
Humboldt-Universität zu Berlin

Institut für Informatik

Creating a question answering dataset for
scientific workflow code

Study Project Expose

Simon Bosse

January 27, 2025



1 Introduction

The analysis of vast amounts of scientific data often requires complex pro-
cessing chains using different domain-specific tools. To process large amounts
of data in reasonable time spans, scientific data analysis is often executed on
distributed systems. This also introduces challenges such as scalability and
reproducibility. To deal with these challenges, workflow systems can be used,
allowing users to abstractly define their data analysis step by step in domain-
specific languages. Scientific Workflow Management Systems (SWMS) such
as Nextflow [6] or Snakemake [10] then take care of workflow execution.

The development of scientific workflows can be challenging, since it re-
quires both substantial domain knowledge and considerable software engi-
neering skills. An alternative to developing workflows from scratch is using
best practice workflows such as those curated by the nf-core [7] community.
But such workflows are often highly standardized and integrate many anal-
ysis options. This also introduces significant code complexity. Execution,
adaptation and extension of these workflows can hence be challenging for
developers. A recent study identified code-related errors as a common cause
of workflow execution failure [15].

To aid software developers, LLM-based tools such as GitHub copilot1 can
be used. However, these tools are mostly tailored to code generation and com-
pletion in traditional programming languages. In contrast, systems designed
for code-based question answering (QA) can correctly answer questions about
given programming code, for example about the codes behaviour, or imple-
mentation details. QA systems for code are rather rare, which can also be
attributed to a lack of available QA datasets on programming code [4]. This
is despite the fact that performant code QA systems could significantly im-
prove developers code understanding, and thereby facilitate tasks such as
code maintenance or extension.

These aspects are also relevant to workflow languages such as Nextflow.
Especially non-coding experts could benefit from systems reliably answer-
ing their questions regarding Nextflow code: They could potentially help
developers with understanding errors or unexpected behaviour.

1https://github.com/features/copilot

1



2 Goals

This work aims to create a dataset for question answering on Nextflow pro-
gramming code by providing question-answer pairs on reference Nextflow
workflows collected from nf-core and GitHub2. Such a dataset could be
used to analyze how well modern neural models understand and explain
workflow code. We seek to extensively annotate each question-answer pair
with:

1. the Nextflow concepts that are relevant to the question, for example
channels, processes or workflows,

2. the question type, such as comparison questions or boolean questions,

3. and the lines of code in the corresponding workflow serving as support-
ing facts, i.e. they are relevant to correctly answer the question.

A more detailed description of the different annotations as well as an
exemplary question-answer pair can be found in Section 4. The annotations
should allow for a more precise evaluation of model’s performance on the
dataset. We also aim to benchmark the question answering task of the dataset
using language models such as CodeBERT [8]. We plan to both generate
free-form answers and identify relevant lines of code (supporting facts).

3 Related Work

Question answering is the task of answering a question using given context
information. In the field of natural language processing, models are often
exposed to QA problems to evaluate their ability to correctly process textual
information in different contexts, such as Wikipedia excerpts or reference
web pages retrieved from search engines. Over the past years, researchers
created various QA datasets with diverse characteristics.

One of the most prominent QA datasets is SQuAD [18]. Its questions
can be answered by identifying one continuous span of text in the corre-
sponding context, hence not forcing models to actually generate an answer.
HotpotQA [20] is a multi-hop QA dataset. To answer a question, multi-hop
reasoning is needed, i.e. connecting information across multiple documents.

2https://github.com/

2



A question answering dataset constructed using Bing search queries is
MS MARCO [3]. For each question, it provides an answer (e.g. numerical
or free-form text answers) along with annotations on the passages of multiple
reference documents relevant to generate the answer. Similarly, the Natu-
ral Questions [11] dataset consists of real-world questions from Google.
As answers, it provides long answers in the form of relevant paragraphs in
a Wikipedia article, and if applicable, a short answer consisting of one or
multiple short text spans.

