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1 Introduction

Search engines are an essential tool for research in biology and medicine. Given a user
query, they return a ranked list of potentially relevant documents. PubMed is a search
engine and database of “more than 35 million citations for biomedical literature” !. Many
of these publications can be relevant for deciding the best treatment for a patient in
Evidence-Based Medicine (EBM) [Athenikos and Han (2010)]. It is left to the researcher
to study, filter, and combine search results to derive answers [Tsatsaronis et al. (2015)].
Russell-Rose and Chamberlain (2017) found that medical professionals spent hours to
complete search tasks on PubMed and other related search engines. In contrast to a list
of retrieved candidates, question answering (QA) systems provide a direct answer, which
can help biomedical researchers navigate the vast amount of literature more efficiently.

Traditional QA systems like “Watson” [Ferrucci (2012)] process queries in multiple
stages of analysis and rely on structured and semi-structured data sources, such as
knowledge bases, to find answers [Baradaran et al. (2022)]. Making information accessible
to the machine often involves a large amount of manual work in annotating literature.
Knowledge representations need to be updated and refined continuously in a dynamic
field such as the biomedical one.

To overcome this issue, there has been a trend towards applying machine learning
models to source information directly from natural language texts. This is achieved
by pretraining deep neural networks on language modeling (LM) objectives, such as
masked-language modeling (MLM) [Devlin et al. (2018)]. The goal of LM is to learn
a vector embedding representation for text that encapsulates its semantics, topic or
meaning. Without the need of manual annotation, LMs can be trained on vast amounts
of document collections, containing books [Zhu et al. (2015)], massive web crawls [Raffel
et al. (2019)] or Wikipedia articles to learn meaningful text representations.

Pretrained Language Models (PLMs) [Peters et al. (2018), Devlin et al. (2018)] are
the most prominent building block to improve language understanding in biomedical QA
(BQA) systems [Jin et al. (2022)], with PLMs being specifically trained on literature
from the biomedical domain [Lee et al. (2019)]. PLMs can be finetuned on the objective
of downstream tasks such as machine reading comprehension (MRC) to identify answers
for questions in a given text context.

However, applying MRC models to identify the answer in an entire corpus, e.g. PubMed,
is computationally expensive and may lead to poor results since the majority of documents
are likely to be irrelevant to the given question. Consequently, the approach commonly
involves the following two steps: first, a context retriever extracts a small subset of text
units from the corpora which probably contain the answer. These can be sentences,
passages or whole documents. Secondly, the retrieved text units and question are fed
to an MRC model to identify the correct answer [Karpukhin et al. (2020)]. Chen et al.
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(2017) and Karpukhin et al. (2020) find that the quality of the retrieval stage has a
significant impact on question answering performance in the second stage.

A standard approach for the retrieval step involves the use of term matching algorithms,
such as TF-IDF and BM25 [Robertson and Zaragoza (2009)], which score documents
based on how many words are shared with the question. Text for retrieval is represented
by high-dimensional, sparse vectors. Each dimension depicts the presence of a word from
the vocabulary with an applied weighting based on relevance heuristics. The vector is
sparse, because most terms in the vocabulary do not exist in an individual document
and the corresponding dimension values are zero. A downside of this encoding is the
disregard of semantic relations and the context of words. These shortcomings become
more apparent in QA. For instance, it is not possible to encode a request for quantities,
such as "How many" [Luo et al. (2022)]. When ignoring context, biomedical terms
encompass a high level of ambiguity. The term "promoter" refers to an entire different
concept in biology then in chemistry [Spasic et al. (2005)]. Additionally, a high amount
of abbreviations are used which can be expanded to many different terms depending on
the underlying document.

As an alternative to term matching algorithms, PLMs produce dense contextual vector
representations that are not affected by the limitations of sparse encoding, but have
a much higher computational impact. PLMs have been applied for re-ranking the top
candidate results of conventional retrieval systems [Lei et al. (2016)], but documents
with synonyms that rank low in preliminary retrieval might not be part of the selected
candidates.

