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1 Introduction

1.1 RNA sequencing

RNA sequencing (RNA-seq) has revolutionized the way scientists explore
the transcriptome, the complete set of transcripts in a cell, and its quanti-
tative expression levels. This technology enables the identification of novel
genes, splice variants, and fusion transcripts, and allows for the comprehen-
sive analysis of gene expression patterns across different conditions, tissues,
and developmental stages (Kapranov et al., 2007, Birney et al., 2007).

Initially, short-read sequencing technologies, prominently represented by Il-
lumina’s sequencing platforms, dominated the field due to their high-throughput
capabilities, cost-effectiveness, and high accuracy in quantifying gene expres-
sion levels (Van Dijk et al., 2014). These technologies generate millions of
short nucleotide sequences, typically ranging from 50 to 600 base pairs (bp)
in length, which are then aligned to a reference genome or transcriptome to
infer the expression of genes or transcripts.

A key challenge with short-read sequencing technology is its limited read
length, currently up to 600 bases. This limitation hinders precise quantifi-
cation of different transcript variants and the discovery of new ones. Short-
reads often do not span entire gene transcripts or large exon regions, making
it difficult to map these reads unambiguously back to the correct locations in
the genome. In contrast, long-read sequencing technologies produces much
longer reads, typically ranging from 1 to 100 kilobases (kb). This range
comfortably covers the entire length of human spliced genes. As a result,
long-read sequencing can capture entire transcript variants in a single read.
However, the trade-offs of this long-read sequencing technology are lower
throughput and somewhat less accuracy when compared to short-read se-
quencing (Dong et al., 2021). The long-read sequencing landscape is prima-
rily dominated by two technologies: Pacific Biosciences’ (PacBio) (Rhoads
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and Au, 2015) Single-Molecule Real-Time (SMRT) sequencing and Oxford
Nanopore Technologies’ (ONT) (Bowden et al., 2019) nanopore sequencing.
1.2 Applications of RNA sequencing data

◦ Differential gene expression (DGE) analysis

The information encoded in the selected genes is transcribed into RNA
molecules, which in turn can be translated into proteins or can be di-
rectly used to finely control gene expression. As a result, the collection
of RNAs produced under specific circumstances and at a given moment
represents the present condition of a cell and can disclose the patho-
genic mechanisms driving illnesses (Finotello and Di Camillo, 2015).

A fundamental use of RNA-seq data is differential gene expression
(DGE) analysis, which identifies genes whose expression levels differ
significantly between various biological conditions, such as healthy ver-
sus diseased tissues, treatment versus control groups, or different sta-
ges. This analysis can be extended to the transcript level, enabling the
exploration of differential transcript expression (DTE), which provides
insights into changes at a more granular level of gene regulation.

While differential transcript usage (DTU) refers to differences in tran-
script proportions within a gene, implying DTE, the reverse is not
necessarily true; for instance, if total gene expression doubles and each
transcript type proportionally doubles, this results in DTE (and thus
DGE) without DTU (Liang and Pardee, 2003, Singh et al., 2018).
Thus, DGE analysis not only identifies upregulated or downregulated
genes in response to particular stimuli or environmental changes but
also serves as a foundational tool for more detailed functional investi-
gations and hypothesis development, paving the way for the discovery
of disease biomarkers and understanding the molecular bases of phe-
notypic variations.

◦ Differential transcript usage (DTU) analysis

While DGE focuses on changes in overall gene expression, DTU ana-
lysis dives deeper into the transcriptome to explore variations in the
usage of transcript isoforms between conditions.

To fully comprehend the intricacy of gene regulation, DTU analy-
sis is essential since numerous genes can generate different isoforms
by alternative splicing, alternative promoter use, or alternative poly-
adenylation. It pinpoints particular isoforms that exhibit differential
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utilisation, which may have unique functional ramifications like regu-
lating discrete components or encoding various protein variations. In
the setting of complicated disorders like cancer, where aberrant spli-
cing patterns might contribute to carcinogenesis and progression, DTU
analysis is especially crucial (Marques-Coelho et al., 2021).