TheQuALITY [16] dataset is a QA dataset on long contexts. Since most
performant models are limited to process a rather small amount of tokens at
once, they find models to perform poorly on QA with long contexts.

Other examples of QA datasets are ToolQA [21], which evaluates a sys-
tems ability to make use of external tools, and TheoremQA [5], testing how
succesful models apply scientifical theorems to given problems. TheVQA [2]
dataset is a benchmark for visual question answering.

There also exist several code-specific QA datasets. CodeQA [14] contains
questions on snippets of python and Java programming code, which requires
systems to process both natural language and programming code. Answers
are mostly given by rather short sentences or phrases. As context, usually
only the relevant code is provided. Similar to other state-of-the-art QA
datasets, it includes a wide range of question types, requiring systems to
process comparison, yes/no, multiple choice and open questions.

Similarly to SQuAD, answers in CodeQueries [19] are given by text
spans in the context. The dataset consists of semantical queries with code
snippets as context, and similar to HotpotQA, the answer span and its sup-
porting facts need to be identified in the context. CS1QA [12] consists of
questions on python snippets, collected from an introductory programming
class. CoReQA [4] and CodeRepoQA [9] contain questions on GitHub
repositories, and have been constructed from issues and comments within
the respective repositories.

4 Dataset design

In QA, there exist several approaches to generate new datasets. Often,
question-answer pairs are generated by humans given one or more context
documents [5, 18, 20]. Sometimes, only answers are annotated by humans,
while questions are collected from real-world users, e.g. via search engines [3, 11].

3



Question

In what cases is the process MEGAHIT skipped?

Nextflow code

[...]

if (!params.skip_megahit) {

MEGAHIT(ch_short_reads_grouped)

ch_megahit_assemblies = MEGAHIT.out.contigs.map { meta, assembly ->

def meta_new = meta + [assembler: 'MEGAHIT']

[meta_new, assembly]

}

ch_assembled_contigs = ch_assembled_contigs.mix(ch_megahit_assemblies)

ch_versions = ch_versions.mix(MEGAHIT.out.versions.first())

}

[...]

Answer

if ch_short_reads_grouped is empty or if the parameter
skip_megahit is set to true

Figure 1: Self-constructed exemplary question-answer pair

Questions can also be generated template-based [21], rule-based [14] or using
LLMs [4], which significantly reduces the human workload.

For this thesis, we plan to create question-answer pairs manually for given
contexts (i.e., Nextflow workflows). This will distinguish the dataset from
other code QA datasets, that relied on template- and rule-based approaches
[14] or used LLMs for generation [4].

Real-world questions from platforms like GitHub or Stack Overflow3 may
be used as starting points, but automatically collecting user questions from
these platforms is not trivial: Many public questions on Nextflow relevant
to our setting deal with execution problems instead of coding. Content-wise,
the question should orientate towards queries developers may ask about their
workflow code.

3https://stackoverflow.com/

4



An example of a question-answer pair with its corresponding context is
shown in Figure 1. The shown code snippet is only a part of the nf-core

workflow mag which serves as context to the given question. To generate
the correct answer, a model would need to identify where in the code the
process MEGAHIT is called, and then understand the control flow surrounding
it as well as applying Nextflow specifications: Processes are also skipped if
one input is empty. This is a question a researcher may ask if he does not
understand why the task is skipped when executing the workflow.

To create a diverse QA dataset on Nextflow code which is also coher-
ent and broadly annotated, there are further design decisions to be taken:
about the set of context documents, the types of questions and answers, and
what information should be annotated. These aspects are described in the
following sections.

As context documents that question-answer pairs are associated to, we
choose to use complete workflows from nf-core and other popular Nextflow
workflows collected from GitHub. Since nf-core workflows are highly stan-
dardized, we want to prevent dependencies by incorporating other workflows
too. Also, most nf-core workflows are highly modularized. Since we want
to use complete workflows, we plan to parse each modularized workflows into
one file.

Similar to QuALITY [16], we expect using long contexts to increase the
difficulty of the QA task since models also need to identify relevant pas-
sages. Also, some properties of workflows are only captioned in long-range
dependencies (e.g. control flow).

