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1 Introduction

Many scientific research questions, for example analysis of genomic variations [10],
genome sequence processing [8] or earthquake hazard characterization [2] require
processing of very large datasets. These processes are often expressed as sci-
entific workflows [4], which are comprised of a set of computational tasks and
the dependencies between them. Scientific workflows are executed by special-
ized scientific workflow systems, which allows the user to specify the workflow
and manages the execution of the tasks. As part of this, the systems scheduler
makes sure that a tasks dependencies are satisfied before it runs. For analyzing
large datasets, it is desirable to execute these tasks in a distributed environ-
ment on multiple nodes, for example on a cluster or in the cloud. A scientific
workflow system can take care of assigning tasks to nodes on which they should
be executed, which includes ensuring that all required data is accessible by the
task. It is also possible that this functionality is implemented by a dedicated
scheduler.

Nextflow [24] is a scientific workflow system that allows the user to specify
their workflow in a domain specific language. The specification is independent
from the execution environment: The same workflow can be executed on the
users local machine or in a cluster, without changing the specification. Nextflow
has seen some use in scientific projects (for examples see: [18, 20, 17]). For ex-
ample, it has been used to detect emerging variants of the SARS-Cov2 virus [16],
which causes the COVID-19 disease.

Execution on clusters or clouds involves large numbers of physical machines and
infrastructure, often in dedicated data centers. Their operation consumes great
amounts of energy, which has motivated research focused on ways to reduce the
energy consumption of the data centers themselves [12] and the compute tasks
that run on them [22, 9]. Dynamic voltage and frequency scaling (DVFS) is an
optimization technique used to reduce energy consumption. The basic idea is
to reduce the frequency or voltage at which the processor operates. This offers
a trade-off: By decreasing the processor performance, therefore increasing task
runtime, it reduces the energy consumption of the processor. Previous studies
have shown that power consumption is approximately proportional to the square
of the voltage and to the frequency at which the processor operates. Generally
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speaking, voltage is linearly related to frequency [3], which means that power is
proportional to the cube of the frequency. This has lead to a common [11, 6, 7]
way to estimate power consumption as a function of CPU frequency as follows:

P (f) = α · f3 + Pstatic

where Pstatic is basic energy consumption due to the processor running, f
is the operating frequency in MHz and α is a CPU dependent coefficient. This
model implies that a frequency reduction can significantly reduce the power
consumption of the CPU.

We aim to combine dynamic voltage and frequency scaling with a scientific
workflow system on real hardware. The goal is to investigate the potential for
energy savings by executing scientific workflows with different CPU frequencies
and measuring the consumed energy. The gained insights can be used to de-
termine if integrating dynamic voltage and frequency scaling into a scientific
workflow system is a viable approach for reducing the energy consumption of
scientific workflows.

2 Related Work

Wang et al. [5] proposed a scheduling algorithm for task graphs that uses DVFS
to reduce energy consumption of CPUs. A task graph has a critical path that
provides a lower bound for its runtime [1]. The critical path is formed by the
sequence of dependent tasks (which have to be executed serially) from an entry
task to an exit task with the longest execution time. It is easy to see that the
total execution time of the task graph cannot be lower than the execution time
of its critical path. Wang et al. observe that tasks not on the critical path
have some slack time: An amount of time by which their execution might be
delayed or extended without impacting overall execution of the whole set of
tasks. When executing a non-critical task their system uses the slack time of
the task to determine a reduced operating frequency for the node that executes
it. In simulations, their scheduling algorithm reduced energy consumption.

Silva et.al. [14] analyzed two production scientific workflows on a distributed
platform instrumented with power meters. According to their work the two
workflows, SoyKB [10] and Epigenomics [8] have many I/O intensive tasks and
diverse CPU usages. Their goal was to compare the measured energy consump-
tion of these workflows to a common assumption that the power used by a task
is linearly related to its CPU utilization. By analyzing their measurements, the
authors found that energy consumption depends not only on CPU utilization,
but also on I/O operations. To improve the commonly used model for energy
consumption, they propose a model that considers both CPU utilization and
I/O operations. It assumes that power consumption can be expressed as the
sum of power consumption caused by CPU utilization and I/O operations.