Neural Retrievers (NR) derive relevant documents or passages directly in response
to a query. They mitigate the computational expense of PLMs by encoding documents
separately from input questions to be indexed ahead of retrieval. A popular method is to
apply a dual encoder model architecture and represent query and document individually
using two PLMs [Karpukhin et al. (2020)]. The encoders are finetuned together so
that dense representation pairs of question and relevant document are close in a joined
vector space and have a higher similarity to each other than the irrelevant ones. During
interference, only questions have to be encoded by the model and relevant documents
can be found by applying a fast neighbor look-up in an index of precomputed document
representations.

The application of neural retrievers has shown to outperform term matching approaches
like BM25 in the open domain [Karpukhin et al. (2020)]. However, the biomedical domain
presents unique challenges. Annotating large biomedical corpora is expensive and current
expert-annotated BQA datasets are small in size [Jin et al. (2022)], making it more
difficult to train and evaluate neural retrieval methods. As a result of this, the application
of Neural Retrievers in the biomedical domain is still an area of limited research. For
this project we plan to adapt two neural retrieval systems for biomedical QA on PubMed
articles and compare them to the well-established term matching approach BM25.



2 Statement of the problem

Given a document collection D = {dy,...,d,} and a question ¢, the goal is to train a
retrieval model f, that calculates a relevance score conditioned on each document d; so
that
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where © = {0;,...,60,,} is the set of trainable model parameters. The score s; approxi-
mates the probability p(rel|d;, ¢) that a document d; is relevant to the question ¢. As
a result set r, = {dy, ..., dy} we select the top-k documents for the question ¢ from D

with the highest relevance scores. Let d* be a positive (relevant) document and d~ a
negative one from a gold standard. A common choice to optimize a retrieval model f, as
applied in the DPR approach is to minimize the contrastive loss defined as
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[Shen et al. (2022)].

To analyze and compare results of the three retrieval approaches for this project, we
test them on a dataset (Q of questions annotated with relevant documents from D. Let
rel, = {dy,...,d;} be the set of true relevant documents for a question ¢ and dy, the
ranked top K results of the model f,. A performance measure for f,. can be determined
by first calculating the average precision at k (APQK) for each question ¢; so that
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and 7} is the total number of relevant documents in the top K results. Subsequently we
can report the Mean Average Precision at £ (MAPQK) value for the whole dataset by
averaging over the APQK values for each question.

3 State of the art

Neural retrievers (NR) have been leading in performance over traditional retrieval ap-
proaches such as TF-IDF and BM25 [Robertson and Zaragoza (2009)] on open domain
QA datasets. Prominent NR approaches apply cross-attention and dual encoder model
architectures. Cross-attention models have been used for document ranking [MacAvaney
et al. (2019), Nogueira and Cho (2019)], but are computationally expensive and cannot be
applied directly on large corpora. Dual encoder models, such as Dense Passage Retrieval
(DPR) by Karpukhin et al. (2020), employ separate encoders for query and document



context, which allows to precompute encodings for the whole corpus. The final retrieval
score is calculated using a simple dot product between query and context vectors.

A disadvantage of this approach is the lack of model interaction for calculating the
final retrieval score. Thakur et al. (2021) observe that DPR encounters issues when the
model input deviates too much from the training data. Khattab and Zaharia (2020)
propose ColBERT, adding a late token-level model interaction step over query and
context representations, which improves generalization performance at the cost of higher
retrieval latency [Thakur et al. (2021)]. However, storing token vectors for each context
representation greatly increases the space requirement for the document index. Santhanam
et al. (2021) apply a residual compression mechanism to reduce the space footprint while
preserving approximately the same quality as uncompressed embeddings.

Comparing the generalization ability of DPR with late-interaction models, it is easy to
presume that the dot-product is a bottleneck and not powerful enough to capture semantic
relevance. However, Ni et al. (2021) are able to consistently improve generalization ability
of DPR by increasing the encoder model size while keeping the bottleneck embedding
size fixed.

Tay et al. (2022) demonstrate a new paradigm for building retrieval models. They
propose Differentiable Search Index (DSI) that learns to generate a unique identifier for
each document in the corpus. Afterwards, beam search can be used on a question to
generate a ranked list of potentially relevant document ids. In order to ingrain semantics
into document ids, the authors apply a hierarchical clustering algorithm so that each
consecutive id digit references an increasingly subdivided cluster in the embedding space.
Wang et al. (2022) propose a Prefix-Aware Weight-Adaptor (PAWA) decoder to better
leverage the hierarchical document id structure. The authors employ special decoder
tokens that uniquely identify a cluster in the hierarchical tree structure and constrain
beam search to only output tokens of the corresponding level.