4.1 Question annotation

We aim to label the question-answer pairs in the dataset with information
on the Nextflow concepts that are relevant to answer it. This way, we seek
to enable a precise evaluation of models performance on the dataset: By
reporting performance not only on the whole dataset but also on subsets
concerning specific Nextflow concepts, it will be easier to analyze in which
areas a model has the most significant need for improvement. Nextflow
concepts to be annotated are described in the following.

• Processes are the modular units encapsulating the single scripts/-
command line tools running within a Nextflow workflow. Therefore,
processes include input/output declarations as well as the script which

5



the process encloses. Additionally, variables can be defined in a process
using groovy code.

• Channels are used for the communication between processes. Process
inputs and outputs are provided respectively emitted via channels, and
channels can also be created from values.

• Workflows are functions defining the dataflow of the channels and pro-
cesses contained in the Nextflow code. Workflows can be modularized,
i.e. it is also possible to create subworkflows.

There are several other Nextflow concepts which may be worth labeling,
including

• conditional execution within workflows or processes,

• channel operators used to modify channels,

• inputs/outputs of processes and workflows

• and the groovy code included in processes.

Lastly, a question may require tool-specific knowledge about the tools
encapsulated in the Nextflow processes. Examples for this could be questions
about what output a specific tool produces (a task humans could solve by
looking up the tools documentation), or what task a specific process (i.e. an
encapsulated bio-tool) performs.

4.2 Question and answer types

Next to annotating information on the domain-specific concepts needed to
answer a question, we also seek to label the dataset with information on the
types of question-answer pairs.

There are several ways to classify the data points in QA datasets. A
popular strategy is to categorize by question word [1, 14, 20]. QA pairs can
also be grouped by their answer, e.g. by different types of entities, answer
clauses and numerical answers [3, 18].

Both these approaches can give valuable insights into the general charac-
teristics of a QA dataset. We therefore plan to provide statistics on both for
the complete dataset. However, for labeling the questions-answer pair type,

6



we choose broader categories of questions and annotate whether a question is
open-ended, numerical, a comparison, multiple choice or a yes/no question.
We plan to keep answers rather short, similar to the example in Figure 1.

However, it may later be of interest to examine if a system successfully
identifies the lines of code relevant to answer a specific question. To enable
an evaluation of this sub task, we choose to annotate the relevant lines of
code for each question (similar to supporting facts [19, 20]).

The example question from Figure 1 would be annotated with the labels
workflow and conditional execution. It also is an open-ended question.
The supporting fact lines are marked in Figure 2.

Nextflow code

[...]

if (!params.skip_megahit) {

MEGAHIT(ch_short_reads_grouped)

ch_megahit_assemblies = MEGAHIT.out.contigs.map { meta, assembly ->

def meta_new = meta + [assembler: 'MEGAHIT']

[meta_new, assembly]

}

ch_assembled_contigs = ch_assembled_contigs.mix(ch_megahit_assemblies)

ch_versions = ch_versions.mix(MEGAHIT.out.versions.first())

}

[...]

Figure 2: Question context from Figure 1 with supporting facts in red

5 Evaluation

Summarizing statistics describing the dataset, e.g. about the distributions
of the aforementioned annotations, question types and such will be provided.
For validating the annotated answers, we plan to collect annotations of multi-
ple experts for a subset of the dataset. These annotations will then be used to
calculate inter annotator agreement measures. Furthermore, the QA dataset
will be benchmarked using modern large language models. We aim to use
these language models for both the answer generation and the identification
of supporting facts.

7



For other datasets with short free-form answers [3, 14], researchers evalu-
ated a models performance using metrics like BLEU [17] or ROUGE-L [13].
When assessing a systems ability to identify the lines of codes that serve as
supporting facts, metrics like F1 score and EM are used. Aggregating results
by labels will then allow for a detailed analysis of a models weaknesses when
answering questions on Nextflow code.