Choudhary et.al. [15] combine DVFS and task clustering to develop an
energy-aware scheduling algorithm for scientific workflows. Task clustering is
a technique that combines fine-grained tasks and executes them as one coarser
task to reduce scheduling overhead. Their work focuses on cloud environments,
where virtual machines (VMs) are provisioned by the cloud provider. Virtual
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machines are usually billed based on usage time and their performance. This in-
troduces an additional problem dimension for a scheduling algorithm, because
some tasks may require more expensive and higher performance VMs, while
others can be executed on cheaper low performance machines. The algorithm
proposed by Choudhary et.al. attempts to assign tasks to virtual machines
where they will consume the least amount of energy while still satisfying other
constraints, such as resource availabilty. The algorithm also dynamically provi-
sions new VMs when necessary. The authors report that their algorithm reduces
energy consumption an cost of execution in cloud environments in simulations.

3 Approach

The goal of this project is to investigate the potential for energy savings with
a real (i.e., not simulated) workflow scheduling system that employs dynamic
voltage and frequency scaling techniques. To achieve this goal, we will measure
the energy consumption of example workflows using a range of CPU frequencies.

As a first step, we will set up Nextflow [24], a workflow system capable
of executing tasks on a single local machine, clusters of machines and in the
cloud. It is important to make sure that the measurements are representative of
workflows that would be used in real-life scenarios. To ensure this, we will use
workflows from nf-core [13], a curated collection of open-source data analysis
workflows for nextflow. Because DVFS impacts the energy consumption of
CPU and file I/O bound workflows in different ways, we will use workflows with
different characteristics regarding their I/O and CPU loads. Additionally, the
size of the input data set likely impacts the ratio of time spent on I/O versus
on computation. Intuitively, this should affect the amount of saved energy via
DVFS. A goal of this project will be to determine if this effect actually occurs
and how large its impact is. To achieve this, we will use multiple different input
data sets with different sizes.

The next step would be to set up a system for measuring energy consump-
tion during workflow execution. We plan to use Intel RAPL [19, Chapter 16.10]
to measure the power consumed by the CPU during execution. RAPL is an in-
terface (realized through a set of registers) that reports the energy consumption
of various parts of the system, most notably of the CPU package and system
RAM. There are various ways of accessing RAPL information from user space
on Linux systems. As part of this project, we will have to determine the best
way to achieve this. One straightforward way to implement this could be to
program a script that runs concurrently to the workflow execution, samples the
energy consumption reported by RAPL at a fixed frequency and writes the in-
formation into a file suitable for evaluation. One challenge as a result of using
RAPL is that it always measures the whole CPU, not individual processes. Be-
cause a real system has many concurrently running processes, not all the energy
consumption will be caused by the workflow task. As a simplifying assumption,
it seems plausible that energy consumption is related to the CPU utilization of
the task, which can be determined via standard tools such as top [21].

After a system has been prepared to take measurements, workflows can be
executed with CPU frequency limited to different values. This step will likely
take a long time, but it will hopefully require only minimal direct interaction.
The simplest approach to this would be to execute all workflows on a single
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physical machine. Nextflow supports this approach with its local executor. A
more realistic execution environment would use multiple nodes, for example via
the kubernetes executor, which executes tasks in containerized environments.

After measurements have been taken, evaluation can begin. We want to
answer the following questions:

• What is the relationship between CPU frequency and consumed energy?

• How large is the impact of the reduced CPU frequency on the workflow
execution time?

• How does the size of the input data influence the energy consumption?

If time permits, there might be an opportunity to take more fine grained
measurements. Nextflow permits the user to change which program is used to
execute tasks [23, Process Reference Section], by default the bash shell is used.
It may be possible to write a wrapper program that launches bash and takes
energy consumption measurements during the process execution. This would
allow us to associate measurements with specific tasks. However, there are
several complicating factors: Tasks can be executed concurrently, which means
that that energy measurements for one tasks would be influenced by concurrent
tasks. Furthermore, it is unclear (from reading the manual), which requirements
such a program would need to satifsy in order to work with nextflow. The tool
would likely need to imitate the behavior of bash in all scenarios that could
occur during execution. It is hard to predict how much time the development
of such a tool would require.
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