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To facilitate the analysis of big scientific data, scientific workflow manage-
ment systems like Argo Workflows (Argo) and resource managers like Ku-
bernetes are used. In typical setups, the resource manager lacks information
about the workflow structure leading to suboptimal scheduling decisions. In
this paper, we build on prior work by Lehmann et al. to improve scheduling
in setups using Argo and Kubernetes. To achieve this, we adapt the Common
Workflow Scheduler (CWS) API to Argo’s workflow model, we implement
the CWS API in Argo, and we extend the custom Kubernetes scheduler by
Lehman et al. To evaluate our work, we conduct experiments using workflows
generated by the WfCommons framework.

1 Introduction

Scientists analyze increasing amounts of data. In Remote Sensing, for instance, Earth
observation satellites are generating multiple terabytes of image data per day [1]. In
Genomics, sequence databases such as the Sequence Read Archive or the European
Nucleotide Archive store tens of petabytes of sequencing data [2], [3].

To analyze such large amounts of data, the required analysis tasks and their inter-
dependencies are described as workflows [4]–[7]. Typically, a workflow is defined as
a Directed Acyclic Graph (DAG) consisting of vertices representing tasks and edges
representing dependencies between tasks. To facilitate the execution of such analysis
workflows, Scientific Workflow Management Systems (SWMS) such as Nextflow [8] and
Argo Workflows1 are used.

Commonly, workflows are executed on a compute cluster using a resource manager to
distribute the work to be done over the available resources. Popular resource managers

1https://argo-workflows.readthedocs.io/en/latest/
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include SLURM [9] and Kubernetes2. In typical setups, a scientist provides the SWMS
with a workflow definition and input data. The SWMS parses the workflow definition
and passes ready-to-run tasks to the resource manager. The resource manager in turn
schedules the given tasks on free compute resources. This setup has a drawback. Since
the resource manager has no information about the workflow structure, it can not make
well-informed scheduling decisions [10].

Previous work by Lehmann et al. approaches this problem by proposing an API that
allows the SWMS to pass additional information to the resource manager [10]. They
implement the proposed API for Nextflow and Kubernetes and show that the addi-
tional information can be used to make better scheduling decisions and reduce workflow
execution times.

Our work builds on the contributions by Lehmann et al. and our goal is to improve
scheduling in setups using Argo Workflows (Argo) and Kubernetes. Argo is a popular
open-source Kubernetes-native workflow engine. In contrast to Nextflow, Argo’s work-
flow model allows workflows with loops. In general, the number of repetitions of a loop is
only determined at runtime. This makes Argo incompatible with the current CWS API
and the custom Kubernetes scheduler implemented by Lehmann et al. Consequently,
our contributions are as follows: First, we adapt the CWS API and custom Kubernetes
scheduler to Argo’s workflow model. Second, we implement the CWS API in Argo.
Finally, we conduct experiments to evaluate our work.

2 Related Work

In general, workflow scheduling relates to the problem of mapping a partially ordered
set of tasks onto a set of resources and times such that the task order is preserved and
the total makespan is minimal. This problem has been extensively studied and is proven
to be NP-hard, so there exist no fast optimal solutions [11]. Nonetheless, scientists have
come up with heuristics, like the HEFT scheduling heuristic, that provide good results
within a reasonable amount of time [12].

In practice, however, workflow scheduling systems face a variety of additional chal-
lenges:

• Task execution times are often unknown in advance [13].

• In typical setups, the structure of the workflow is not known by the scheduler [10].

• The execution environment can change dynamically [14].

There has been extensive research regarding workflow scheduling and scientists have
come up with solutions to some of these problems [15], [16].

2https://kubernetes.io/
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Regarding the problem that the scheduler has no information about the workflow
structure, Lehmann et al. propose the Common Workflow Scheduler (CWS) API, a
REST API that allows the SWMS to pass additional information to the scheduler [10].
The authors implement the CWS API in a custom Kubernetes scheduler that uses the
additional information to improve scheduling decisions. It does so by applying scheduling
heuristics, which do not need knowledge of task execution times in advance and can
handle dynamic workflows.

3 Goals and Evaluation

This work aims to improve the scheduling in setups using Argo and Kubernetes, by lever-
aging previous work by Lehmann et al. [10]. To connect Argo to the custom Kubernetes
scheduler, we take the following steps:

First, we investigate ways to reconcile the workflow model of Argo and the CWS.
In contrast to the workflow model of the CWS, the workflow model of Argo includes
loops. Although it might be theoretically possible to schedule workflows with loops
using the CWS API and the custom Kubernetes scheduler by abusing their support for
dynamic workflows, it would go against the spirit of providing the scheduler with as much
information as possible. Second, we build a prototype. This includes extracting Argo’s
internal workflow representation, translating it, and sending it to the CWS, as well as
implementing scheduling heuristics for workflows with loops in the custom Kubernetes
scheduler. Third, we evaluate our prototype with synthetic workflows generated by the
WfCommons framework [17]. We compare different approaches and scheduling heuristics
to show how well setups using Argo and Kubernetes benefit from the CWS API and the
custom Kubernetes scheduler.

Generally, we expect similar results to what Lehmann et al. achieved in setups using
Nextflow and Kubernetes. Our main contributions will be: a) Adapting the CWS API
and custom Kubernetes scheduler to Argo, including scheduling heuristics for workflows
with loops. b) Implementing the CWS API in Argo. c) Show how well setups using
Argo and Kubernetes can benefit from the CWS approach.
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