8



References

[1] A. M. N. Allam and M. H. Haggag. The question answering systems: A
survey. International Journal of Research and Reviews in Information
Sciences (IJRRIS), 2(3), 2012.

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and
D. Parikh. VQA: Visual question answering. In Proceedings of the IEEE
international conference on computer vision, pages 2425–2433, 2015.

[3] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Ma-
jumder, A. McNamara, B. Mitra, T. Nguyen, et al. MS MARCO: A hu-
man generated machine reading comprehension dataset. arXiv preprint
arXiv:1611.09268, 2016.

[4] J. Chen, K. Zhao, J. Liu, C. Peng, J. Liu, H. Zhu, P. Gao, P. Yang, and
S. Deng. CoReQA: Uncovering potentials of language models in code
repository question answering. arXiv preprint arXiv:2501.03447, 2025.

[5] W. Chen, M. Yin, M. Ku, P. Lu, Y. Wan, X. Ma, J. Xu, X. Wang, and
T. Xia. TheoremQA: A theorem-driven question answering dataset. In
Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 7889–7901, 2023.

[6] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame. Nextflow enables reproducible computational work-
flows. Nature biotechnology, 35(4):316–319, 2017.

[7] P. A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J. Alneberg, A. Wilm,
M. U. Garcia, P. Di Tommaso, and S. Nahnsen. The nf-core framework
for community-curated bioinformatics pipelines. Nature biotechnology,
38(3):276–278, 2020.

[8] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al. CodeBERT: A pre-trained model for program-
ming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[9] R. Hu, C. Peng, J. Ren, B. Jiang, X. Meng, Q. Wu, P. Gao, X. Wang, and
C. Gao. CodeRepoQA: A large-scale benchmark for software engineering
question answering. arXiv preprint arXiv:2412.14764, 2024.

9



[10] J. Köster and S. Rahmann. Snakemake—a scalable bioinformatics work-
flow engine. Bioinformatics, 28(19):2520–2522, 2012.

[11] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Al-
berti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, et al. Natural ques-
tions: a benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–466, 2019.

[12] C. Lee, Y. Seonwoo, and A. Oh. CS1QA: A dataset for assisting code-
based question answering in an introductory programming course. arXiv
preprint arXiv:2210.14494, 2022.

[13] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries.
In Text summarization branches out, pages 74–81, 2004.

[14] C. Liu and X. Wan. CodeQA: A question answering dataset for source
code comprehension. arXiv preprint arXiv:2109.08365, 2021.

[15] N. Maligeay, N. Bossut, and K. Belhajjame. Why do scientific workflows
still break? In Proceedings of the 36th International Conference on
Scientific and Statistical Database Management, pages 1–4, 2024.

[16] R. Y. Pang, A. Parrish, N. Joshi, N. Nangia, J. Phang, A. Chen, V. Pad-
makumar, J. Ma, J. Thompson, H. He, et al. QuALITY: Question an-
swering with long input texts, yes! arXiv preprint arXiv:2112.08608,
2021.

[17] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for
automatic evaluation of machine translation. In Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, pages
311–318, 2002.

[18] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+
questions for machine comprehension of text. arXiv e-prints, pages
arXiv–1606, 2016.

[19] S. P. Sahu, M. Mandal, S. Bharadwaj, A. Kanade, P. Maniatis, and
S. Shevade. CodeQueries: A dataset of semantic queries over code. In
Proceedings of the 17th Innovations in Software Engineering Conference,
pages 1–11, 2024.

10



[20] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov,
and C. D. Manning. HotpotQA: A dataset for diverse, explainable multi-
hop question answering. arXiv preprint arXiv:1809.09600, 2018.

[21] Y. Zhuang, Y. Yu, K. Wang, H. Sun, and C. Zhang. ToolQA: A dataset
for llm question answering with external tools. Advances in Neural In-
formation Processing Systems, 36:50117–50143, 2023.

11


	Introduction
	Goals
	Related Work
	Dataset design
	Question annotation
	Question and answer types

	Evaluation