1.3 SIRV Spike-ins - Benchmarking RNA-sequencing methodo-
logies

Synthetic Internal RNA Variants, or SIRV Spike-ins, are carefully designed
RNA molecules that are employed as internal standards in RNA sequencing
(RNA-seq) investigations. These synthetic RNA variations are made to re-
semble natural RNA transcripts in terms of complexity, size, and structure.
They are added to RNA samples prior to the sequencing process and have a
number of uses, the main one being to offer a controlled baseline for RNA-
seq techniques that may be used to calibrate, validate, and increase their
accuracy.

2 Scope of project

Despite the trade-offs between short-read and long-read sequencing techno-
logies, there has been no work done on directly comparing the applications of
RNA sequencing data generated from these technologies, especially between
PacBio, ONT and Illumina. To my knowledge, the closest work by (Dong
et al., 2023) benchmarked different analysis tool using deep sequencing data
from Illumina and Oxford Nanopore Technologies. This study however only
uses one method for DGE and 2 methods for DTU.

The primary objective of this study project is to assist the pipeline construc-
tion for benchmarking long-read RNA-seq datasets from Illumina, PacBio
and ONT for tasks typically performed with short-read data. These tasks
include quantification, replicability, differential gene/transcript expression
analysis, and differential transcript usage. The concrete tasks of this project
involves constructing a pipeline for running differential gene/transcript ex-
pression analysis using multiple different tools and evaluating the results of
DGE/DTE. Since this study project is intended for a limited time-frame,
only a part of the intended tools will be implemented, as well as only a part
of the intended analysis will be done (See 4. Approach for the specific tools
and analysis). This pipeline will then be integrated with an existing pipeline
that performs quantifications on the raw RNA-seq data.

The novelty of this project lies in the direct comparison of high-depth long-
read datasets from both PacBio and ONT, which has been rare in previous
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studies. By focusing on these comparisons and considering pipeline factors
such as quantification strategies (on transcriptome vs. genome), inclusion of
novel transcripts, and downsampling.

3 Relevant work

Very few studies have explored the capabilities and limitations of long-read
RNA-seq technologies.

For instance, work by Byrne et al. has demonstrated the potential of long-
read sequencing for improving transcriptome annotation and identifying no-
vel transcripts. However, there has been limited research directly comparing
the performance of long-read technologies with short-read sequencing for
specific RNA-seq applications.

Dong et al. presents both gene- and isoform-level analyses of long-read nano-
pore transcriptome datasets, using largely conventional methods developed
for short-read data. Their study also highlights the limitations of existing
methods for isoform identification from long-read data and introduces a new
method, FLAMES, to improve isoform-level analysis. However, the datasets
contain only a few million reads each, in comparison to the high-depth long-
read datasets that we have from PacBio and will be receiving from ONT.

In a recent study assessing RNA sequencing tools, (Dong et al., 2023) compa-
red various analysis tools using deep sequencing data from Oxford Nanopore
Technologies and Illumina. However, like mentioned above, this study only
employs two DTU methods and one DGE approach.

4 Approach

The first step to this project is researching libraries in R and Python that
perform DGE/DTE and DTU and and write scripts to perform the analysis
for each method. We aim to implement 3 methods for DGE/DTE (DESeq2
(Love et al., 2014), edgeR (Robinson et al., 2010), and limma (Ritchie et al.,
2015)) and 2 methods for DTU (DRIMSeq (Nowicka and Robinson, 2016) and
satuRn (Gilis et al., 2021)).

After all methods have been wrapped in convenient scripts, they will be
integrated into a snakemake workflow, including the existing pipeline to
perform quantifications on the raw RNA-seq data, forming a complete work-
flow for DGE and DTU analysis. This pipeline will then be run on the entire
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RNA-seq dataset, sequenced with PacBio and Illumina from the widely used
WTC11 iPSC cell line (Kreitzer et al., 2013). Since we are still waiting for
nanopore data from ONT, the evaluation of nanopore data from ONT does
not belong to the scope of this project.

Finally, an early comparison of one Illumina quantification and three PacBio
quantifications on the following three key aspects will be delivered:

a) Quantification accuracy (relative-only, i.e., how well are log-fold chan-
ges between conditions captured) on SIRV spike-ins.

b) DTE accuracy on SIRV spike-ins and DGE accuracy on appropriate
EC markers reflecting our differentiation.

c) DTU accuracy on SIRV spike-ins.
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