Due to comparatively small gold standard dataset sizes for training, it is not trivial to
bring the successes of NRs from the open domain to the biomedical one. Luo et al. (2022)
apply DPR on the biomedical domain and compile insights over domain specific issues
of neural retrievers. Notably, dense retrievers have a reduced emphasis on exact word
matching which affects the performance more negatively on biomedical datasets such as
BioASQ. Furthermore, dense approaches struggle with representing larger contexts [Yang
et al. (2019)]. To mitigate this, Luo et al. (2022) represent context not by a single BERT
representation for the whole document, but use the context representations for each
token to calculate a maximum similarity score between query and document. They also
leverage additional pretraining strategies which reflect larger context sizes and improve
exact word matching performance. Additionally, the authors employ a hybrid model by
accumulating DPR model and BM25 scores. The retrieval results based on this joined
similarity score improve, showing that DPR and BM25 tend to different signals in the
document and complement each other.



4 Methodology

Since their introduction by Karpukhin et al. (2020), dual encoder models have been the
de facto standard approach for neural retrieval. While the authors have shown that their
neural retrieval approach is comparable or better than BM25 in certain tasks, e.g. open
domain QA, their application to the biomedical domain is still understudied. For this
project we plan to adapt the Dense Passage Retrieval (DPR) approach by Karpukhin
et al. (2020) for the application on PubMed articles. As an immediate step for applying
DPR on biomedical corpora, we can replace the underlying BERT model with the domain
specific model BioBERT [Lee et al. (2019)], which is pretrained on PubMed articles.
What makes biomedical QA especially challenging for PLMs is a lack of large annotated
datasets. While most gold standard datasets annotate relevant document passages for
each question, DPR additionally requires negative training examples. A common strategy
for a given question is to utilize positive documents for other questions in the same
training batch as negatives. The main disadvantage is that random negative documents
are likely to address an entirely different topic and are often not hard to distinguish
from a positive one. Providing hard negatives during training significantly improves the
performance of dense retrieval models [Lu et al. (2021)]. Karpukhin et al. (2020) suggest
to use false positive documents retrieved by BM25 that do not contain the answer of the
question as additional hard negative training examples.

Along with the dual encoder model approach, we plan to implement the DSI model
by Tay et al. (2022) since it has shown promise on the open domain Natural Questions
(NQ) dataset of Wikipedia articles and does not require negative training examples. The
biomedical corpus PubMed is a much larger document collection and we can investigate
how corpus size affects its ability to memorize documents. In this scenario, the model
also has to deal with the challenge of having much less training data. The DSI model is
built upon the T5 sequence to sequence model [Raffel et al. (2019)] and we will use an

equivalent one specifically trained on the biomedical domain, i.g. SciFive [Phan et al.
(2021)].

Finally, since term matching algorithms based on bag of words representations are still
frequently used in the biomedical domain, we will compare them to our neural retriever
results. For this purpose we apply the Pyserini toolkit by Lin et al. (2021) which includes
an implementation of BM25.

A prominent challenge of the biomedical domain is the lack of large expert annotated
datasets. For this project we plan to train and evaluate the neural retrieval methods on the
BioASQ 10b dataset [Tsatsaronis et al. (2015)]. It contains approximately 4 000 questions,
annotated with PubMed articles containing the answer. In contrast to the biomedical
domain, the open domain Natural Questions (NQ) [Kwiatkowski et al. (2019)] dataset for
Wikipedia articles includes over 300 000 question-document pairs. The aforementioned
datasets show the disproportion of training data availability between the domains and
we will evaluate the methods on both as a comparison.

Training language models is computational expensive and time consuming. While



experimenting with different parameters it is crucial to reduce the corpus to a more
manageable size. Tay et al. (2022) split the NQ dataset into the three different size
categories NQ10K, NQ100K, and NQ320K, with the numbers denoting the total document
count. To reduce the corpus size, articles are sampled uniformly from the complete set
and NQ320K contains all articles from the corpus. Similarly to the NQ dataset we reduce
the PubMed corpus to 1 million and 100 000 documents respectively. Additionally to
the reduction in computational expense while training the models, we can simulate the
effects of different corpus sizes on model performance and will report results for each
corpus size.
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