling methods as a preprocessing step on time series an overview shall be provided 

on the above mentioned existing downsampling methods for time series visualization purposes. 

The purpose of this overview is to give a general idea of already existing approaches, their 

performance and application areas, as well as it shall serve as a starting point to find methods, 

that can be evaluated regarding their applicability as a preprocessing step. 

Parameter adjustments: With a selection of available methods comes a list of parameters that 

may have to be adjusted for the new purpose of the method. The first part of this objective is to 

have a closer look at the compression ratio (see section 2.2). Some time series of one dataset 

may not be as easy to compress as others, which derives the question if and down to which level 

the available methods allow the adjustment of the compression ratio. Another adjustable 

parameter is the window size in the created segments of a time series. For ClaSP an optimal 

window size has been figured out for the raw time series. The question arises if this optimal 

window size would still apply for downsampled data. For this matter it shall be evaluated, if 

and how the window size in the segments should be adjusted to suit the downsampled data. 

Relation analysis: For this objective it shall be observed if the performance of the methods for 

visualization correlates with their performance as a preprocessing step. Shortly described it 

shall be figured out, if better performing methods in visualization are also performing better for 

preprocessing. In addition, if not, it may be analyzed if another correlation can be figured out. 

As one possible correlation, it is to be observed, if specific downsampling methods or categories 

perform better on certain kinds of time series and, if so, if these dependencies can be predicted 

based on characteristics of the time series and method categories. 

Performance and evaluation measures: The last objective derives from the above relation 

analysis. In order to evaluate relations between or based on performances it first has to be 

analyzed if the measures used for visualization methods are also applicable to the new purpose 

as preprocessing. If the performance and evaluation measures of the visualization task of the 

methods does not apply to the new context of preprocessing, it is to be figured out, what 

measures can be used to achieve meaningful evidence of the performance of the methods in the 

new context. Apart from a general performance measure an additional measure must be found 

to weigh up possible runtime and memory usage improvements against accuracy loss. 
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5 Approach 

To achieve the above objectives first research is to be done on current downsampling methods. 

This includes algorithms for time series visualization as well as recent advances and state of the 

art downsampling approaches as preprocessing for image data. The latter can provide a general 

insight into the possibilities and performance of downsampling as preprocessing. For the 

parameter adjustments different approaches for each parameter such as proportional adjustment 

will be tested and evaluated regarding their impact on the performance. Relation analysis will 

be done by categorizing downsampling methods and datasets into groups. For each pair of these 

groups correlations can be observed regarding the performance of ClaSP. Performance 

measures are assessed by figuring out the exact statement of each measure and evaluating them 

regarding their applicability on preprocessing purposes. The overall main goal of this thesis can 

be achieved in a two-step evaluation.  

Step 1: First it needs to be proven that downsampled time series still contain enough significant 

information for the segmentation tool ClaSP to work keeping sufficient accuracy. This can be 

done by first splitting the original data at their actual labelled change points. Afterwards each 

split can be downsampled individually. Concatenating the downsampled splits and saving the 

offsets between each two splits as new true change points provides a labelled downsampled 

sample. ClaSP can now be executed on samples generated with this process, the results can be 

evaluated as usual. With the evaluation results of the first step it can be assessed, if ClaSP still 

performs generally well on selected features of the original data. 

Step 2: As a second step it shall be evaluated if the change points from the original data can be 

derived from the downsampled representation. This can be achieved by adjusting the evaluation 

method of ClaSP slightly. First, the original data is downsampled and processed through ClaSP. 

The resulting predicted change points are now to be upscaled to the original data. One trivial 

approach to assess the change points of the original data is to upscale the change points of the 

downsampled data using the compression ratio as a factor. Further upscaling methodologies for 

the change points are to be discovered. The evaluation of the ClaSP model is now to be done 

on the upscaled change points from the downsampled data and the true change points from the 

original.  

Each step is performed using a selection of different downsampling approaches and data sets. 

The final comparison is done based on memory usage, runtime and accuracy of ClaSP for each 

set of downsampling method and dataset. A critical distance diagram can be used to evaluate 

the significance of the obtained improvements or possible degradations.  
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